

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Solaris Containers — What They Are

and How to Use Them

Menno Lageman, Sun Client Solutions

Sun BluePrints™ OnLine—May 2005

Part No. 819-2679-10
Revision 1.0, 5/26/05
Edition: May 2005

Please
Recycle

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents

 and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry.
Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK
GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE

DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95054 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l’adresse

http://
www.sun.com/patents

 et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque enregistree
aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, et Solaris sont des marques de fabrique
ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

1

Executive Overview

Over the years businesses have been building large-scale information systems to solve
business problems, with a focus on building scalable and highly available IT infrastructures
that can adapt change. Providing sufficient availability and performance for business
applications was the primary driver for these efforts. Today, the need to protect technology
investments and provide the same service levels at a lower price point is shifting the focus to
reducing IT infrastructure cost and improving end user service level management. Sun
believes businesses can accomplish this goal by utilizing the facilities available in

Solaris
Containers

.

End user application services are frequently comprised of components that are distributed
across multiple servers. To reduce costs, businesses are eager to consolidate these
applications onto fewer servers, but they must be careful to maintain isolation between
applications. Hardware and software advances have led to the concept of

server
virtualization

, the partitioning of network servers into several independent execution
environments. Server virtualization allows a data center to be viewed and managed as a set of
compute resources rather than a room of individual systems.

Solaris Containers

Sun’s next advance in server virtualization is a concept called Solaris Containers. Solaris
Containers provide isolation between software applications or services using flexible,
software-defined boundaries. Applications can be managed independently of each other, even
while running in the same instance of the Solaris

™

 Operating System (Solaris OS). Solaris
Containers create an execution environment within a single instance of the Solaris OS and
provide:

�

Full resource containment and control

 for more predictable service levels

�

Software fault isolation

 to minimize fault propagation and unplanned downtime

�

Security isolation

 to prevent unauthorized access as well as unintentional intrusions

2

Executive Overview • May 2005

The primary benefits of Solaris Containers are:

�

Reduced management costs

 through server consolidation, and a reduced number of
operating system instances

�

Increased resource utilization

 with dynamic resource reallocation between Containers

�

Increased service availability

 by minimizing fault propagation and security violations
between applications

�

Increased flexibility

 because software based Containers can be dynamically reconfigured

�

Increased accuracy and flexibility of accounting

, based on workloads rather than systems
or processes

How This Article is Organized

�

Chapter 2, “Introduction,” provides an overview of the features of Solaris Containers.

�

Chapter 3, “Workload Management,” describes the nature of workloads today and how
resource management techniques can be used to gives those workloads the resources they
need.

�

Chapter 4, “Managing Workloads — An Example,” provides an example of how to use
projects to manage workloads effectively.

�

Chapter 5, “Dynamic Resource Pools,” describes how dynamic resource pools can be used
to automatically allocate resources.

�

Chapter 6, “Resource Pools — An Example,” provides an example of how to use resource
pools to partition the CPU resources on a system.

�

Chapter 7, “Solaris Zones,” describes the new Zones features in the Solaris 10 Operating
System.

�

Chapter 8, “Using Zones — An Example,” illustrates how to use Zones to create virtual
environments on a system.

�

Chapter 9, “Containers — An Example,” describes how to create Containers that can be
used to consolidate multiple copies of applications onto a system.

�

Chapter 10, “Summary,” provides links to more information.

 Typographic Conventions

3

Typographic Conventions

TABLE 1-1

 describes the typographic conventions used in this article.

TABLE 1-1

Typographic Conventions

Typeface Meaning Examples

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

Edit your

.login

file.
Use

ls -a

to list all files.

% You have mail

.

AaBbCc123

What you type, when contrasted
with on-screen computer output

%

su

Password:

AaBbCc123

Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the

User’s Guide

.
These are called

class

 options.
You

must

 be superuser to do this.

AaBbCc123

Command-line placeholder text;
replace with a real name or value

To delete a file, type

rm

filename

.

4

Introduction • May 2005

2

Introduction

Today, businesses often design their systems with extra capacity to handle occasional peak
loads to maximize revenue during periods of high demand. This extra system capacity
remains unused during periods of normal demand. By allowing other applications to borrow
this unused capacity a more cost-effective solution can be realized. During periods of high
demand resources can be dynamically reallocated to important applications. Sharing
resources in this way leads to higher resource utilization, reduces capital and system
management costs by reducing the total number of systems required. For the consolidation of
applications onto fewer systems to be effective, applications must be able to be managed
independently. This requires the ability to control resource utilization, isolate faults, and
manage security between multiple applications on the same server. In other words, it requires
the establishment of virtual server boundaries within the server.

One of the first steps in this direction was the introduction of Dynamic System Domains on
large Sun servers. With Dynamic System Domains, a server can be divided into several
domains, each running its own copy of the Solaris OS. The domains provide hardware
isolation between the applications so that faults in one domain do not propagate to
applications in other domains. Domain boundaries can be dynamically partitioned to adapt to
changing resource requirements. Resources can be moved from one domain to another
without requiring a restart of the system. This adds flexibility to the data center while
maintaining security and isolation from faults in other domains.

Starting with Solaris Resource Manager 1.x in the Solaris 2.6 OS, Sun has gradually
enhanced the ability to control resource utilization and separate applications running in a
single instance of the Solaris OS. Several technologies have been added to the Solaris OS
over the years, providing additional capabilities and finer control over resource utilization.
Examples of such technologies include the Solaris 9 Resource Manager and Resource Pools
in the Solaris 9 OS. These technologies allow users to create a Solaris Container, an
application or

service

 that has one or more resource boundaries associated with it. These
resource boundaries can limit CPU or memory consumption, network bandwidth, or even be
a processor set. As a result, Solaris Containers are a prime enabler for server consolidation.

With the introduction of Solaris Zones in the Solaris 10 OS, Sun is taking Solaris Containers
a step further by allowing servers to be partitioned in sub-CPU granularity. A Solaris Zone is
a complete execution environment for a set of software services — a separate, virtual Solaris

 Workload Resource Management

5

environment within a Solaris instance. A Zone provides a virtual mapping from software
services to platform resources, and allows application components to be isolated from each
other even though they share a single Solaris OS instance. It establishes boundaries for
resource consumption and provides isolation from other Zones on the same system. The
boundaries can be changed dynamically to adapt to changing processing requirements of the
applications running in the Zone.

Solaris Containers can be built using one or more the following technologies. These
technologies can be combined to create Containers tailored for a specific server consolidation
project.

�

Solaris Resource Manager, for workload resource management

�

Resource Pools, for partitioning

�

Zones, for isolation, security and virtualization

It is important to note that a Solaris Container is not equivalent to a Solaris Zone. Zones
technology can be used to create a Container with certain characteristics, such as the
isolation provided by the virtual Solaris environment. But it is also possible to create another
Solaris Container using Resource Pools technology if the required characterics of that
Container can be met with the features Resource Pools provide. So while a Zone is a
Container, a Container is not necessarily a Zone.

Workload Resource Management

One of the inhibitors for consolidating multiple applications onto a single server is the lack
of control over the resources utilized by applications. Consider the example of a company
that wants to consolidate two database servers onto one system to decrease the number of
systems to manage, as well as the number of software licenses required.

The first database is used by an on-line sales application while the second database is used
by a marketing application. Because the sales application supports the core business of the
company, it should be guaranteed a certain minimum amount of CPU when needed. The
marketing application is a supporting application, and the CPU requirements of the database
server are much less stringent. Without a mechanism to enforce these requirements, these two

6

Introduction • May 2005

applications cannot be consolidated successfully onto one system. With Solaris Containers,
these business requirements can be implemented by establishing the appropriate CPU
resource boundaries using the

Fair Share Scheduler

 (Figure 2-1).

FIGURE 2-1

Solaris Containers provide an environment that fosters the safe consolidation of
applications onto a single server

The Fair Share Scheduler controls the allocation of available CPU resources among
workloads based on their relative importance. See Chapter 3 for more information on
workload management and Chapter 4 for a hands-on example of workload management.

Server

Server

Database 1

Database 2

Database 1

Database 2

DBA
Processes

Server

 Partitioning

7

FIGURE 2-2

The Fair Share Scheduler ensures applications get the resources they need

Partitioning

In some cases a more strict separation of resource consumption may be required. For
example, some applications may require a dedicated number of CPUs regardless of the
processing requirements of other workloads. Furthermore, it may be desirable to restrict
some applications to a maximum number of CPU resources as defined in a service level
agreement. Dynamic Resource Pools can be used to provide this kind of partitioning.

In the example of the sales and the marketing database, two Resource Pools can be created:
one with a large number of CPUs, and another with a small number of CPUs (Figure 2-3).
The sales database would be assigned to the large pool and the marketing database to the
small pool. The Solaris 10 OS adds the capability to dynamically adjust these resource
allocations in response to application load changes in order to meet system performance
goals set by administrators. See Chapter 5 for more information on dynamic resource pools,
and Chapter 6 for an example of dynamic resource pools.

Database 1

Database 2
Server

DBA
Processes

CPU Entitlements

8

Introduction • May 2005

FIGURE 2-3

Resource pools can be used to partition resources

Isolation

Another inhibitor for consolidating applications is the lack of logical isolation between
applications. This is of prime importance when the applications belong to different business
units. Consider the example of an internal IT department acting as a service provider for a
large corporation consolidating two workloads onto a single system. The IT department
currently uses two systems, each dedicated to a single workload, since the workloads are
from two different business units and each procured a system. Assuming the systems are
currently under utilized, the organization wants to consolidate the applicatios onto a single
system to achieve a more cost-effective solution.

However, both businesses object to sharing a system with another customer, as they are
concerned about possible namespace conflicts, security issues, and administration conflicts.
Solaris Containers make it possible to consolidate these workloads on one system by virtue
of the namespace isolation, security and virtualization features of

Solaris

™

 Zones

. By
creating a Zone for each business unit, the IT department can effectively create two separate
systems on one physical system. To each business unit it appears as if they have a dedicated
machine. See Chapter 7 for more information on Solaris Zones and Chapter 8 for a practical
example of using Zones.

Server

Database 1

DBA
Processes

Server

2 CPUs

6 CPUs

Database 2
DBA

Processes

Database 1 8 CPUs

Database 2

 Solaris Container Evolution

9

FIGURE 2-4

Zones effectively create separate systems on one physical system

Solaris Container Evolution

With the release of the Solaris 10 OS the Solaris Container reaches the full functionality
discussed above. However, much of the functionality discussed in this document can be used
in earlier Solaris OS releases. Some Solaris Containers features, such as the Fair Share
Scheduler, have been available since the release of the Solaris 9 OS. Prior to that release, a
fair share scheduler was available in the form of the Solaris Resource Manager 1.x
unbundled software for Solaris 2.6 OS and later releases. This means that much of the
functionality discussed in this document can be equally used on these earlier platforms.
Appendix A contains a list of Container features and indicates the Solaris OS version in
which they were first released.

Server

Zone: Global Zone

Local Zone: mkt Local Zone: sales

Disk Storage
and File Systems

10

Introduction • May 2005

Document Approach

To see how Solaris Containers can be used for consolidating applications this paper presents
several technologies that help organizations implement Solaris Containers:

�

Workload management

�

Resource pools

� Solaris Zones

Each of these topics is discussed in two parts: a chapter that focuses on the concepts of the
feature, followed by a chapter where the feature is used in a hands-on fashion using a
simplified real world example. Readers that are interested solely in the concepts can skip the
example chapters. By following the steps in the example chapters readers can recreate the
examples on their own systems to experiment with a particular Solaris Containers feature. All
examples can run on a uniprocessor system, with the exception of the processor sets portion
of the resource pools example. This requires a multiprocessor system.

 Document Approach 11

3

Workload Management

Running multiple applications on a single computer system without a means to control how
applications use system resources can lead to unpredictable service levels. By default, the
Solaris OS treats every resource request with equal priority. If there is enough of the resource
available the request is granted. If the demand for the resource exceeds the total capacity
available, the Solaris OS adapts by restricting access to the resource. The action taken to
restrict access depends on the type of resource. For example, should demand for CPU time
exceed the CPU time available, the scheduler reacts by adjusting the priorities of processes in
order to change the distribution of the CPU time. The scheduler operates on threads and has
no concept of applications, let alone their relative importance from a business perspective.
An unimportant CPU-bound application can victimize other, more important applications by
placing high demand for CPU resources on the system.

Other resources, such as the total number of processes on the system, have a fixed upper
bound. Once the limit is reached, no more of this resource can be used. A runaway process
that keeps creating new processes can prevent new useful work from being started. Other
than specifying the system-wide upper limit, there is no way to limit the number of processes
that may be created by an application or a set of applications.

What is needed is a way to control resource usage based on workloads. A workload is an
aggregation of all processes of an application, or group of applications, that makes sense
from a business perspective. Instead of managing resource usage at the process level, it
should be possible to manage resource usage at the workload level. This allows the
implementation of policies such as “the Sales application shall be granted at least 30% of
CPU resources” as part of a service level agreement. The Solaris OS resource management
features make it possible to treat workloads in this way by:

� Restricting access to specific resources

� Offering resources to workloads on a preferential basis

� Isolating workloads from each other

12 Workload Management • May 2005

The first step in managing resource usage by workloads is identifying or classifying the
components, such as processes, that make up the workload. The next step is measuring the
resource consumption of these workloads. Finally, by applying constraints on the use of
resources the workloads can be controlled. The constraints applied follow from the policies
defined for the workloads based on business requirements.

A possible policy could be that an important workload should always be granted a minimum
amount of CPU time even on an overloaded system. Another policy could be that a workload
is only granted access to the CPU if there are no other workloads requiring CPU resources.

Projects
The first step in managing resource usage involves identifying the workloads running on the
system. Possible approaches include identifying workloads by username or processname.
While simple, this poses a challenge when multiple instances of the same application are
running on the system for different workloads, such as a sales application database and a
marketing application database. Unless the database application provides a way to run the
instances as different users, it is imposible to attribute resource usage to a specific workload
based solely on userid. In addition, aggregation of multiple related applications, such as
database servers, application servers and Web servers for a business application on one
system is not possible.

The Solaris OS provides a facility called projects to identify workloads. The project serves as
an administrative tag used to group related work in a manner deemed useful by the system
administrator. System administrators can, for example, create one project for the sales
application and another project for the marketing application. By placing all processes
related to the sales application in the sales project and the processes for the marketing
application in the marketing project, the administrator can separate, and ultimately control,
the workloads in a way that makes sense to the business.

A user that is a member of more than one project can run processes in multiple projects at the
same time, making it possible for users to participate in several workloads simultaneously.
All processes started by a process inherit the project of the parent process. As a result,
switching to a new project in a startup script runs all child processes in the new project.

Using Projects to Define Workloads

In the example of the sales and marketing applications, the system administrator can create
two new projects, one for the sales application and one for the marketing application. The
application startup scripts must be modified to switch to the desired project as part of the
application startup. The sales application startup script switches to the sales project, and the
marketing application switches to the marketing project. This results in both applications

 Projects 13

running in different projects while still using the same userid. Adding another application,
such as a Web server, to the sales application workload requires adding the Web server user
to the sales project and modifying the Web server startup script to switch to the sales project.
With the introduction of the Service Management Facility (SMF) in the Solaris 10 OS,
administrators can assign the project in which to run the application or service through
service properties in the SMF repository.

The Project Database

Projects are defined in the project database. The project database can be a local file or in a
name service such as NIS or LDAP. By putting the project database in NIS or LDAP, the
project definition can be shared across multiple systems. Each entry in the project database
consists of the following fields:

� name, the name of the project

� id, the project’s unique numerical ID

� comment, the description of the project

� user list, a list of users allowed in the project

� group list, a list of groups allowed in the project

� attributes, a list of project attributes, such as resource controls

A freshly installed system always contains a local project database /etc/project containing
five standard projects:

� system, used for all system processes and daemons

� user.root, used for all processes run by root

� noproject, for processes specific to IP quality of service (IPQoS)

� default, for users not matching any other project (a catch-all project)

� group.staff, for all users in the group staff

A user or group can be a member of one or more projects. The user and group lists in the
project database determine in what projects a user or group of users can execute processes.
These lists can contain wildcards to allow for flexible definitions, such as ’all members of
group staff excluding user bob’. Users can switch to any project of which they are a member.
Until the user changes the project in which to execute a process, all processes run in the
user’s default project. The user and group lists only define the project(s) in which a user or
group is allowed to execute processes. It does not define a default project for the user or
group. The default project for a user is determined by the system at login time. See the man
page for getprojent(3C) for the exact algorithm used.

14 Workload Management • May 2005

Commands

The following commands are available to administer projects:

Several standard Solaris OS commands include project related options, and can be used to
view or manipulate processes based on their project membership:

For example, the prstat -J command lists all processes and projects on the system and
displays a per project total. See the man pages for more information on these commands and
the options related to projects.

Extended Accounting
Once workloads are identified and labeled using projects, the next step in managing resource
usage involves measuring workload resource consumption. While current consumption can
be measured using the prstat(1M) command to obtain real-time snapshot of resource usage,
it does not provide the capability to look at historical data.

Command Description

projadd(1M) Adds a new project to the local project database

projmod(1M) Modifies a project entry in the local project database

projdel(1M) Deletes a project entry from the local project database

projects(1) Displays project membership for a user

newtask(1) Switches to a project

Command Option

id(1M) -p

ipcs(1) -J

pgrep(1) -J -T

pkill(1) -J -T

poolbind(1M) -i project

prctl(1) -i project

priocntl(1M) -i project

prstat(1M) -j -J -k -T

ps(1) -o projid project taskid

useradd(1M) -p

 The Fair Share Scheduler 15

The traditional accounting mechanism is process based and predates the introduction of
projects. It is therefore unable to provide resource usage statistics based on workloads. The
extended accounting facility allows collection of statistics at the process level, the task level
or both. Accounting at the task level aggregates the resource usage of its member processes,
thereby reducing the required disk space for accounting data. A task is a group of related
processes executing in the same project as a result of a newtask(1) command. An
accounting record is written at the completion of a process or task. Interim accounting
records can be written for tasks, and can be used to provide accurate daily accounting for
long running jobs that span multiple days.

Every process that runs in the system is associated with a project and a task. By labeling all
resource usage records with the project for which the work was done, the extended
accounting facility can provide data on the resource consumption of workloads. This data can
be used for reporting, capacity planning or charge back schemes.

Unlike the traditional System V accounting mechanism that is based on fixed size, fixed
semantic records, the extended accounting facility uses a flexible and extensible file format
for accounting data. Files in this format can be read or written using the C language API
provided by libexacct(3LIB). This API abstracts the accounting file and offers functions to
read and write records and fields in the file without the need for knowledge of the physical
layout. This makes it possible to add new record or field types to the file between releases,
even during system operation, without impacting existing applications that use extended
accounting files. A Perl interface for libexacct is available to ease the creation of custom
reporting tools.

Commands

The following commands are available to administer the extended accounting facility.

The Fair Share Scheduler
Running multiple workloads on the same system can lead to a situation where one workload
monopolizes CPU resources and impacts other workloads. This may result in important
workloads not receiving sufficient CPU resources to complete their work. It is desirable to
have a mechanism by which system administrators can prioritize access to CPU resources
based on the importance of the workload.

The policy of the default scheduler in the Solaris OS is to give every process relatively equal
access to CPU resources. Since it has no knowledge of workloads, the default scheduler
cannot prioritize CPU allocation based on workload importance. The Solaris OS offers an

Command Description

acctadm(1M) Configure extended accounting

wracct(1M) Write extended accounting records for active processes and tasks

16 Workload Management • May 2005

alternative scheduler that is aware of workloads and can prioritize CPU allocation with
respect to workload importance.

CPU Shares
The Fair Share Scheduler (FSS) controls allocation of CPU resources using CPU shares. The
importance of a workload is expressed by the number of shares the system administrator
allocates to the project representing the workload. The Fair Share Scheduler ensures that
CPU resources are distributed among active projects based on the number of shares assigned
to each project (Figure 3-1).

A CPU share defines a relative entitlement of the CPU resources available to a project on the
system. It is important to note that CPU shares are not the same as CPU percentages. Shares
define the relative importance of projects with respect to other projects. If project A is
deemed twice as important as project B, project A should be assigned twice as many shares
as project B. The actual number of shares assigned is largely irrelevant — two shares for
project A versus one share for project B yields the same results as 18 shares for project A
versus nine shares for project B. In both cases, Project A is entitled to twice the amount of
CPU resources as project B. The importance of project A relative to project B can be
increased by assigning more shares to project A while retaining the same number of shares
for project B.

FIGURE 3-1 The Fair Share Scheduler ensures applications get the CPU resources to which they
are entitled.

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n

100%

Database 2

Database 2

Without Fair Share Scheduler

Time

C
P

U
 U

til
iz

at
io

n

100%

Database 1

Database 2

With Fair Share Scheduler

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

 The Fair Share Scheduler 17

The Fair Share Scheduler calculates the proportion of CPU resources allocated to a project
by dividing the shares for the project by the total number of shares of active projects. An
active project is a project with at least one process using CPU resources. Shares for idle
projects, such as those without active processes, are not used in the calculations. For
example, consider projects A, B and C with two, one and four shares respectively. If projects
A, B and C are active, then project A is entitled to , project B is entitled to , and project
C is entitled to of CPU resources. If project A is idle, project B is entitled to of CPU
resources, and project C is entitled to of CPU resources (Figure 3-2). Note that even
though the actual CPU entitlement for project B and C increases, the proportion between
project B and C stays the same (1:4).

It is important to note that the Fair Share Scheduler only limits CPU usage if there is
competition for CPU resources. If there is only one active project on the system, it can use
100% of CPU resources, regardless of the number of shares it holds. CPU cycles are never
wasted. If a project does not use all the CPU resources it is entitled to because it has no work
to do, the remaining CPU resources are distributed between other active projects.

FIGURE 3-2 The Fair Share Scheduler distributes CPU resources among active projects based on
the number of CPU shares

CPU Shares Configuration

CPU shares are configured through the project.cpu-shares resource control in the project
database. Every project can be assigned a project.cpu-shares resource control. Projects
without this resource control are assigned one share by the system. The system project is
used for all system processes and daemons, and is special in that it has unlimited shares.
Projects with zero shares assigned are only allowed to run when no other projects with non-
zero shares are active.

2
7

1
7

4
7

1
5

4
5

Project B

Project AProject C

Project C

Project B

18 Workload Management • May 2005

Users can be a member of multiple projects and CPU usage is controlled by the number of
shares of the project in which the user executes. As a result, a user can be entitled to different
amounts of CPU resources at the same time. Note that a process can only be in one project at
a time, so having different amounts of CPU resources at the same time means that processes
owned by this user reside in different projects.

To place a CPU usage limit on a single user, create a project with the appropriate number of
shares that contains only that user. This project should be the default project for this user, and
the user should not be a member of any other projects to prevent the user from switching to
another project.

The CPU shares can be adjusted dynamically using the prctl(1M) command. These changes
are valid until the next system boot. To make the changes permanent, update the
project.cpu-shares resource control in the project database.

Resource Controls
Resource usage of workloads can be controlled by placing bounds on resource usage. These
bounds can be used to prevent a workload from over-consuming a particular resource and
interfering with other workloads. The Solaris OS provides a resource controls facility to
implement constraints on resource consumption. This facility is an extension of the
traditional UNIX resource limit facility (rlimit). The rlimit facility can be used to set limits
on the resource usage of processes, such as the maximum CPU time used, the maximum file
size, the maximum core file size, and more. However, as the rlimit facility is process-based,
its use for constraining workloads is rather limited. The resource controls facility in the
Solaris OS extends process-based limits by adding resource limits at the task and project
level. The number of resource limits that can be set is also expanded to give system
administrators more control over resource consumption by processes, tasks and projects on
the system.

Administering Resource Controls

Resource controls are configured through the project database. The last field of the project
entry is used to set resource controls. A resource control in the project entry is a name-value
pair. The name denotes the type of limit, while the value is a list of attributes for the control.
Multiple resource controls can be added to a single project entry by separating the resource
controls with a semicolon. The list of attributes for a resource control consists of a privilege
level, a threshold, and an action.

 Resource Controls 19

The privilege level determines which users can modify the threshold value. Three privilege
levels are provided:

� basic, the owner of the calling process can change the threshold

� privileged, only privileged (superuser) users can change the threshold

� system, the threshold is fixed for the lifetime of the operating system instance

Every resource control has at least a system value, which represents how much of the
resource the current implementation of the operating system is able to provide. A resource
control can have at most one basic value and any number of privileged values.

The action defines the steps to be taken when the threshold is exceeded. Three actions are
possible:

� deny, deny resource requests for an amount that is greater than the threshold

� signal, send the specified signal to the process exceeding the threshold value

� none, perform no action when the threshold is exceeded

Note – Changes made in the project database are only applied when a new process, task or
project starts. Existing processes, tasks and projects do not see these changes. The
prctl(1M) and rctladm(1M)commands can be used to change resource controls on active
entities.

Available Resource Controls

The following table identifies the resource controls available in the Solaris 10 OS.

20 Workload Management • May 2005

Resource Control Description

process.max-port-events Maximum allowable number of events per event port

process.max-msg-messages Maximum number of messages on a message queue

process.max-msg-qbytes Maximum number of bytes of messages on a message queue

process.max-sem-ops Maximum number of semaphore operations allowed per semop call

process.max-sem-nsems Maximum number of semaphores allowed per semaphore set

process.max-address-space Maximum amount of address space available to this process

process.max-file-descriptor Maximum file descriptor index available to this process

process.max-core-size Maximum size of a core file created by this process

process.max-stack-size Maximum stack memory segment available to this process

process.max-data-size Maximum heap memory available to this process

process.max-file-size Maximum file offset available for writing by this process

process.max-cpu-time Maximum CPU time available to this process

task.max-cpu-time Maximum CPU time available to this task’s processes

task.max-lwps Maximum number of LWPs simultaneously available to tasks’s processes

project.max-contracts Maximum number of contracts allowed in a project

project.max-device-locked-memory Total amount of locked memory allowed in a project

project.max-port-ids Maximum allowable number of event ports

project.max-shm-memory Total amount of shared memory allowed for a project

project.max-shm-ids Maximum number of shared memory IDs allowed for a project

project.max-msg-ids Maximum number of message queue IDs allowed for a project

project.max-sem-ids Maximum number of semaphore IDs allowed for a project

project.max-crypto-memory
Total amount of kernel memory that can be used by libpkcs11 for hardware
crypto acceleration

project.max-tasks Maximum number of tasks allowable in a project

project.max-lwps Maximum number of LWPs simultaneously available to a project

project.cpu-shares Number of CPU shares granted to a project for use with the FSS

zone.max-lwps Maximum number of LWPs simultaneously available to zone’s processes

zone.cpu-shares Number of CPU shares granted to a zone for use with the FSS

 Resource Controls 21

Determining Thresholds

The resource consumption of processes is often unknown, so choosing a useful and safe
threshold for a resource control can be a difficult task. Selecting an arbitrary threshold can
lead to unexpected application failure modes. While some required information could be
extracted from extended accounting information, there is a simpler way. The resource
controls facility provides a global log action that sends a message to syslog when a threshold
is exceeded.

First, a resource control with the threshold value to be verified must be set. The action should
be set to ‘none’ to ensure the resource is not denied if the threshold is exceeded. This allows
the process to run unconstrained. Next, the global syslog action for the resource control must
be enabled. When the application exceeds the threshold for that resource control, a message
that the resource control threshold has been exceeded is logged to syslog. By changing the
threshold until the warning no longer appears during normal use of the application, a
reasonable setting for the resource control can be determined. After determining the value for
the resource control, the action should be changed to ‘deny’, to ensure the threshold is
enforced by the system.

Commands

The following commands are available for administering resource controls. More information
can be found in the man pages for each command.

Command Description

prctl(1M) Get or set resource controls on a running process, task or project

rctladm(1M) Display or modify global state of system resource controls

22 Managing Workloads — An Example • May 2005

4

Managing Workloads — An Example

Introduction
To demonstrate the concepts explained in the previous chapter, this chapter uses the Solaris
OS resource management facilities to manage workloads on an example system. The system
is shared by several business units and is running two workloads: two database instances, one
for a marketing application and one for a sales application.

A project is defined for each workload, enabling the Fair Share Scheduler to be used to
manage CPU allocation between the workloads. A resource control is added to limit the
amount of shared memory for each workload. To account for all activity of the oracle user
that is not related to either of these workloads, a third project is created. This project is the
default project for the oracle user.

Requirements
The following minimum requirements are needed to run this example:

� Oracle 9i media (version 9.2.0.1.0)
� 6 GB disk space for the Oracle binaries and databases

 Defining the Projects 23

Defining the Projects
To keep things simple, a local /etc/project database is used. The project entry in the
/etc/nsswitch.conf file should be defined as follows:

By convention, Oracle instances are run as the user oracle in group dba. As a result, the
group dba and user oracle are created:

A project named group.dba is created to serve as the default project for the user oracle.
The system uses the rules described in the getprojent(3C) man page to determine the
default project when a user logs in. Since the default group of user oracle is the dba group,
the group.<groupname> rule matches and the group.dba project is set as the default
project for user oracle. A comment describing the project is added using the -c option:

The id(1M) command can be used to verify the default project for the oracle user:

cat /etc/nsswitch
...
project: files
...

groupadd dba
mkdir -p /export/home
useradd -g dba -d /export/home/oracle -m -s /bin/bash oracle

projadd -c “Oracle default project” group.dba

su - oracle
$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ exit

24 Managing Workloads — An Example • May 2005

To manage each Oracle instance as a separate workload, a project is created for each Oracle
instance to run in: project ora_mkt for the marketing Oracle instance, and project ora_sales
for the sales Oracle instance.

The -U oracle option specifies that the oracle user is allowed to run processes in these
projects. Once these steps are complete, the /etc/project file contains the following
information:

The first five projects are projects that are created during system installation. Note that the
system assigned project IDs for the last three projects since they were not explicitly specified
on the projadd command.

System V IPC Resource Controls

The System V IPC resource limits in the Solaris 10 OS, such as the maximum shared
memory size, are no longer set in the /etc/system file, but instead are project resource
controls. As a result, a system reboot is not longer required to put changes to these
parameters in effect. This also allows system administrators to set different values for
different projects. A number of System V IPC parameters are obsolete with the Solaris 10
OS, simply because they are no longer necessary. The remaining parameters have more
reasonable defaults to enable more applications to work out-of-the-box, without requiring
these parameters to be set. The following table identifies the values recommended by the
Oracle Installation Guide and the corresponding Solaris OS resource controls.

projadd -c “Oracle Marketing” -U oracle ora_mkt
projadd -c “Oracle Sales” -U oracle ora_sales

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle default project:::
ora_mkt:101:Oracle Marketing:oracle::
ora_sales:102:oracle Sales:oracle::

 Defining the Projects 25

Since the default values are higher than Oracle recommended values, the only resource
control that must be set is project.max-shm-memory. To set the maximum shared memory
size to 2 GB, add the project.max-shm-memory=(privileged,2147483648,deny)
resource control to the last field of the project entries for the three Oracle projects.

Once these steps are complete, the /etc/project file should contain the following. Note
that changes are shown in italics.

Parameter
Oracle

Recommendation
Resource Control Default Value

SEMMNI (semsys:seminfo_semmni) 100 project.max-sem-ids 128

SEMMNS (semsys:seminfo_semmns) 1024 obsolete

SEMMSL (semsys:seminfo_semmsl) 256 project.max-sem-nsems 512

SHMMAX (shmsys:shminfo_shmmax) project.max-shm-memory 1/4 physical memory

SHMMIN (shmsys:shminfo_shmmin) 1 obsolete

SHMMNI (shmsys:shminfo_shmmni) 100 project.max-shm-ids 128

SHMSEG (shmsys:shminfo_shmseg) 10 obsolete

projmod -sK “project.max-shm-memory=(privileged,2G,deny)” group.dba
projmod -sK “project.max-shm-memory=(privileged,2G,deny)” ora_mkt
projmod -sK “project.max-shm-memory=(privileged,2G,deny)” ora_sales

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle default project:::project.max-shm-
memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.max-shm-memory=(privileged,2147483648,deny)
ora_sales:102:oracle Sales:oracle::project.max-shm-memory=(privileged,2147483648,deny)

26 Managing Workloads — An Example • May 2005

To verify that the resource control is active, the id(1M) and prctl(1) commands can be
used.

Logging in as the oracle user creates a new task in the group.dba project, causing the entry
in the project database to be read and the resource control to be set. As can be seen in the
fifth line of output from the prtcl command, a resource control limiting the maximum
shared memory size for the project to 2 GB is present.

Installing Oracle and Creating the Databases
Oracle installation consists of a series of steps, including software installation and the
creation of smf(5) services for the Oracle instances. The procedure for installing Oracle is
described in Appendix B on page 91.

In this example, a directory /u01 with at least 6 GB of free space is required for the Oracle
software and databases. A simple database is created for each workload. These databases are
created using the procedure described in Appendix C on page 93. Use the database identifiers
listed in the table below.

su - oracle
$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ prctl -n project.max-shm-memory -i process $$
process: 5754: -bash
NAME PRIVILEGE VALUE FLAG ACTION
RECIPIENT
project.max-shm-memory
 privileged 2.00GB - deny

Database Database Identifier (ORACLE_SID)

Marketing MKT

Sales SALES

 Running Oracle Instances in Different Projects 27

Running Oracle Instances in Different
Projects
The Oracle instances must run in separate projects in order to control them as separate
entities using the Solaris Resource Manager. The processes of the marketing database
instance should run in project ora_mkt, and the processes of the sales database instance
should run in the ora_sales project. Since the Oracle provided start scripts are not project-
aware, the processes of both instances run in the default project of the Oracle user
group.dba. To run the instances in different projects, the Oracle start scripts must be made
project-aware by issuing /usr/bin/newtask -p ora_sales as part of the startup of the sales
database instance. This moves the current process and its childeren to the ora_sales project.

The Service Management Facility (SMF) in the Solaris 10 OS replaces the traditional way of
managing application startup and shutdown through run control scripts. SMF uses a concept
called services to accomplish this task. An SMF service consists of a set of methods and
properties that describe service behavior. Examples of methods include the start and stop
methods that smf(5) calls to start or stop the service. Properties are used to describe the
service, such as dependencies on other required services, the user to run the service as, and
the project in which to run the service. Through a set of smf(5) commands, services can be
managed in a consistent manner. See the System Administration Guide: Basic Administration
for more information on the Service Management Facility.

To run the example Oracle database instances in separate projects, two simple SMF services
must be created: a salesdb service and mktdb service.

The service for the sales database is created by importing the manifest for the service into the
SMF repository. By convention, manifests for site-specific services are placed in the
directory /var/svc/manifest/site. A manifest is an XML file that defines service
properties and methods. One of the properties of an SMF service is the user under which the
service should run. In this example, the user is oracle. The project in which the service
should run is also a service property. In this example, the project is ora_sales. The relevant
part of the manifest is shown below. The full manifest for the sales database and marketing
database services can be found in Appendix D on page 95.

28 Managing Workloads — An Example • May 2005

The project attribute of the method_context element determines the project in which the
service runs. The user attibute of the method_credential element determines the user under
which the service runs. The manifest for the marketing database service is equivalent except
that its project attibute is set to ora_mkt.

The start and stop methods for both services are implemented in a single shell script
(/u01/app/method/ora). The start method calls the script with start as the first argument,
while the stop method calls the script with stop as the first argument. The Oracle database
identifier is passed as the second argument.

cd /var/svc/manifest/site
cat salesdb.xml
[...]
 <exec_method
 type='method'
 name='start'
 exec='/u01/app/method/ora start SALES'
 timeout_seconds='0'>
 <method_context
 project='ora_sales'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>
[...]

cat /u01/app/method/ora
#!/bin/sh
#
Usage: ora ‘start’ | ‘stop’ db_id
#
ORACLE_SID=$2
ORACLE_HOME=/u01/app/oracle/product/9.2.0.1.0
export ORACLE_SID ORACLE_HOME

case “$1” in
'start')

 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<START_EOF
startup
START_EOF
 ;;

'stop')
 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<STOP_EOF
shutdown immediate
STOP_EOF
 ;;
esac
exit 0

 Controlling CPU Consumption 29

The services are created by importing the manifest and subsequently enabling the services.
Note that enabling a service implies a start of the service. The ps(1) command can be used
to verify the intances are running in different projects.

The processes for the marketing database instance run in the ora_mkt project, the processes
for the Sales database instance run in the ora_sales project.

Controlling CPU Consumption
Now that the Oracle instances are running in different projects, the Fair Share Scheduler can
be used to control CPU consumption by the instances. Because the Fair Share Scheduler is
not the default scheduler, it must be enabled using the dispadmin(1M) command:

The dispadmin command configures the Fair Share Scheduler (FSS) as the default scheduler
to be enabled on the next reboot. It is possible to change to the Fair Share Scheduler without
a reboot by moving all processes in the TS scheduler class and the init(1M) process to the

svccfg import salesdb.xml
svccfg import mktdb.xml
svcadm enable salesdb
svcadm enable mktdb
ps -u oracle -o user,project,comm
 USER PROJECT COMMAND
 oracle ora_sales ora_lgwr_SALES
 oracle ora_sales ora_smon_SALES
 oracle ora_mkt ora_smon_MKT
 oracle ora_sales ora_pmon_SALES
 oracle ora_sales ora_dbw0_SALES
 oracle ora_mkt ora_ckpt_MKT
 oracle ora_sales ora_ckpt_SALES
 oracle ora_mkt ora_lgwr_MKT
 oracle ora_mkt ora_pmon_MKT
 oracle ora_mkt ora_dbw0_MKT
 oracle ora_sales ora_reco_SALES
 oracle ora_mkt ora_reco_MKT

dispadmin -d FSS

30 Managing Workloads — An Example • May 2005

FSS scheduler class using the prioctl(1M) command. This change persists only until the
next reboot, and the dispadmin -d FSS command is required to make the change
permanent.

The change of the scheduler class can be verified using the ps(1) command with the -cafe
options. In the output below, the fourth column (marked CLS) shows that the Fair Share
Scheduler (FSS) is now the scheduler for the processes:

The final step involves assigning CPU shares to the projects to control CPU consumption.
Assuming that the sales database is twice as important as the marketing database, and should
therefore be entitled to twice the amount of CPU resources, the number of CPU shares for
the ora_sales project is set to twice the number of shares for the ora_mkt project. The other
projects are assumed to be less important, and their shares remain at system assigned default
values. To give the ora_sales and ora_mkt projects a higher proportion of CPU resources
with respect to these projects, the CPU shares are chosen to be much larger than those for the
other projects. These values entitle the ora_sales project to twenty times more CPU
resources than the group.dba project, and twice as many as the ora_mkt project.

priocntl -s -c FSS -i class TS
priocntl -s -c FSS -i pid 1

ps -cafe
 UID PID PPID CLS PRI STIME TTY TIME CMD
 root 0 0 SYS 96 Dec 01 ? 0:01 sched
 root 1 0 FSS 29 Dec 01 ? 0:00 /etc/init -
 root 2 0 SYS 98 Dec 01 ? 0:00 pageout
 root 3 0 SYS 60 Dec 01 ? 9:45 fsflush
 root 556 1 FSS 29 Dec 01 ? 0:00 /usr/lib/saf/sac -t 300
...
 oracle 1967 1 FSS 29 11:03:35 ? 0:00 ora_dbw0_MKT
 oracle 1971 1 FSS 29 11:03:36 ? 0:00 ora_ckpt_MKT
 oracle 2002 1 FSS 29 11:03:47 ? 0:01 ora_smon_SALES
 oracle 1973 1 FSS 29 11:03:36 ? 0:01 ora_smon_MKT
 oracle 1965 1 FSS 29 11:03:35 ? 0:00 ora_pmon_MKT
 oracle 1996 1 FSS 29 11:03:46 ? 0:00 ora_dbw0_SALES
 oracle 1975 1 FSS 29 11:03:36 ? 0:00 ora_reco_MKT
 oracle 1998 1 FSS 29 11:03:47 ? 0:00 ora_lgwr_SALES
 oracle 1969 1 FSS 29 11:03:36 ? 0:00 ora_lgwr_MKT
 oracle 2000 1 FSS 29 11:03:47 ? 0:00 ora_ckpt_SALES
 oracle 1994 1 FSS 29 11:03:46 ? 0:00 ora_pmon_SALES
 oracle 2004 1 FSS 29 11:03:47 ? 0:00 ora_reco_SALES
....

 Controlling CPU Consumption 31

The CPU shares are set using the prctl(1M) command:

The current value of the project.cpu-shares resource control for a project can be checked
as follows:

To make these values persistent, the project.cpu-shares resource controls must be added
to the project database.

Project CPU Shares

ora_sales 20

ora_mkt 10

group.dba 1 (default)

system Unlimited

user.root 1 (default)

default 1 (default)

group.staff 1 (default)

prctl -n project.cpu-shares -r -v 10 -i project ora_mkt
prctl -n project.cpu-shares -r -v 20 -i project ora_sales

prctl -n project.cpu-shares -i project ora_mkt
project: 101: ora_mkt
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.cpu-shares
 privileged 10 - none -
 system 65.5K max none -
prctl -n project.cpu-shares -i project ora_sales
project: 102: ora_sales
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
project.cpu-shares
 privileged 20 - none -
 system 65.5K max none -

projmod -sK “project.cpu-shares=(privileged,10,none)” ora_mkt
projmod -sK “project.cpu-shares=(privileged,20,none)” ora_sales

32 Managing Workloads — An Example • May 2005

Note – A project entry must be on one line. The above lines have been wrapped for
readability. They should be on one line.

For demonstration purposes, the nspin utility is used to create enough CPU demand to show
the Fair Share Scheduler in action1. The nspin utility is part of the Solaris Resource
Manager 1.x software, and is available for download at
http://www.sun.com/bigadmin/software/nspin/nspin.tar.gz. To create more demand
for CPU resources than are available on the 4 CPU machine used here, four copies of nspin
are run in both the ora_mkt and ora_sales projects.

The newtask(1) command is used to switch from the default group.dba project to the
ora_mkt and ora_sales projects to run nspin. The prstat(1M) command can be used to
show CPU utilization per project and verify that the Fair Share Scheduler is distributing CPU
resources to the projects according to their CPU shares.

cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle DBA:::project.max-shm-memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.cpu-
shares=(privileged,10,none);project.max-shm-memory=(privileged,2147483648,deny)
ora_sales:102:Oracle Sales:oracle::project.cpu-
shares=(privileged,20,none);project.max-shm-memory=(privileged,2147483648,deny)

1. Any application that consumes large quantities of CPU resources can be used.

$ id -p
uid=100(oracle) gid=100(dba) projid=100(group.dba)
$ newtask -p ora_mkt
$ nspin -n 4 &
[1] 2059
$ newtask -p ora_sales
$ id -p
uid=100(oracle) gid=100(dba) projid=102(ora_sales)
$ nspin -n 4 &
[1] 2066

 Using Extended Accounting 33

The top portion of the prstat display shows active processes sorted by CPU utilization. The
bottom portion shows the statistics aggregated by project. The ora_sales project is
receiving 66% of CPU resources, and the ora_mkt project is receiving 33%, even though
both projects requested the same amount of CPU (four runnable nspin processes in each
project). The Fair Share Scheduler allocates CPU resources according to the proportion of
CPU shares of the active projects (using CPU time). The only active projects at the time are
ora_mkt and ora_sales. As a result, the CPU entitlement for the ora_sales project equals
(20/(20 + 10)) * 100 = 67%, while ora_mkt is entitled to (10/(20 + 10)) * 100 = 33%. This
matches the actual CPU usage observed using prstat(1M).

Using Extended Accounting
Resource usage per project can be obtained using the Extended Accounting facility of the
Solaris OS. Accounting records can be written per process, per task or both. To obtain
resource usage per project, task accounting is sufficient. Rather than summarizing all process
termination records from the process accounting file, task accounting files can be used
instead. This involves substantially fewer records since the task accounting files consolidate
multiple process records into one task record. Because tasks usually have a long life span and
task accounting records are only written at the end of a task, interval records can be used to
obtain accurate daily accounting. An interval record writes the current task usage to the

$ prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 2069 oracle 1064K 592K run 1 0 0:01:57 25% nspin/1
 2066 oracle 1072K 664K run 18 0 0:01:31 17% nspin/1
 2067 oracle 1072K 600K cpu1 30 0 0:01:05 12% nspin/1
 2068 oracle 1072K 600K run 28 0 0:01:06 12% nspin/1
 2061 oracle 1072K 600K run 17 0 0:01:31 8.7% nspin/1
 2059 oracle 1072K 664K run 17 0 0:01:07 8.3% nspin/1
 2060 oracle 1072K 600K cpu0 24 0 0:01:06 8.2% nspin/1
 2062 oracle 1064K 592K cpu3 18 0 0:01:13 7.9% nspin/1
 2058 root 6056K 5040K cpu2 59 0 0:00:00 0.0% prstat/1

PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 102 11 1011M 712M 36% 0:05:40 66% ora_sales
 101 11 1011M 703M 36% 0:04:58 33% ora_mkt
 1 5 14M 9064K 0.4% 0:00:01 0.0% user.root
 100 1 2760K 1952K 0.1% 0:00:00 0.0% group.dba
 0 28 84M 23M 1.1% 0:00:23 0.0% system

Total: 56 processes, 196 lwps, load averages: 7.30, 3.09, 1.21

34 Managing Workloads — An Example • May 2005

accounting file and resets the task usage to zero. The total task usage is the sum of all
interval records plus the termination record. Examples of common long running tasks include
HPC jobs and database processes.

Extended Accounting is turned off by default, and must be turned on using the acctadm(1M)
command. In this example, the accounting files are named taskyyymmdd. A cron(1M) job is
used to switch files every night at midnight. To start the extended accounting facility at
system boot time, a link to /etc/init.d/acctadm must be created in /etc/rc2.d:

The following script writes interval records for all tasks and then switches to a new
accounting file:

Add the following line to the crontab of the root user to execute the switchexacct script at
00:00:

The following script uses the Perl interface to libexacct to extract resource usage
information from the extended accounting files. More information on the Perl interface to
libexacct can be found in the Solaris 10 Resource Manager Developer’s Guide.

The script processes the file(s) given on the command line and summarizes the CPU usage
per project by selecting all task and task interval records in the file(s). Assuming that the
extended accounting files conform to the /var/adm/exacct/task<yymmdd> naming
convention, a monthly report for February 2005 can be generated by running the following
script.

acctadm -e extended task
acctadm -f /var/adm/exacct/task`date '+%y%m%d'` task
ln -s /etc/init.d/acctadm /etc/rc2.d/S01acctadm

cat /opt/local/bin/switchexacct
#!/bin/sh
#
Write interval record for all active tasks and switch accounting file
#
PATH=/usr/bin:/usr/sbin
wracct -i "`ps -efo taskid= | sort -u`" -t interval task
acctadm -f /var/adm/exacct/task`date '+%y%m%d'` task

0 0 * * * /opt/local/bin/switchexacct > /dev/null 2>&1

 Using Extended Accounting 35

cpureport.pl /var/adm/exacct/task0502*
PROJECT USR+SYS
default 0
group.dba 0
ora_mkt 76945
ora_sales 116620
system 342
user.root 59

cat cpureport.pl
#!/usr/perl5/5.6.1/bin/perl
cpureport.pl - extract CPU usage per project from extended
accounting files (CPU time in seconds)
use strict;
use warnings;
use Sun::Solaris::Exacct qw(:EXACCT_ALL);
use Sun::Solaris::Project qw(:ALL);

my %proj = ();

die("Usage: $0 file [file ...]\n") unless ($#ARGV >= 0);

Process all files given on the commandline
foreach my $arg (0 .. $#ARGV) {

 my $ef = ea_new_file($ARGV[$arg], &O_RDONLY) || die(ea_error_str());

 while (my $obj = $ef->get()) {
 if ($obj->catalog()->id() == &EXD_GROUP_TASK ||
 $obj->catalog()->id() == &EXD_GROUP_TASK_INTERVAL) {

 my $h = $obj->as_hash(); # returns all items in this group

 my $projid = $h->{EXD_TASK_PROJID};
 $proj{$projid}{CPU_SEC} += $h->{EXD_TASK_CPU_SYS_SEC};
 $proj{$projid}{CPU_NSEC} += $h->{EXD_TASK_CPU_SYS_NSEC};
 $proj{$projid}{CPU_SEC} += $h->{EXD_TASK_CPU_USER_SEC};
 $proj{$projid}{CPU_NSEC} += $h->{EXD_TASK_CPU_USER_NSEC};
 }
 }

 if (ea_error() != EXR_OK && ea_error() != EXR_EOF) {
 printf("\nERROR: %s\n", ea_error_str());
 exit(1);
 }
}

36 Managing Workloads — An Example • May 2005

Calculate total CPU time (usr + sys) and round to whole seconds
and lookup project names (invent name if lookup fails).
for my $key (keys %proj) {
 my $one_second = 10 ** 9; # ns per second

 if ($proj{$key}{CPU_NSEC} >= $one_second) {
 my $seconds = $proj{$key}{CPU_NSEC} / $one_second;
 $proj{$key}{CPU_SEC} += $seconds;

 if ($proj{$key}{CPU_NSEC} % $one_second >= ($one_second / 2)) {
 $proj{$key}{CPU_SEC}++;
 }
 }

 my $name = getprojbyid($key);
 if (defined($name)) {
 $proj{$key}{PROJECT} = $name;
 }
 else {
 $proj{$key}{PROJECT} = "<" . $key . ">";
 }
}

Print the CPU usage for the projects sorted by project name
printf("PROJECT USR+SYS\n");
for my $key (sort { $proj{$a}{PROJECT} cmp $proj{$b}{PROJECT} } keys
%proj) {
 printf("%-16s %8d\n", $proj{$key}{PROJECT}, $proj{$key}{CPU_SEC});
}

exit(0);

 Processor Sets 37

5

Dynamic Resource Pools

Some situations may be best served by partitioning available system resources, such as
processors, into a number of discrete resource partitions. There are several reasons why this
may be useful:

� Enforcing hard limits on the use of a resource. For instance, by creating a processor set
and binding a process, project or zone to it, the CPU usage of the bound processes is
effectively limited to the CPUs in the processor set. These processes cannot use
processors outside of their set.

� Providing a guaranteed quantity of a resource. If an application requires a certain amount
of CPU resources at all times, a processor set can be created for use by the application,
thereby reserving the CPUs for application processes. Processes not bound to the set are
unable to run on the processors in that set.

� Setting expectations. When deploying applications on a large server in phases, users may
become accustomed to having fast response times as all resources are available to the
application. As more applications are deployed, users may perceive a performance
degradation. By partitioning the system so that the application received only the resources
it needs, expectations can be set correctly from the start

� Partitioning by function, such as creating a partition for interactive users and a partition
for batch jobs.

Processor Sets
The ability to partition a server using processor sets has been available since version 2.6 of
the Solaris Operating System. Every system has at least one processor set, the system or
default processor set that contains all of the processors in the system. Additional processor
sets can be dynamically created and removed on a running system using the psrset(1M)
command, provided that at least one CPU remains for the system processor set. Processes are
bound to the default processor set by default, and can be bound to other processor sets
on-the-fly. It is important to note that partitioning a system using processor sets may lead to

38 Dynamic Resource Pools • May 2005

under utilization of the server since only processes bound to the processor set may use the
processors in the set. If these processes do not use all of available CPU resources, the
remaining CPU capacity in the set remains unused.

While processor sets are very useful, managing them can be a little cumbersome. System
administrators must specify the physical CPU ID of the processor to add to a processor set.
Since the physical ID of a CPU is hardware dependent, it varies between different hardware
platforms, creating a close coupling between the processor set definition and the underlying
hardware. Also, on systems that support Dynamic Reconfiguration, processors can be added
and removed while the system is on-line. If a processor to be removed is used in a processor
set, the system administrator must manually remove that processor from the set before the
processor can be removed from the system. This requires the system administrator to have
intimate knowledge of the configured processor sets and the hardware. Processor sets are
referenced by a system generated ID, making it hard to remember what a specific set is used
for, especially when multiple processor sets are present.

Resource Pools
The introduction of Resource Pools in the Solaris 9 OS significantly enhanced the ability to
partition the system. Resource Pools provide a mechanism to create a persistent configuration
of resource sets such as processor sets. The Resource Pools framework removes the link
between the intention of the system administrator and the underlying hardware. Instead of
creating a processor set by specifying physical CPU IDs, system administrators can now
create a processor set with a chosen name by specifying the number of processors required,
rather than their physical IDs. As a result, the definition of the processor set is no longer tied
to a particular type of hardware.

System administrators can also specify a minimum and maximum number of processors for a
set. The system assigns a number of processors between these values when creating the
processor set on a specific system. This allows for more generic definitions that can be
shared between systems. A configuration defining a set with at least one CPU and a
maximum of three CPUs could be instantiated on a two-way system as well as on a larger
server with more processors. Moving the definition to the larger server does not require any
adjustment by the system administrator. The number of processors in the set on the larger
server could be higher, depending on other processor sets defined in the system. The
Resource Pools framework balances the number of processors in the set within the
constraints set by the administrator.

On systems that support Dynamic Reconfiguration, the framework ensures that constraints
are still met when removing processors from the system. If the total number of processors
drops below the minimum number required for the active configuration, the Dynamic
Reconfiguration operation is denied. If one of the processors being removed is part of a

 Resource Pools 39

processor set, the system reconfigures all processor sets in the system so that the processor is
no longer in a set. Adding CPUs to a running system also causes a reconfiguration of
processor sets, depending on the constraints set by the administrator.

Multiple configurations can be defined to adapt to changing resource requirements such as
seasonal workloads or different daily and nightly workloads. The appropriate configuration
can be instantiated by invoking the pooladm(1M) command manually or from a cron(1M)
job.

Binding Processes To Pools

Instead of binding a process to a processor set directly, a process is bound to a Resource Pool
using the poolbind(1M) command. A Resource Pool (or pool) is a logical collection of
resource sets such as processor sets. While the processor set is the only type of resource set
available in the Solaris OS, the resource pool abstraction allows other types of resource sets,
such as memory sets, to be added in later Solaris OS versions.

A pool can optionally be associated with a scheduling class such as the Fair Share Scheduler
(FSS) or the Real Time (RT) scheduling class. Processes bound to the pool are subject to that
pool’s scheduler, allowing the system to use different schedulers for different types of
workloads. A server can be partitioned into two pools, one pool using the Fair Share
Scheduler for applications, and a second pool using the Time Share scheduler (TS) for
interactive users.

Multiple pools can be linked to the same resource set. As a result, it is possible to have a
system with one processor set and several pools associated with the same processor set. This
may not seem useful in a world with only processor sets. However, when other types of
resource sets become available, it will be possible to let pools share a common processor set
while giving each pool its own memory set, for instance.

The poolbind(1M) command allows administrators to bind processes, tasks, projects and
zones to pools. A default pool binding for projects can be established by adding the
project.pool attribute to the project entry in the project database. All processes started in
the project are bound to the pool automatically. While the project.pool attribute designates
only the default pool to bind to, specific processes in a project can still be bound to other
pools if desired.

40 Dynamic Resource Pools • May 2005

Fair Share Scheduler and Processor Sets

The previous discussion of the Fair Share Scheduler assumed all processors reside in the
same processor set. When processor sets are present, the Fair Share Scheduler treats every
processor set as a separate partition. CPU entitlement for a project is based on CPU usage in
that processor set only. The CPU usage of a project in a processor set does not influence its
entitlement in a different processor set. The Fair Share Scheduler calculates the proportion of
CPU resources allocated to a project in a processor set by dividing the shares of the project
by the number of shares of active projects in the processor set.

For example, consider a system with two processor sets, each containing one processor.
Project A has two shares, and project B has one share. Both projects have enough processes
to use all available CPU resources. Project B is the only one running in the first processor
set. Since it is the only project in this set, project B is entitled to all CPU resources in the set.
Both projects run in the second processor set. The number of active shares in this processor
set is three (two from project A and one from project B). As a result, project A is entitled to

 of the processor set and project B is entitled to . Project B’s CPU use in the first
processor set does not influence its entitlement in the second processor set.

Dynamic Resource Pools
In the Solaris 10 OS the Resource Pools facility has been further extended to provide
automated resource allocation based on resource demands in the system and usage objectives
set by the system administrator. This relieves system administrators from deciding how to
optimally partition available resources for the current workload. Previously system
administrators had to manually reassign resources to adapt to changing workloads. While
fairly easy for relatively static workloads, this task may be challenging in an environment
with highly variable resource demands.

2
3

1
3

 Dynamic Resource Pools 41

FIGURE 5-1 Dynamic resource pools lets the system adapt to changing workloads

Automated Resource Allocation

The Dynamic Resource Pools resource controller daemon poold(1M) is responsible for
maintaining the resource allocation objectives set by system administrators. Toward this end,
it creates an inventory of all available resources in the system. It continually monitors the
active workloads in the system to determine if usage objectives can be met. If the resource
controller detects that an objective is no longer being met, it evaluates possible alternative
resource configurations to see if they can meet the objectives. If a viable alternative
configuration exists, the resource controller reconfigures the resources accordingly. For
processor sets, this is accomplished by moving processors between processor sets. If no
alternative configuration exists that can meet objectives, no reconfiguration occurs. An
appropriate message is logged, and the resource controller resumes workload monitoring.

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Database 2

Database 1

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n

100%

Time

C
P

U
 U

til
iz

at
io

n
100%

Database 2

Database 1

Database 2Database 2

42 Dynamic Resource Pools • May 2005

Adding or removing resources using Dynamic Reconfiguration can also trigger a
reconfiguration by the resource controller as the amount of available resource changes.
Adding CPU capacity to a constrained system may create the opportunity for the resource
controller to create a configuration that can meet objectives. Likewise, removing CPU
capacity from the system may lead to the objectives no longer being met by the
configuration.

Changes made to the objectives themselves by system administrators can also cause the
resource controller to re-evaluate the configuration. The resource controller keeps a history
of decisions made in the past, enabling it to rule out configuration changes that did not lead
to improvement.

Even if the process of reconfiguration is automatic, system administrators can still directly
manipulate the active configuration by transferring processors from one set to another. Note
that doing so may or may not trigger actions by the resource controller.

Configuration Objectives

The resource controller offers several configuration objectives to influence decisions
regarding possible resource configurations. These objectives can be combined and objectives
can be assigned a precedence over each other. System administrators can choose from a
number of different configuration objectives:

� wt-load
This objective favors configurations that match resource allocations to resource demands.
When this objective is in effect, a resource set that uses more resources is given more
resources (within the minimum and maximum properties for the set).

� locality
This objective is used to instruct the resource controller to take resource locality into
consideration when allocating resources. On large servers such as the Sun Fire™ 15K
server, the latency between resources on the same board and on a different board can vary.
Depending on the application, latency may or may not be important. The locality
objective allows the administrator to express the need for resource locality.

� utilization
This objective favors configurations that allocate resources to partitions that are not
meeting their utilization objective. System administrators can set target utilizations on the
set using “less than”, “greater than” and “about” operators. The “less than” and “greater
than” objectives can be combined to specify a target utilization range, such as between
50% and 80% utilization.

The configuration objectives are detailed in the libpool(3LIB) manual page. See Chapter 6
for an example of using objectives to control resource configuration.

 Dynamic Resource Pools 43

Monitoring Resource Pools

System resource utilization can be monitored using the poolstat(1M) utility. This utility
shows statistical data for every pool in the system. Data displayed includes the minimum,
maximum and current size of the resource set, a measure of how much of the resource set is
currently in use, as well as the load on the resource set.

The decisions made by the resource controller can be observed by consulting the
/var/log/pool/poold log file .

Commands

The following commands are available to administer resource pools:

Command Description

pooladm(1M) Activate and deactivate the pools facility

poolcfg(1M) Create and modify resource pool configuration files

poold(1M) Monitors resource usage and adjusts resource allocation

poolbind(1M) Bind processes, tasks, projects and zones to a pool

poolstat(1M) Report active pool statistics

44 Resource Pools — An Example • May 2005

6

Resource Pools — An Example

This chapter presents an example of using Resource Pools to partition the available CPU
resources on a system. Partitioning enables minimum and maximum amounts of CPU
resources to be guaranteed to applications. Continuing with the sales and marketing database
example presented earlier, assume the following policies. The sales database instance should
always have at least 2 CPUs available to ensure a minimum level of service. Extra CPU
capacity could increase service levels and the sales business unit is willing to pay extra for
increased service levels. The marketing database requires at least one CPU, and a maximum
of two CPUs, to achieve business objectives. The marketing business unit is not willing to be
charged for more than two CPUs. These policies should require no manual intervention by
the system administrator to adjust the number of CPUs in the processor sets.

Dynamic Resource Pools can be used to implement these requirements by creating a large
processor set with at least two CPUs for the sales database, and a small processor set with at
least one CPU and at most two CPUs for the marketing database. All remaining CPUs remain
in the default processor set present on every system and which contains at least one CPU.
When implemented on a system with six CPUs, the following configurations are possible:

The number of CPUs in each processor set can be dynamically adjusted to current system
load according to allocation objectives set by the system administrator. For example, if high
demand is experienced for CPU resources in the large processor set, the system might move
processors from the small or default processor sets to the large processor set. When demand
in the large processor set decreases, the system may move processors to the small or default
processor sets.

Default Processor Set Small Processor Set Large Processor Set

2 2 2

1 2 3

1 1 4

2 1 3

3 1 2

 Dynamic Resource Pools 45

Because the pools facility is disabled by default, pools must first be enabled using the -e
(enable) option of the pooladm(1M) command. This creates a configuration with a processor
set with all processors in the system and a default pool. The following output illustrates the
configuration of a system with 6 CPUs after the pooladm -e command is run, and shows the
default pool named pool_default and the default processor set pset_default.

pooladm -e
pooladm
system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 611

 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 int pool.importance 1
 string pool.comment
 pset pset_default

 pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 447
 uint pset.size 6
 string pset.comment

 cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

46 Resource Pools — An Example • May 2005

While the set currently contains six CPUs, the minimum (one) and maximum (65,536)
number of CPUs are also set. Note the system.bind-default, pool.default and
pset.default properties. These properties ensure that processes that do not bind to a
specific pool are bound to the pool.default pool.

Note – This example assumes the users and projects created in Workload Management
example still exist.

Creating a Pool

For the sales database, a processor set named large with at least two CPUs, and no upper
bound on the number of CPUs, is created. Next, a processor set named small with at least
one CPU and a maximum of two CPUs is created. A pool named sales is created and
associated with the large processor set. A second pool named marketing is created and
associated with the small processor set. Changes to the pools configuration can be made in
two ways: to the active in-kernel configuration or to the /etc/pooladm.conf configuration
file. The configuration contained in the /etc/pooladm.conf file can be instantiated by
running the pooladm -c command. If desired, an alternate filename can be specified using
the -f option. To save the currently active in-kernel configuration to a file, the pooladm -s
command can be used. In this example, changes are made to the /etc/pooladm.conf
configuration file, ensuring the changes persist across system reboots.

The initial configuration file is created from the running configuration, after which the
processor sets and pools are added.

These commands update the configuration contained in the /etc/pooladm.conf file, and
have no effect on the active in-kernel configuration. This can be verified by displaying the
active in-kernel configuration using the poolcfg(1M) command with the -d option.

Next, the configuration file is instantiated on the system. The processor set and the pool are
created, and the system moves processors into the created processor set according to the
available processors on the system and the pset.min and pset.max attributes of the
configured processor sets. The in-kernel configuration now contains the following:

poolcfg -c ’create pset large (uint pset.min=2;uint pset.max=65536)’
poolcfg -c ’create pset small (uint pset.min=1;uint pset.max=2)’
poolcfg -c ’create pool sales’
poolcfg -c ’create pool marketing’
poolcfg -c ’associate pool sales (pset large)’
poolcfg -c ’associate pool marketing (pset small)’

 Dynamic Resource Pools 47

pooladm -c
poolcfg -dc info
system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 611

 pool marketing
 int pool.sys_id 1
 boolean pool.active true
 boolean pool.default false
 int pool.importance 1
 string pool.comment
 pset small
 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 int pool.importance 1
 string pool.comment
 pset pset_default
 pool sales
 int pool.sys_id 2
 boolean pool.active true
 boolean pool.default false
 int pool.importance 1
 string pool.comment
 pset large
 pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment
 cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line
 cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

48 Resource Pools — An Example • May 2005

 pset small
 int pset.sys_id 2
 boolean pset.default false
 uint pset.min 1
 uint pset.max 2
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 4
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

 Dynamic Resource Pools 49

Binding to a Pool

The sales database project is bound to the sales pool by adding the project.pool attribute
to the project entry for the ora_sales project. Every new process started in this project is
bound to the sales pool by default.

Existing processes in the project are still bound to the default pool; they can be moved to the
sales pool using the poolbind(1M) command. The following command binds all processes
currently running in the project ora_sales to the sales pool. Start a new process in the
ora_sales project to verify the pool binding.

projmod -sK “project.pool=sales” ora_sales
projmod -sK “project.pool=marketing” ora_mkt
cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
group.dba:100:Oracle DBA:::project.max-shm-memory=(privileged,2147483648,deny)
ora_mkt:101:Oracle Marketing:oracle::project.cpu-
shares=(privileged,10,none);project.max-shm-
memory=(privileged,2147483648,deny);project.pool=marketing
ora_sales:102:Oracle Sales:oracle::project.cpu-
shares=(privileged,20,none);project.max-shm-
memory=(privileged,2147483648,deny);project.pool=sales

poolbind -p sales -i project ora_sales
su - oracle
$ newtask -p ora_sales
$ id -p
uid=100(oracle) gid=100(dba) projid=100(ora_sales)
bash-2.05b
$ poolbind -q $$
1520 sales

50 Resource Pools — An Example • May 2005

Transferring CPUs

The system creates processor sets on a particular system based on the pool configuration and
the number of CPUs in the system. In this example using a six CPU system, all three
processor sets are created with two CPUs. The system administrator can manually move
processors from one processor set to another to shrink or enlarge a processor set depending
on the CPU requirements of applications. For example, end of month processing may require
the large pool to contain four CPUs. The extra CPUs can be moved from the small and
default processors sets using the poolcfg(1M) command:

Adapting to Load
So far, the pool configuration is static. Changes in system load do not lead to configuration
changes. The system administrator must manually move processors between sets to react to
changes in utilization. By setting an objective, the system administrator tells the system to
adapt the number of processors in a set to system demand. In this example, the utilization
objective is used to ensure utilization of the large and small processor sets is kept below 75
percent to allow for spikes in the load.

poolcfg -dc ‘transfer 1 from pset pset_default to large’
poolcfg -dc ‘transfer 1 from pset small to large’

poolcfg -dc ’modify pset large (string pset.poold.objectives="utilization<75")’
poolcfg -dc ’modify pset small (string pset.poold.objectives=”utilization<75”)’’
poolcfg -dc info
[...]
 pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 182
 uint pset.size 2
 string pset.comment
 string pset.poold.objectives utilization<75
[...]

 Adapting to Load 51

Note – Until a patch for bug 6232648 is available, a workaround is needed for utilization
objectives. Each processor set should have at least one 'pinned' CPU to prevent the issue
described in the bug from occuring. The following command can be used to pin a CPU in a
processor set. (Replace ID with the appropriate CPU ID.)

poolcfg -dc ‘modify cpu ID (boolean cpu.pinned=true)’

To see how the system adapts to varying demand for CPU resources, load is generated in the
small processor set. It currently contains only one CPU since the second CPU was moved by
the administrator in Transferring CPUs earlier. When the load exceeds the 75% utilization
objective, the system attempts to move a processor from another processor set into the small
processor set.

The file /var/log/pool/poold can be observed to see the actions taken by the resource
controller, such as moving a processor from one processor set to another:

As shown the above output, the system decides to move processor 1 from the large
processor set to the small processor set to satisfy utilization objectives. Stopping the load in
the small processor set and adding load in the large processor set causes another
reconfiguration after some time to satisfy the utilization objective on the large processor set.

This example only shows a tiny fraction of the possibilities enabled by Dynamic Resource
Pools. More complex objectives can be created, such as combining different types of
objectives and setting the importance of these objectives in relation to each other. See the
man page for libpool(3LIB) for more information on setting objectives.

$ id -p
uid=100(oracle) gid=100(dba) projid=101(ora_mkt)
$ /usr/sbin/poolbind -q $$
666 marketing
$ nspin -n 4

Mar 22 15:28:33 Monitoring INFO: all evaluated objectives satisfied
Mar 22 15:28:48 Monitoring INFO: all evaluated objectives satisfied
Mar 22 15:29:03 Monitoring INFO: pset small utilization objective not satisfied (1,
utilization, '<', 75) with utilization 85.99 (control zone bounds exceeded)
Mar 22 15:29:03 Monitoring INFO: reconfiguration required
Mar 22 15:29:03 Optimization INFO: from pset large to pset small components [cpu 2]
not applied due to poor past results
Mar 22 15:29:03 Optimization INFO: applying move from pset large to pset small
components [cpu 1]
Mar 22 15:29:03 Configuration INFO: reconfiguring...
Mar 22 15:29:03 Configuration INFO: configuration complete

52 Resource Pools — An Example • May 2005

Saving the Dynamic Configuration
The last few changes have been made to the in-kernel configuration. To keep these changes
across reboots, the in-kernel configuration must be saved to a file using the pooladm -s
command. This command saves the configuration to the /etc/pooladm.conf file. The
system automatically instantiates the configuration from this file at boot time.

 Saving the Dynamic Configuration 53

7

Solaris Zones

Solaris Zones provide a means to create one or more virtual environments on a single
operating system instance, shielding applications from details of the underlying hardware.
Applications in a zone run in isolation from applications in other zones. They cannot see,
monitor or affect processes running in another zone. Zones provide the following features:

� Security

Network services can be run in a zone, limiting the damage that can be done to the system
and other zones in case of a security violation. An intruder that is able to exploit a security
hole in an application running in a zone can only do limited damage. The actions possible
in a zone are restricted to subset of what is allowed in a normal system. For instance, it is
not possible to load custom kernel modules, access kernel memory or create device nodes
inside a zone.

� Isolation

Applications requiring exclusive access to global resources, such as specific usernames or
network ports, can run on the same machine using zones. Each zone has its own
namespace, completely separate from other zones. Users in a zone are unable to monitor
other zones, such as viewing network traffic or the activity of processes.

� Virtualization

Zones present a virtualized environment to applications, removing the physical details of
the hardware from view. This eases redeployment of applications on a different physical
machine.

� Granularity

Since zones are implemented in software, zones are not limited to granularity defined by
hardware boundaries. Instead, zones offer sub-CPU granularity. Zones do not require
dedicated CPU resources, dedicated I/O devices such as HBAs and NICs, or dedicated
physical memory. As a result, even a system with a single processor can be used to host
several zones.

54 Solaris Zones • May 2005

� Transparency

The environment presented to the application in a zone is nearly identical to the standard
Solaris OS environment. There are no new, zone-specific APIs or ABIs to which
applications must be ported. Some restrictions do exist due to security and isolation
requirements. These restrictions mainly affect applications that perform privileged
operations or need access to physical devices.

Zones Overview
The global zone encompasses the entire system and is comparable to a normal Solaris OS
instance. It has access to the physical hardware and can see and control all processes. The
administrator of the global zone can control the system as a whole. The global zone always
exists, even when no other zones are configured. Inside the global zone are local zones.
These zones are isolated from the physical hardware characteristics of the machine by the
virtual platform layer. This layer provides the zones with a virtual network interface, one or
more file systems and a virtual console.

Even though the virtual network interfaces may map to the same physical network interface,
applications in different zones are prevented from seeing traffic from applications in other
zones. Every zone has its own process environment and runs its own set of core Solaris OS
services, including inetd(1M), syslogd(1M), rpcbind(1M), and more. Applications running
in a zone are unable to see applications running in other zones because of this private process
environment. Zones are confined to their own subtree in the file system hierarchy and cannot
access file systems of other zones or the global zone. All zones share the same operating
system instance and therefore run the same Solaris OS version.

The virtual platform layer is not an emulation layer that translates requests from a zone into
some other form or executes them on the zone’s behalf. The role of the virtual platform layer
is to instantiate and to connect virtualized resources to a zone. For instance, in the case of a
virtual network interface, the virtual platform layer creates a logical interface on top of the
physical network interface specified in the zone configuration. The IP address from the zone
configuration is configured on the logical interface and it is made available to the zone.

One of the attributes of the logical interface is the zone in which it is configured. The kernel
uses this attribute to virtualize the network interface by passing packets to the appropriate
zone based on this attribute. A zone only sees packets that are destined for its own logical
interfaces. Broadcast or multicast packets are replicated and sent to all zones as appropriate.

Virtualization of file systems in a zone is achieved via a restricted root similar to chroot(2).
A process in a zone is limited to files and file systems that can be accessed from the
restricted root. Unlike chroot, a zone is not escapable. The virtual platform layer is
responsible for creating the restricted root and mounting the file systems defined in the zone
configuration on it.

 Administering Zones 55

Process isolation is accomplished by adding a reference to the zone to the process
credentials. The kernel has been extended to use the zone ID as a means to restrict visibility
of other processes. Only processes with the same zone ID are visible to a process in a zone.
This selection is made inside the kernel and not available in utilities such as ps(1) or
kill(1), as that would make it possible to subvert the isolation by writing a ps(1)
replacement.

As the zone ID is part of the credentials, the user ID namespace is also virtualized in zones.
Every zone has its own user ID namespace. As a result, users in different zones with the
same uid are in fact distinct users, even though they share the same numerical id. The
virtualized user ID namespace also implies that passwords are unique to the zone.

The introduction of Least Privilege in the Solaris OS provides a set of fine-grained privileges
to replace the concept of the omnipotent root user. Instead of performing checks against uid
0 to allow privileged operations, the kernel now checks for specific privileges required to
perform privileged operations. In the past, it was sufficient to be the superuser to perform
mount operations. Now, even the root user must have a specific privilege to perform mount
operations. By restricting the privileges of root in the local zone to a set of privileges that are
safe in a zone, the root user in a local zone can be given enough power to manage the zone
without the ability to affect the system as a whole, such as rebooting the system. Restricting
privileges by itself is not sufficient for isolation. Privileges only restrict the operations that
can be performed, not the objects on which they are performed. This is accomplished by the
isolation that zones provide.

It is therefore possible to delegate local zone administration to users by giving them access to
the root account in a local zone. Since a user with uid 0 in one zone is different from a user
with uid 0 in another zone, a local zone root user cannot compromise any other zone.
However, the global zone root user should still be closely guarded as it has control over the
system as a whole, and as such has access to all zones.

Administering Zones
Zone administration tasks can be divided into two parts, global zone administration tasks
such as creating a zone, and local zone administration tasks such as performing configuration
within a zone. The four primary global zone administration tasks are:

� Configuration — the global administrator defines the virtual platform properties, such as
the required file systems and network interfaces

� Installation — the global administrator creates the zone on the system by creating and
populating the part of the file system hierarchy reserved for the zone

� Virtual Platform Management — the global administrator uses zone tools to boot, halt or
reboot the zone

56 Solaris Zones • May 2005

� Zone Login — the global administrator can move in and out of the local zone from the
global zone to assume the role of the local zone administrator

Zone Configuration

The first step of creating a zone on a system is defining its configuration using the
zonecfg(1M) command. The configuration describes resources and properties that are
required for the zone to operate:

� Zone name — A unique name for the zone. This name is only of interest in the global
zone, it is distinct from the nodename of the zone. The name ’global’ and names starting
with ’SUNW’ are reserved.

� Zone path — Every zone has a path to its root relative to the global zone’s root directory.
The zone’s root path will be one level deeper; the ’root’ directory under the zone path. To
prevent unprivileged users in the global zone from traversing into the file system
hierarchy of the zone, the zone path must be owned by root with mode 700. The zone
’root’ directory should be owned by root and have mode 755 like a regular root directory.

� File systems — a zone may have file systems that should be mounted when the zone is
booted

� Network interfaces — a zone may have one or more virtual network interfaces. The
configuration specifies the IP address and the physical interface in the global zone on
which it is to be created.

� Devices — a zone may require devices that need to be configured when the zone is
booted. A default set of devices required in every zone is provided and can be imported
into the configuration

� Resource controls — a zone may have resource controls that should be enabled when the
zone is booted.

� Properties — a zone can have properties that control some aspect of the zone, such as the
autoboot property. The autoboot property is comparable to the auto-boot? OBP
parameter and determines if the zone is to be booted automatically when the global zone
is booted.

Installing Zones

The zone configuration process is only concerned with the syntactic correctness of the
configuration: it determines if the configuration could be created on some system, not
necessarily this particular system. This is verified when the zone is installed on a system
using the zoneadm(1M) install command. This command checks to see if all resources,
such as the physical network interface specified in the configuration, are available. It then
installs the files needed for the zone’s root file system in the correct location under the zone

 Administering Zones 57

path, and creates the mount points for additional file systems specified in the configuration.
When the installation is complete, the zone is ready to be booted. The root file system of a
typical zone requires approximately 100 MB of disk space.

Virtual Platform Management

The virtual platform layer is implemented by the zoneadmd(1M) daemon. When the global
administrator boots a zone using the zoneadm boot command, an instance of zoneadmd is
created for that zone. The zoneadmd instance for the zone consults the zone configuration
and creates a new zone. It then creates the virtual network interfaces, mounts the file
systems, and creates the zone virtual console. Finally it starts an instance of init(1M) in the
zone to further bringup the zone using SMF.

The global zone administrator can halt the zone using zoneadm halt and reboot the zone
using zoneadm reboot. These commands do not perform an orderly shutdown when
bringing down the zone. These operations can be considered the equivalent of the
setkeyswitch operations on the system controller of larger Sun Fire systems. If an orderly
shutdown of the zone is required, an init 0 command should be done from inside the zone
to ensure the stop methods of smf(5) services are executed, just like a domain on a Sun Fire
server would be shutdown prior to running the setkeyswitch off command.

The svc:/system/zones smf(5) service in the global zone is used for zone startup and
shutdown. All zones with the autoboot property set are started automatically when the global
zone boots. When the global zone is stopped, the zones service performs an init 0 in each
running zone to do an orderly shutdown of services in the zone.

Zone Login

Since zones are implemented in software and require no dedicated hardware, the virtual
platform provides a virtual console for each zone. The virtual console can be accessed from
the global zone using the zlogin(1M) command with the -C option. The console for a zone
cannot be shared by multiple users at the same time. The first user to connect to the console
of a zone has exclusive access until disconnecting from the console. Access to the consoles
of other zones is still possible.

When using the zlogin command in interactive, non-console mode an arbitrary number of
zlogin sessions to the same zone may be open concurrently. Non-interactive zlogin is also
possible, for example to allow the global administrator to perform scripted administration in
zones. The use of zlogin requires a specific privilege.

Traditional remote login facilities such as telnet(1), rlogin(1) and ssh(1) can still be
used, provided they have not been disabled by the local zone administrator.

58 Solaris Zones • May 2005

Commands

The following commands were added to the Solaris OS for zones:

Several existing Solaris OS commands were enhanced to support zones:

Command Description

zonecfg(1M) Create, update and view zone configuration

zoneadm(1M) Administer zones

zlogin(1) Login to a zone from the global zone

zonename(1) Print the name of the current zone

zoneadmd(1M) Zones administration daemon

Command Description

prstat(1M) -Z, -z options added

ps(1) -o zone, -o zoneid options added

pgrep(1) -z option added

pkill(1) -z option added

priocntl(1) -i option added

renice(1) -i option added

ipcs(1) -Z, -z option added

ipcrm(1) -z option added

ppriv(1) -z option added

ifconfig(1M) -Z option added

poolbind(1M) -i option added

df(1) -Z option added

coreadm(1M) %z token added

 File Systems 59

Local Zone Administration

Administering the local zone is largely the same as administering a normal Solaris-based
system. Some of the administrative facilities are not available in the zone because they do
not apply to zones, such as device configuration.

After the initial install of the zone by the global administrator, the system is in an
unconfigured state. The normal sysid tools are run on the first zone boot to finish zone
configuration. The prompts from these tools can be bypassed completely by creating a
/etc/sysidcfg configuration file with all required parameters in the zone. Each zone runs
its own core Solaris OS services, and therefore has its own name service. Consequently, one
zone can use NIS, while another zone can use LDAP, DNS or local files for the name
service.

File Systems
A number of file systems are mounted in the zone by the virtual platform layer when the
zone is booted. In the default configuration, the following file systems are mounted in a
zone:

� /, the zone root file system is mounted on <zonepath>/root in the global zone

� /sbin, /usr, /lib and /platform file systems are read-only loopback mounts from the
global zone to enable text page sharing to reduce memory requirements. This also reduces
the required disk footprint of the zone.

� /dev for the zone is mounted on <zonepath>/dev in the global zone

� /proc, /dev/fd, /system/contract, /etc/svc/volatile, /etc/mnttab, /var/run
and /tmp

Additional file systems can be mounted in a zone if required, either by adding these file
systems to the zone configuration using the zonecfg(1M) command, mounting them from
within the zone through the local zone’s /etc/vfstab file, mounting them by hand, or
triggered by autofs.

UFS file systems to be mounted in the zone are configured using the zonecfg(1M) command
by adding file system resources of type ufs. When the zone is booted, the system
automatically mounts these file systems in the zone. This is the recommended and safest way
to add UFS file systems to a zone.

Mounting UFS file systems from within the zone requires that the character and block device
for the file system be explicitly exported to the zone by the global administrator. The file
system can then be created by the local zone administrator. It is important to note that this

60 Solaris Zones • May 2005

may expose the system as a whole to the risk of failure as the local administrator has access
to the raw device and can possibly induce a panic by corrupting the UFS metadata on the
disk. It is, therefore, not recommended to mount file systems in this manner.

Alternatively, the global administrator can create a UFS file system somewhere in the global
zone and export this file system as a lofs mount to the zone. This prevents the local
administrator from exposing the system to the risk described above.

NFS file systems can be mounted in the local zone, provided that they do not originate from
the global zone, since it is not possible for a NFS server to mount its own file systems. See
the mount_nfs(1M) manpage for more information. Therefore, zones can be NFS clients of
any server except the global zone. Currently zones cannot be NFS servers.

Resource Management
The regular resource management facilities such as resource controls, projects, and more are
available inside zones. Because projects are also virtualized inside a zone, each zone has its
own project database. This allows a local zone administrator to configure projects and
resource controls local to that zone.

Resource Pools

A zone can be bound to a Resource Pool through the pool property of the zone
configuration. The zone is bound to the specified pool upon creation of the zone. The pool
configuration can only be changed from the global zone. A zone cannot change the pool to
which it is bound. Zones cannot span multiple pools, therefore, all processes in a zone run in
the same pool. It is however possible to bind multiple zones to the same resource pool.

Extended Accounting

The Extended Accounting framework has been extended for Zones. Each zone has its own
extended accounting files for task- and process-based accounting that contain accounting
records exclusively for the zone. The extended accounting files in the global zone contain
accounting records for the global zone and all local zones. Since the Extended Accounting
framework uses a flexible and extensible format, the accounting records are now tagged with
the zone name to which they apply. This allows the global zone administrator to extract per
zone accounting data from the accounting files in the global zone.

 Resource Management 61

Fair Share Scheduler and Zones

To prevent a local zone from monopolizing the system, the global zone administrator can set
zone-wide resource controls. The zone.cpu-shares resource control limits the amount of
CPU resources a zone is entitled to in the same way that the Fair Share Scheduler does this
for projects. A zone with a higher number of zone.cpu-shares is allowed to use more CPU
resources than a zone with a low number of shares. The zone.cpu-shares resource control
is configured using the zonecfg(1M) command. Note that this requires the Fair Share
Scheduler to be the default scheduler for the system, or that the zones be bound to a pool
with a processor set with FSS as the scheduler.

Combined with the regular Fair Share Scheduler inside a zone, this leads to a two-level
distribution of CPU resources. First, the zone.cpu-shares configured by the global zone
administrator determine the amount of CPU resources to which a zone is entitled. The
amount of CPU resources available to the zone is then further distributed across the active
projects in the zone according to the project.cpu-shares defined by the local zone
administrator.

Resource Controls

All standard resource controls are available inside the local zone and can be used by the local
zone administrator to perform resource management in the zone. The global zone
administrator can limit the number of lightweight processes (LWPs) created by a zone by
setting the zone.max-lwps resource control on a zone.

62 Using Zones — An Example • May 2005

8

Using Zones — An Example

The following example demonstrates the features provided by zones that facilitate
consolidation. It shows how to run the two Oracle workloads from the Managing Workloads
example on page 22 in a Solaris Container using zones. In that example, both workloads
shared the same physical system as well as the file system namespace, name service, network
port namespace, user and group namespaces, and more. The sharing of these namespaces can
lead to undesirable and sometimes difficult to manage situations, such as when the databases
are managed by two different DBA groups. The fact that there is only one oracle user
requires close coordination between the DBA groups, since changes made to that user’s
environment by one DBA group may impact the other database instance. The same holds true
for the sharing of the file system namespace, where a single /var/opt/oratab file is used
by multiple Oracle instances.

Sharing namespaces can also inhibit the consolidation from a large number of servers onto
fewer systems. Existing procedures and scripts may, for example, assume the system is
dedicated to the application. Making changes to these procedures and scripts may be
difficult, costly or even impossible.

Solaris Zones help resolve these issues because each zone is a virtualized environment with
its own private namespaces that can be managed independently of other zones on the system.
For instance, the oracle user in one zone is a completely different user from the oracle
user in another zone — they can have different uids, passwords, login shells, home
directories, etc. By running each Oracle instance in its own zone, the instances can be
completely isolated from each other, simplifying their management. As far as the Oracle
instance is concerned, it still runs on a dedicated system.

Requirements
Two zones each running their own Oracle instance are created. The zones require
approximately 100 MB of disk space, and the Oracle software and a database each require
about 4 GB of disk space.

 Preparation 63

Note – In this chapter, the prompt is set to the zone name to distinguish between the
different zones.

Preparation
The Oracle instances for the sales and marketing databases are recreated in Zones in this
example. Consequently, the existing instances created in Chapter 4 should be stopped and the
associated user, projects and file system should be deleted. The pool configuration built in
Chapter 6 should be disabled.

Creating the First Zone
The zone used for the marketing database is named mkt. To show how a file system is added
to a zone, a separate file system is created on a SVM soft partition (d200). The file system
may, of course, also be created on a standard disk slice. The virtual network interface for the
zone with IP address 192.168.1.14 is configured on the physical interface hme0 of the
system. The directory for the zone is created in the global zone by the global zone
administrator. The directory used for the zone must be owned by root and have mode 700 to
prevent normal users in the global zone from accessing the zone’s file system.

global # svcadm disable salesdb
global # svcadm disable mktdb
global # svccfg delete salesdb
global # svccfg delete mktdb
global # userdel -r oracle
global # projdel ora_sales
global # projdel ora_mkt
global # projdel group.dba
global # pooladm -x
global # pooladm -d

global # mkdir -p /export/zones/mkt
global # chmod 700 /export/zones/mkt
global # newfs /dev/md/rdsk/d200

64 Using Zones — An Example • May 2005

Configuring the Zone

The zone is created based on the default template that defines resources used in a typical
zone.

The virtual network interface with IP address 192.168.1.14 is configured on the hme0
interface of the global zone.

The file system for the Oracle binaries and datafiles in the mkt zone is created on a soft
partion named d200 in the global zone. Add the following statements to the zone
configuration to have the file system mounted in the zone automatically when the zone boots:

The zone configuration is now complete. The verify command verifies that the current
configuration is syntactically correct. The commit command writes the in-memory
configuration to stable storage.

global # zonecfg -z mkt
mkt: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:mkt> create
zonecfg:mkt> set zonepath=/export/zones/mkt
zonecfg:mkt> set autoboot=true

zonecfg:mkt> add net
zonecfg:mkt:net> set address=192.168.1.14/24
zonecfg:mkt:net> set physical=hme0
zonecfg:mkt:net> end

zonecfg:mkt> add fs
zonecfg:mkt:fs> type=ufs
zonecfg:mkt:fs> set type=ufs
zonecfg:mkt:fs> set special=/dev/md/dsk/d200
zonecfg:mkt:fs> set raw=/dev/md/rdsk/d200
zonecfg:mkt:fs> set dir=/u01
zonecfg:mkt:fs> end
zonecfg:mkt> verify
zonecfg:mkt> commit
zonecfg:mkt> exit

 Creating the First Zone 65

Installing the Zone

The zone is now ready to be installed on the system.

Booting the Zone

The zone can be booted with the zoneadm boot command. Since this is the first time the
zone is booted after installation, the standard system identification questions must be
answered, and are displayed on the zone’s console. The console can be accessed from the
global zone using the zlogin(1M) command.

global # zoneadm -z mkt install
Preparing to install zone <mkt>.
Checking <ufs> file system on device </dev/md/rdsk/d200> to be mounted
at </export/zones/mkt/root>
Creating list of files to copy from the global zone.
Copying <2584> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <916> packages on the zone.
Initialized <916> packages on zone.
Zone <mkt> is initialized.
The file </export/zones/mkt/root/var/sadm/system/logs/install_log>
contains a log of the zone installation.

global # zoneadm -z mkt boot
global # zlogin -C mkt
[Connected to zone 'mkt' console]

SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: mkt
Loading smf(5) service descriptions: 100/100

66 Using Zones — An Example • May 2005

At this point, the normal system identification process for a freshly installed Solaris OS
instance is started. The output of this process is omitted here for brevity, and the
configuration questions concerning the name service, time zone, etc., should be answered as
appropriate for the site. After system identification is complete and the root password is set,
the zone is ready for use.

To disconnect from the console use ~. (tilde dot) just like in tip(1). The zone can now be
accessed over the network using the telnet(1), rlogin(1) or ssh(1) commands, just like
a standard Solaris OS system. (Note that root can only login at the console unless the
/etc/default/login file is updated).

The /lib, /platform, /sbin, and /usr file systems are read-only loopback mounts from
the global zone. This reduces the required disk space for the zone considerably, and allows
the sharing of text pages, leading to more efficient use of memory. These file systems appear
in the zone because they are defined in the default template used to create this zone. All other

SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Hostname: mkt

mkt console login:

mkt console login: root
Password:
Last login: Tue Mar 22 21:55:00 on console
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
df -h
Filesystem size used avail capacity Mounted on
/ 7.9G 4.6G 3.2G 60% /
/dev 7.9G 4.6G 3.2G 60% /dev
/lib 7.9G 4.6G 3.2G 60% /lib
/platform 7.9G 4.6G 3.2G 60% /platform
/sbin 7.9G 4.6G 3.2G 60% /sbin
/u01 7.9G 8.0M 7.8G 1% /u01
/usr 7.9G 4.6G 3.2G 60% /usr
proc 0K 0K 0K 0% /proc
ctfs 0K 0K 0K 0% /system/contract
swap 15G 272K 15G 1% /etc/svc/volatile
mnttab 0K 0K 0K 0% /etc/mnttab
fd 0K 0K 0K 0% /dev/fd
swap 15G 0K 15G 0% /tmp
swap 15G 24K 15G 1% /var/run

 Creating the First Zone 67

file systems are private to the zone. The /u01 file system is mounted in the zone during zone
boot by zoneadmd. It is not mounted by the zone itself. Also note that the zone is unaware
that the file system is in fact residing on /dev/md/dsk/d200.

Installing Oracle

The group dba and the user oracle are required to run the Oracle software. Since the Oracle
software uses shared memory, and the maximum amount of shared memory is now a project
resource control, a project is needed in which to run Oracle. The project ora_mkt project is
created in the zone and the project.max-shm-memory is set to the required value (in this
case 2 GB). Since the System V IPC parameters are resource controls in Solaris 10 OS, there
is no need to update the /etc/system file and reboot.

Note that the zone has its own namespace and that the user, group and project just created are
therefore only visible inside the mkt zone.

The Oracle software and the database are installed in /u01. In this example, the Oracle
software is installed in the zone itself to create an Oracle installation idependent from any
other Oracle installations. The software could also be installed in the global zone and then
loopback mounted in the local zones. This would allow sharing of the binaries by multiple
zones, but also create a coupling between Oracle installations with regards to patch levels
and more. This example shows how to use zones to consolidate Oracle instances with
maximum isolation from each other, so in this case the software is not shared. The
installation can now be performed as described on page 91. Since /usr is mounted read-only
in the zone, the default location /usr/local/bin suggested by the Oracle Installer should be
changed to a writable directory in the zone, such as /opt/local/bin. The marketing
database can be created using the procedure on page 93.

mkt # mkdir -p /export/home
mkt # groupadd dba
mkt # useradd -g dba -d /export/home/oracle -m -s /bin/bash oracle
mkt # passwd oracle
mkt # projadd -c “Oracle” user.oracle
mkt # projadd -c "Oracle" -U oracle ora_mkt
mkt # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_mkt
mkt # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_mkt:101:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)
user.oracle:100:Oracle:::project.max-shm-memory=(privileged,2147483648,deny)

68 Using Zones — An Example • May 2005

Using the smf service for the marketing database from Chapter 4 (the Managing Workloads
example) the database instance can be started by importing the manifest and enabling the
mktdb service in the zone.

Creating the Second Zone
The first zone used a directory in /export/zones in the global zone. Since this does not
limit the size of the root file system of the local zone it could fill up the file system in the
global zone, where /export/zones is located. To prevent a local zone from creating this
problem, the zone root file system is created on a separate file system. The second zone is for
the sales database and requires the following resources:

� A 100 MB file system for the zone root file system mounted in the global zone on
/export/zones/sales. This file system is created on a Solaris Volume Manager soft
partition (/dev/md/dsk/d100). A normal slice could also be used but would be quite
wasteful given the limited number of slices available on a disk.

� To show how devices can be used in a zone, the disk slice c1t1d0s3 is exported to the
zone by the global zone administrator. A UFS file system is created on this slice inside the
zone. This requires that both the block and character devices for the slice be exported to
the zone. Note that this is for demonstration purposes only and is not the recommended
way to use UFS file systems in a zone.

� A virtual network interface with IP address 192.168.1.15 on the hme0 interface of the
global zone is also needed.

Configuring and Installing the Second Zone

The steps required to configure and install this zone are the same as for the first zone, with
the exception that two devices are added to the zone configuration.

global # newfs /dev/md/rdsk/d100
global # mkdir -p /export/zones/sales
global # mount /dev/md/dsk/d100 /export/zones/sales
global # chmod 700 /export/zones/sales

 Creating the Second Zone 69

Booting the Zone

The first time a zone is booted after installation, the system identification process is
performed. It is possible to skip the system identification questions during the first boot of
the zone by creating a sysidcfg file in the zone prior to the first boot. The location of the
sysidcfg file from the global zone is /export/zone/sales/root/etc/sysidcfg. A
sample sysidcfg file is shown below, and can be customized to fit the situation.

global # zonecfg -z sales
sales: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:sales> create
zonecfg:sales> set zonepath=/export/zones/sales
zonecfg:sales> set autoboot=true
zonecfg:sales> add net
zonecfg:sales:net> set physical=hme0
zonecfg:sales:net> set address=192.168.1.15/24
zonecfg:sales:net> end
zonecfg:sales> add device
zonecfg:sales:device> set match=/dev/rdsk/c1t1d0s3
zonecfg:sales:device> end
zonecfg:sales> add device
zonecfg:sales:device> set match=/dev/dsk/c1t1d0s3
zonecfg:sales:device> end
zonecfg:sales> verify
zonecfg:sales> commit
zonecfg:sales> exit
global # zoneadm -z sales install
Preparing to install zone <sales>.
Creating list of files to copy from the global zone.
Copying <2584> files to the zone.
Initializing zone product registry.
Determining zone package initialization order.
Preparing to initialize <916> packages on the zone.
Initialized <916> packages on zone.
Zone <sales> is initialized.
The file </export/zones/sales/root/var/sadm/system/logs/install_log>
contains a log of the zone installation.

70 Using Zones — An Example • May 2005

To suppress the question about the NFS version 4 domain, set the NFSMAPID_DOMAIN line in
the /export/zones/sales/root/etc/nfs/default file to the appropriate value for
your site and create the /export/zones/sales/root/etc/.NFS4inst_state.domain file.

The /dev/dsk/c1t1d0s3 and /dev/rdsk/c1t1d0s3 devices are added to the zone
configuration to show how devices can be imported into a zone. Note that the only devices
present in the /dev/dsk and /dev/rdsk directories are the devices that were explicitly
added to the zone configuration.

global # cat /export/zone/sales/root/etc/sysidcfg
system_locale=C
timezone=US/Pacific
network_interface=primary {
 hostname=hostname

terminal=xterm
security_policy=NONE
name_service=NIS {
 domain_name=yourdomain.com

}
root_password=sS3G0h84sqwJA

global # zoneadm -z sales boot
global # zlogin sales
sales # ls -l /dev/dsk
total 0
brw-r----- 1 root sys 32, 3 Mar 24 11:44 c1t1d0s3
sales # ls -l /dev/rdsk
total 0
crw-r----- 1 root sys 32, 3 Mar 24 11:44 c1t1d0s3

 Creating the Second Zone 71

A new file system is created and added to the zone’s /etc/vfstab file.

Notice the difference beteen the /u01 file system in this zone and the /u01 file system in the
mkt zone. In this zone the physical device is visible while in the mkt zone it is not visible.

Installing Oracle

The installation of the Oracle software is the same as that for the mkt zone. Since the zones
have completely separate namespaces, the user, group and project for Oracle must be created
in this zone also. The project user.oracle should have the resource control project.max-
shm-memory added to it to allow Oracle access to the required shared memory.

sales # newfs /dev/rdsk/c1t1d0s3
sales # mkdir /u01
sales # mount /dev/dsk/c1t1d0s3 /u01
sales # cat /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/proc - /proc proc - no -
ctfs - /system/contract ctfs - no -
objfs - /system/object objfs - no -
fd - /dev/fd fd - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c1t1d0s3 /dev/rdsk/c1t1d0s3 /u01 ufs 2 yes nologging

sales # df -h
Filesystem size used avail capacity Mounted on
/ 94M 70M 14M 83% /
/dev 94M 70M 14M 83% /dev
/lib 7.9G 4.6G 3.2G 60% /lib
/platform 7.9G 4.6G 3.2G 60% /platform
/sbin 7.9G 4.6G 3.2G 60% /sbin
/usr 7.9G 4.6G 3.2G 60% /usr
proc 0K 0K 0K 0% /proc
ctfs 0K 0K 0K 0% /system/contract
swap 15G 272K 15G 1% /etc/svc/volatile
mnttab 0K 0K 0K 0% /etc/mnttab
fd 0K 0K 0K 0% /dev/fd
swap 15G 0K 15G 0% /tmp
swap 15G 24K 15G 1% /var/run
/dev/dsk/c1t1d0s3 4.9G 5.0M 4.9G 1% /u01

72 Using Zones — An Example • May 2005

The Oracle installation can now be performed as described page 91. Since /usr is mounted
read-only from the global zone, the default location /usr/local/bin suggested by the
Oracle Installer should be changed to a writable directory such as /opt/local/bin. The
sales database can be created using the procedure on page 93. Using the smf service for the
sales database from Chapter 4 (the Managing Workloads example), the database instance can
be started by importing the manifest and enabling the salesdb service in the zone.

Controlling CPU Consumption of Zones
The zone.cpu-shares resource control can be used to limit the CPU usage of zones with
respect to other zones. This resource control is set through the zonecfg(1M) command. To
give the sales zone twice the amount of CPU resources as the mkt zone, the number of
zone.cpu-shares of the sales zone is set to twice the number of zone.cpu-shares of the
mkt zone:

sales # mkdir -p /export/home/oracle
sales # groupadd dba
sales # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
sales # passwd oracle
sales # projadd -c "Oracle" -U oracle ora_sales
sales # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_sales
sales # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_sales:100:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)

global # zonecfg -z sales
zonecfg:sales> add rctl
zonecfg:sales:rctl> set name=zone.cpu-shares
zonecfg:sales:rctl> add value (priv=privileged,limit=20,action=none)
zonecfg:sales:rctl> end
zonecfg:sales> exit
global # zonecfg -z mkt
zonecfg:mkt> add rctl
zonecfg:mkt:rctl> set name=zone.cpu-shares
zonecfg:mkt:rctl> add value (priv=privileged,limit=10,action=none)
zonecfg:mkt:rctl> end
zonecfg:mkt> exit

 Controlling CPU Consumption of Zones 73

The resource control is made active at the next zone boot. To set the zone.cpu-shares
resource control on a running zone the prctl(1) command can be used.

To observe processes, the prstat(1M) command has been enhanced for zones with the -Z
and -z options. The following prstat -Z output from the global zone shows processes
running in the global and local zones. The bottom of the output shows a summary line for
every running zone. Both zones are running eight instances of the nspin utility to show how
CPU usage is controlled by the zone.cpu-shares resource control when contention arises
for CPU resources. As can be seen from the output, the sales zone is given twice the amount
of CPU resources, even while both zones are requesting the same amount of CPU resources
from the system.

To observe processes in one or more specific zones, the prstat command can be given a list
of zones to observe with the -z option. The following output was taken while both zones
were executing eight instances of the nspin command. Only eight of the sixteen nspin
processes are shown here (those in the sales zone).

global # prctl -n zone.cpu-shares -r -v 20 -i zone sales
global # prctl -n zone.cpu-shares -r -v 10 -i zone mkt

global # prstat -Z
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 28848 root 1144K 680K cpu10 12 0 0:00:34 8.2% nspin/1
 28844 root 1144K 680K cpu2 13 0 0:00:33 8.0% nspin/1
 28845 root 1144K 680K run 9 0 0:00:33 8.0% nspin/1
 28846 root 1144K 680K cpu3 8 0 0:00:33 8.0% nspin/1
 28843 root 1144K 816K run 11 0 0:00:33 7.8% nspin/1
 28849 root 1144K 680K cpu0 13 0 0:00:32 7.7% nspin/1
 28847 root 1144K 680K run 12 0 0:00:32 7.6% nspin/1
 28850 root 1136K 672K cpu1 14 0 0:00:32 7.5% nspin/1
 28772 root 1144K 680K run 8 0 0:00:18 4.1% nspin/1
 28771 root 1144K 680K run 3 0 0:00:19 4.1% nspin/1
 28775 root 1136K 672K run 10 0 0:00:19 4.1% nspin/1
 28774 root 1144K 680K run 9 0 0:00:19 4.1% nspin/1
 28769 root 1144K 680K run 1 0 0:00:19 4.0% nspin/1
 28768 root 1144K 816K run 12 0 0:00:17 4.0% nspin/1
 28770 root 1144K 680K run 13 0 0:00:17 3.9% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 9 17 43M 30M 0.4% 0:04:30 63% sales
 10 35 105M 69M 0.8% 0:02:37 32% mkt
 0 50 219M 127M 1.5% 0:01:24 0.1% global

Total: 102 processes, 331 lwps, load averages: 10.89, 5.64, 3.09

74 Using Zones — An Example • May 2005

Controlling CPU Consumption Inside Zones
The zone.cpu-shares resource control determines the CPU consumption of the zone as a
whole in relation to other active zones. CPU consumption inside a zone is controlled by the
project.cpu-shares resource control. Since zones have their own project database, the
CPU consumption inside the zone can be controlled by the local zone administrator. To
demonstrate this capability, two projects are added to the project database in the sales zone.
The CPU shares of the projects are set to 40 and 10, giving the first project four times more
CPU resources than the second project. Each project runs four instances of the nspin utility.

global # prstat -z sales -a
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 28845 root 1144K 680K run 7 0 0:01:39 8.5% nspin/1
 28850 root 1136K 672K run 12 0 0:01:38 8.3% nspin/1
 28846 root 1144K 680K run 7 0 0:01:38 8.3% nspin/1
 28849 root 1144K 680K run 14 0 0:01:38 8.2% nspin/1
 28844 root 1144K 680K cpu0 18 0 0:01:39 8.2% nspin/1
 28843 root 1144K 816K run 11 0 0:01:38 8.1% nspin/1
 28847 root 1144K 680K cpu3 18 0 0:01:37 8.0% nspin/1
 28848 root 1144K 680K cpu10 23 0 0:01:39 7.8% nspin/1
 28401 root 11M 8584K sleep 59 0 0:00:02 0.0% svc.startd/11
 28399 root 2200K 1456K sleep 59 0 0:00:00 0.0% init/1
 28496 root 1280K 1032K sleep 59 0 0:00:00 0.0% sh/1
 28507 root 3544K 2608K sleep 59 0 0:00:00 0.0% nscd/23
 28516 root 1248K 920K sleep 59 0 0:00:00 0.0% utmpd/1
 28388 root 0K 0K sleep 60 - 0:00:00 0.0% zsched/1
 28517 root 2072K 1344K sleep 59 0 0:00:00 0.0% ttymon/1
 NPROC USERNAME SIZE RSS MEMORY TIME CPU
 16 root 39M 29M 0.3% 0:13:14 65%
 1 daemon 3528K 1312K 0.0% 0:00:00 0.0%

Total: 17 processes, 60 lwps, load averages: 15.47, 9.33, 4.85

 Controlling CPU Consumption Inside Zones 75

sales # projadd -K "project.cpu-shares=(privileged,40,none)" -U root abc
sales # projadd -K "project.cpu-shares=(privileged,10,none)" -U root xyz
sales # cat /etc/project
system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
ora_sales:100:Oracle:oracle::project.max-shm-memory=(privileged,2147483648,deny)
abc:101::root::project.cpu-shares=(privileged,40,none)
xyz:102::root::project.cpu-shares=(privileged,10,none)

sales # newtask -p abc
sales # id -p
uid=0(root) gid=1(other) projid=(abc)
sales # nspin -n 4 &
29004
sales # newtask -p xyz
sales # id -p
uid = 0(root) gid=1(other) projid=(xyz)
sales # nspin -n 4 &
29008

sales # prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 29009 root 1144K 680K cpu11 17 0 0:02:19 13% nspin/1
 29008 root 1144K 680K run 22 0 0:02:16 13% nspin/1
...
 28507 root 3680K 2888K sleep 59 0 0:00:00 0.0% nscd/24
 28997 root 1280K 1032K sleep 59 0 0:00:00 0.0% sh/1
PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 101 5 5808K 3832K 0.0% 0:09:09 52% abc
 102 5 5808K 3832K 0.0% 0:02:40 14% xyz
 1 5 13M 10M 0.1% 0:00:00 0.0% user.root
 0 8 33M 24M 0.3% 0:00:08 0.0% system
Total: 23 processes, 67 lwps, load averages: 15.89, 13.20, 11.70

global # prstat -Z
PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 29009 root 1144K 680K cpu11 28 0 0:03:35 13% nspin/1
...
 29004 root 1144K 680K run 24 0 0:01:01 3.5% nspin/1
 29006 root 1136K 672K run 27 0 0:01:01 3.4% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 9 21 49M 36M 0.4% 0:18:17 65% sales
 10 35 105M 70M 0.8% 1:35:49 34% mkt
 0 54 244M 138M 1.7% 0:01:25 0.0% global

Total: 110 processes, 340 lwps, load averages: 15.98, 13.96, 12.13

76 Using Zones — An Example • May 2005

In this case, with only the sales and the mkt zones active, the sales zone is entitled to the
following percentage of available CPU resources, as calculated by:

zone.cpu-sharessales/ (zone.cpu-sharessales + zone.cpu-sharesmkt)= 20 / (20 + 10) * 100 = 66%

This 66% is then distributed among the projects in the zone. The project abc is entitled to the
following percentage of available CPU resources:

project.cpu-sharesabc / (project.cpu-sharesabc + project.cpu-sharesxyz) * 66% = 40 / (40 + 10) * 66% = 53%

The xyz project is entitled to 13 percent of total CPU resources (as calculated by
10 / (40 + 10) * 66% = 13%). The output from the prstat -J command in the sales zone
confirms that this is the case. Note that the global zone has been omitted from the
calculations for simplicity. It does, however, use some CPU resources so the numbers
calculated may differ slightly from observed behavior.

 Controlling CPU Consumption Inside Zones 77

9

Containers — An Example

Combining the Resource Management and Zones features available in Solaris 10 OS, a
system administrator can create Solaris Containers tailored for a specific use. Building on the
examples in the previous chapters, assume the administrator wants to run the following
workloads on a single SMP system:

� The production sales database
� The production marketing database
� A development environment for the marketing database with multiple developers working

on application development
� A development environment for the sales database
� System management

The following issues prevent successful consolidation onto a single system:

� The databases are managed by two different DBA organizations that each have their own
(conflicting) standards

� The database systems use different naming services

� The development systems use the same usernames, file system paths and Oracle SIDs as
the production environment

� The database instances should be guarateed a certain minimum and maximum amount of
CPU capacity at all times

� The production systems should get preferential treatment over the development systems

� The sales database is the most important workload

� Developers should not be able to monopolize the CPU resources on the development
systems

� The marketing department is willing to pay for a maximum of two CPUs

The problem is that the sales and marketing databases cannot co-exist on a single system
because of different database administration standards and the use of different naming
services. This can be overcome by using a separate zone for each workload. The issue of the
development environments sharing naming with production can also be overcome with
zones. Each zone has its own namespace for users, file systems, network ports and naming
services.

78 Containers — An Example • May 2005

The guarantee for minimum and maximum CPU capacity can be ensured by using Dynamic
Resource Pools and the Fair Share Scheduler. Resource Pools provide hard upper and lower
bounds at the granularity of a CPU. By creating a pool for the sales production database, a
pool for the marketing database, and a pool for all other workloads, the production databases
can be given guaranteed CPU capacity.

The demand for preferential treatment of the production systems can be implemented using
the Fair Share Scheduler by assigning the production zones more zone.cpu-shares than
development zones. When contention for CPU resources arises, the production zones are
given more CPU resources than the other zones.

To prevent a developer from monopolizing the CPU resources in a development zone, each
developer is assigned to a project with a certain amount of project.cpu-shares. The Fair
Share Scheduler is used inside the development zones to distribute CPU resources according
to the shares.

FIGURE 9-1 Zones and the resource management features of the Solaris 10 OS work together to
enable applications to co-exist on systems

This leads to the following design:

� The resouce pool sales with a processor set large of at least two CPUs and no upper
bound on CPUs

� Bound to this pool is a single zone sales, thus allowing exclusive access to the CPUs in
the large processor set for the sales production database only

� Inside the zone there is a single project ora_sales, used to limit the amount of shared
memory

� The pool uses the default Time Sharing (TS) scheduler since there is no need to arbitrate
between zones in the pool or between projects in the zone

� A resource pool called marketing with a processor set small of at least one and at most
two CPUs

� Bound to this pool are two zones, mkt for the marketing production database and mkt_dev
for the development database

Server

Pool: pool_default (FSS) Pool: marketing (FSS) Pool: sales (TS)

Zone: Global Zone

Zone: sales_dev

Zone: mkt

Zone: mkt_dev

Database
Database

Zone: sales

 Container Construction 79

� This pool uses the Fair Share Scheduler (FSS) to arbitrate between the two zones bound to
the pool and between projects in those zones

� Inside each zone is a single project ora_mkt to limit shared memory for the Oracle
instance

� Each developer is assigned a unique project in the development zone with a suitable
amount of CPU shares

� The default resource pool pool_default with a processor set with at least one CPU

� Bound to this pool are the global zone and the sales_dev zone for the sales database
developers

� This pool uses the FSS scheduler to arbitrate between the two zones bound to the pool,
and between projects in those zones

� Each developer is assigned a unique project in the development zone with a suitable
amount of CPU shares

Container Construction
Creating the Pools

The pool configuration built in Chapter 6 almost matches the design, and could be used as a
basis to create the required pools. However, the pools are created from scratch in order to
show all relevant steps in a single location.

1. Enable the Resource Pools facility and save the default configuration to the
/etc/pooladm.conf file. (The default configuration constists of a processor set
pset_default with all CPUs and a single pool pool_default.)

2. Create the sales resource pool with TS as the scheduler and the large processor set with
at least two CPUs.

3. Create the marketing resource pool with FSS as the scheduler and the small processor set
with between one and two CPUs.

global # pooladm -e
global # pooladm -s

global # poolcfg -c ‘create pset large (uint pset.min=2; uint pset.max=65536)’
global # poolcfg -c ‘create pool sales (string pool.scheduler=”TS”)’
global # poolcfg -c ‘associate pool sales (pset large)’

global # poolcfg -c ‘create pset small (uint pset.min=1; uint pset.max=2)’
global # poolcfg -c ‘create pool marketing (string pool.scheduler=”FSS”)’
global # poolcfg -c ‘associate pool marketing (pset small)’

80 Containers — An Example • May 2005

4. Set the scheduler for the default pool to the Fair Share Scheduler and instantiate the pool
configuration just created:

global # poolcfg -c 'modify pool pool_default (string pool.scheduler="FSS")'
global # pooladm -c
global # poolcfg -dc info

system blondie
 string system.comment
 int system.version 1
 boolean system.bind-default true
 int system.poold.pid 29072

 pool marketing
 int pool.sys_id 5
 boolean pool.active true
 boolean pool.default false
 string pool.scheduler FSS
 int pool.importance 1
 string pool.comment
 pset small
 pool sales
 int pool.sys_id 6
 boolean pool.active true
 boolean pool.default false
 string pool.scheduler TS
 int pool.importance 1
 string pool.comment
 pset large
 pool pool_default
 int pool.sys_id 0
 boolean pool.active true
 boolean pool.default true
 string pool.scheduler FSS
 int pool.importance 1
 string pool.comment
 pset pset_default

pset large
 int pset.sys_id 1
 boolean pset.default false
 uint pset.min 2
 uint pset.max 65536
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

 Container Construction 81

cpu
 int cpu.sys_id 3
 string cpu.comment
 string cpu.status on-line

cpu
 int cpu.sys_id 2
 string cpu.comment
 string cpu.status on-line

pset small
 int pset.sys_id 2
 boolean pset.default false
 uint pset.min 1
 uint pset.max 2
 string pset.units population
 uint pset.load 0
 uint pset.size 2
 string pset.comment

cpu
 int cpu.sys_id 1
 string cpu.comment
 string cpu.status on-line
 cpu
 int cpu.sys_id 0
 string cpu.comment
 string cpu.status on-line

 pset pset_default
 int pset.sys_id -1
 boolean pset.default true
 uint pset.min 1
 uint pset.max 65536
 string pset.units population
 uint pset.load 17
 uint pset.size 2
 string pset.comment

 cpu
 int cpu.sys_id 11
 string cpu.comment
 string cpu.status on-line

 cpu
 int cpu.sys_id 10
 string cpu.comment
 string cpu.status on-line

82 Containers — An Example • May 2005

Binding Zones to Pools

Currently all zones are bound to the default pool because the pool property of the created
zones has not been set, resulting in the zones being bound to the pool with the
pool.default attribute set to true. Setting the zone's pool property to the name of a resource
pool binds that zone and all of its processes to that pool when the zone is booted. Note that
since the sales zone is bound to a resource pool with the normal TS scheduler, the
zone.cpu-shares resource control is no longer applicable and is therefore removed from the
zone configuration.

To bind a running zone to a pool without rebooting the zone, the poolbind(1M) command
can be used. This dynamically rebinds the zone and its processes to a pool until the next zone
boot. To have this change persist accross zone reboots, the zone's property should be set as
shown above.

The poolbind -q `pgrep -z sales -x init` command is used to ascertain to which
zone the current pool is bound by querying the binding of the init(1M) process of that zone.
As can been seen, the sales zone was bound to the pool pool_default and is now bound to
the sales pool.

Creating Development Zones

The development environments for both databases get their own zones, enabing them to use
the same user names, projects and file system paths as the production environments. The
development zone for the sales database, sales_dev, is bound to the default pool and shares
the pool with all processes of the global zone. To prevent the sales_dev zone from
monopolizing CPU resources, its zone.cpu-shares is set to the same value as that of the

global # zonecfg -z sales set pool=sales
global # zonecfg -z sales remove rctl name=zone.cpu-shares
global # zonecfg -z mkt set pool=marketing

global # poolbind -q `pgrep -z sales -x init`
28399 pool_default
global # poolbind -p sales -i zoneid sales
global # poolbind -q `pgrep -z sales -x init`
28399 sales
global # poolbind -p marketing -i zoneid mkt
global # poolbind -q `pgrep -z mkt -x init`
28545 marketing

 Container Construction 83

global zone. This gives both zones equal access to CPU resources. When the Fair Share
Scheduler is active in a resource pool, it only looks at processes in that pool. The amount of
shares for the sales_dev zone is only relevant in relation to those of the global zone.

The development environment of the marketing database uses the same pool as the zone for
the marketing production database. The Fair Share Scheduler is used to give preferential
access to the production zone. By setting the zone.cpu-shares of the mkt zone to 50, and
the zone.cpu-shares of the mkt_dev zone to 10, the production database is granted five
times as much CPU resources as the development database.

global # zonecfg -z sales_dev
sales_dev: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:sales_dev> create
zonecfg:sales_dev> set zonepath=/export/zones/sales_dev
zonecfg:sales_dev> set autoboot=true
zonecfg:sales_dev> set pool=pool_default
zonecfg:sales_dev> add rctl
zonecfg:sales_dev:rctl> set name=zone.cpu-shares
zonecfg:sales_dev:rctl> add value (priv=privileged,limit=1,action=none)
zonecfg:sales_dev:rctl> end
[...]
global # chmod 700 /export/zones/sales_dev
global # zoneadm -z sales_dev install
[...]
global # zoneadm -z sales_dev boot

global # zonecfg -z mkt 'select rctl name=zone.cpu-shares; set
value=(priv=privileged,limit=50,action=none);end'

global # zonecfg -z mkt_dev
mkt_dev: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:mkt_dev> create
zonecfg:mkt_dev> set zonepath=/export/zones/mkt_dev
zonecfg:mkt_dev> set autoboot=true
zonecfg:mkt_dev> set pool=marketing
zonecfg:mkt_dev> add rctl
zonecfg:mkt_dev:rctl> set name=zone.cpu-shares
zonecfg:mkt_dev:rctl> add value (priv=privileged,limit=10,action=none)
zonecfg:mkt_dev:rctl> end
[...]
global # chmod 700 /export/zones/mkt_dev
global # zoneadm -z mkt_dev install
[...]
global # zoneadm -z mkt_dev boot

 84

The pool bindings for the zones can be verified using the poolbind -q pid command on
every zone's init(1M) process.

Creating Development Users and Projects

Once all zones are created, it is time to create users and projects inside the development
zones and set the appropriate resource controls to implement the design. The Fair Share
Scheduler is used to prevent the developers from consuming the CPU resources. In both
zones three users and three projects are created.

global # poolbind -q `pgrep -z sales_dev -x init`
6718 pool_default
global # poolbind -q `pgrep -z sales -x init`
28399 sales
global # poolbind -q `pgrep -z mkt -x init`
28545 marketing
global # poolbind -q `pgrep -z mkt_dev -x init`
6579 marketing
global # poolbind -q `pgrep -z global -x init`
1 pool_default

User Project Resource Controls Value

oracle ora_mkt project.max-shm-memory 2 GB

project.cpu-shares 100

oracle ora_sales project.max-shm-memory 2 GB

project.cpu-shares 100

dev1 user.dev1 project.cpu-shares 10

dev2 user.dev2 project.cpu-shares 10

 Container Construction 85

Verifying the Configuration

The configuration just built can be verified using the following steps:

1. Start the prstat -Z command in the global zone to observe the CPU utilization of the
zones.

2. Start the poolstat -r pset 5 command in the global zone to observe utlization in the
resource pools.

global # zlogin mkt_dev
mkt_dev # mkdir -p /export/home
mkt_dev # groupadd dba
mkt_dev # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
mkt_dev # projadd -U oracle ora_mkt
mkt_dev # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_mkt
mkt_dev # projmod -sK "project.cpu-shares=(privileged,100,none)" ora_mkt
mkt_dev # useradd -m -d /export/home/dev1 -s /bin/bash dev1
mkt_dev # useradd -m -d /export/home/dev2 -s /bin/bash dev2
mkt_dev # projadd user.dev1
mkt_dev # projadd user.dev2
mkt_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev1
mkt_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev2
[Oracle installation omitted for brevity...]

global # zlogin sales_dev
sales_dev # mkdir -p /export/home
sales_dev # groupadd dba
sales_dev # useradd -g dba -m -d /export/home/oracle -s /bin/bash oracle
sales_dev # projadd -U oracle ora_sales
sales_dev # projmod -sK "project.max-shm-memory=(privileged,2G,deny)" ora_sales
sales_dev # projmod -sK "project.cpu-shares=(privileged,100,none)" ora_sales
sales_dev # useradd -m -d /export/home/dev1 -s /bin/bash dev1
sales_dev # useradd -m -d /export/home/dev2 -s /bin/bash dev2
sales_dev # projadd user.dev1
sales_dev # projadd user.dev2
sales_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev1
sales_dev # projmod -sK "project.cpu-shares=(privileged,10,none)" user.dev2
[Oracle installation omitted for brevity...]

86 Containers — An Example • May 2005

3. Create load using the nspin -n 4 command in the mkt zone as the user oracle in the
ora_mkt project. Note the CPU consumption of the mkt zone peaks around 33% since the
marketing resource pool to which the zone is bound consists of two CPUs. The other
CPUs are idle.

4. Add the same load in the mkt_dev zone. The combined CPU usage of the mkt and
mkt_dev zones is approximately 33% since they share the same resource pool. The mkt
zone receives approximately 27% and the mkt_dev zone about 6% because the mkt zone
has five times more zone.cpu-shares than the mkt_dev zone.

5. Add the same load in the sales zone. The sales zone receives 33% since it is bound to
the sales pool, which also has two CPUs. The CPU consumption of the mkt and mkt_dev
zones is not impacted by the CPU usage of the sales zone.

6. Add load in the sales_dev zone. This zone is bound to the default pool. As a result, it is
able to use all of the remaining CPU capacity since it is the only zone in that pool using
CPU resources.

7. Add the same load in the global zone. The global zone is also bound to the default pool,
and has the same amount of zone.cpu-shares as the sales_dev zone. The CPU usage of
both zones is therefore equal, and approximately 16 percent. The resulting prstat -Z
command output looks as follows:

8. Add load in the sales_dev zone in the user.dev1 and user.dev2 projects. The total
CPU usage of the sales_dev zone remains the same. However, in the zone the CPU
should now be divided across the three projects according to the project.cpu-shares in
the zone. Notice that a zone bound to a resource pool is only aware of the CPUs in the
associated processor set. As a result, the sales_dev zone only knows about two CPUs,
and the usage shown in the output of the prstat command is therefore based on two
CPUs. That is why inside the zone the three projects seem to use 50%. (The other 50% is
used by the global zone that is also bound to the same pool.) The user.dev1 and
user.dev2 projects receive 10/120ths each of that 50% since they each have 10
project.cpu-shares and ora_sales has 100 project.cpu-shares.

global # prstat -Z
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 1987 100 1144K 672K cpu3 20 0 0:04:17 8.4% nspin/1
[...]
 2031 root 1144K 808K run 7 0 0:00:49 4.1% nspin/1
ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
 2 15 42M 30M 0.4% 0:17:17 33% sales
 1 33 104M 69M 0.8% 0:23:00 27% mkt
 0 65 388M 179M 2.2% 0:03:36 17% global
 3 33 105M 71M 0.8% 0:06:27 16% sales_dev
 4 33 103M 69M 0.8% 0:03:53 5.7% mkt_dev

Total: 179 processes, 586 lwps, load averages: 19.81, 14.84, 8.04

 Container Construction 87

This example illustrates some of the ways that Solaris Containers technologies can be used to
facilitate consolidation. It should be noted that not all features must be used at the same time.
Depending on the circumstances, some Solaris Container technologies such as Resource
Management, Resource Pools and Zones, can be mixed and matched to meet the specific
needs for a consolidation project. In some cases, just using the Fair Share Scheduler may be
sufficient to meet requirements, while in other cases Solaris Zones can be the key technology
to a succesful consolidation.

sales_dev # prstat -J
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 2016 oracle 1144K 672K run 35 0 0:24:48 10% nspin/1
 2088 dev1 1136K 704K run 1 0 0:00:03 1.4% nspin/1
[...]
 2113 dev2 1144K 848K run 27 0 0:00:02 1.2% nspin/1
PROJID NPROC SIZE RSS MEMORY TIME CPU PROJECT
 100 5 7456K 4864K 0.1% 1:39:06 40% ora_sales
 101 5 7464K 5072K 0.1% 0:00:12 5.3% user.dev1
 102 5 7464K 5072K 0.1% 0:00:08 5.0% user.dev2
 1 5 11M 9336K 0.1% 0:00:00 0.2% user.root
 0 26 93M 63M 0.8% 0:00:14 0.0% system
 3 1 2904K 2064K 0.0% 0:00:00 0.0% default
Total: 47 processes, 132 lwps, load averages: 14.43, 10.28, 8.84

88 Summary • May 2005

10

Summary

As organizations build large-scale information systems to solve business problems, they are
seeking new ways to protect technology investments while building scalable and highly
available IT infrastructures that can adapt change. The facilities available in Solaris
Containers can be used to help reduce IT infrastructure cost and improve end user service
level management. With Solaris Containers, organizations can:

� Consolidate applications onto fewer servers

� Ensure applications remain isolated from one another

� Partition servers into several independent execution environments

� Manage the data center as a set of compute resources

About the Author
Menno is a Technical Specialist in Sun’s Client Solutions organization in the Netherlands,
where he assists Sun customers in implementing and optimizing their systems. His
specialities include Solaris OS, high end servers, and resource mangement. Prior to joining
Sun in 1999, Menno held several technical positions in mainframe and UNIX environments.

Acknowledgements
The author would like to recognize Joost Pronk van Hoogeveen for his contributions to this
article.

 References 89

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc.
Readers living in the United States, Canada, Europe, or Japan, can purchase documentation
sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables users to access Sun technical documentation online.
Users can browse the docs.sun.com archive or search for a specific book title or subject.
The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html

References
Solaris 10 Resource Manager Developer’s Guide. 817-1975-10. To access this book online,
go to http://docs.sun.com.

System Administration Guide:Basic Administration. 817-1985. To access this book online, go
to http://docs.sun.com.

System Administration Guide:Network Services. 816-4555. To access this book online, go to
http://docs.sun.com.

System Administration Guide:Solaris Containers — Resource Management and Solaris
Zones. 817-1592. To access this book online, go to http://docs.sun.com.

Solaris Containers: Server Virtualization and Manageability, Technical White Paper, Sun
Microsystems, September, 2004. This white paper is available for download at
http://www.sun.com/software/solaris/whitepapers.xml.

90 Solaris Container Features — Historical Summary • May 2005

A

Solaris Container Features — Historical
Summary

Feature Available in Solaris Version

Solaris Resource Manager 1.x Solaris 2.6 (unbundled product)

Projects Solaris 8 10/01

Extended Accounting Solaris 8 10/01

Fair Share Scheduler Solaris 9 FCS

Resource Pools Solaris 9 FCS

IPQoS Solaris 9 9/02

Perl interface for libexacct Solaris 9 4/03

Resource Capping Daemon Solaris 9 12/03

Dynamic Resource Pools Solaris 10 03/05

Zones Solaris 10 03/05

 References 91

B

Oracle Installation

This appendix contains the steps for installing Oracle 9i for use in the examples in this
document. It only contains steps that are needed for demonstrating particular Solaris OS
features mentioned in this paper. It should not be considered a guide to install Oracle on
production systems.

The installation of Oracle consists of the following steps:

� Installing the Oracle software

� Updating the .profile of the oracle user

� Creating a script to start and stop the Oracle instances during system startup and
shutdown

This procedure assumes that the following requirements have been met:

� The Oracle software and databases will be installed under /u01

� The available diskspace on /u01 is approximately 3 GB for the Oracle software only,
extra space is needed for the databases.

� The Oracle 9.2.0.1.0 installation media is mounted on /mnt

The target directory should be owned by the oracle user:

The Oracle Installer GUI must be run as the oracle user and requires the DISPLAY variable
to be set:

chown -R oracle:dba /u01

su - oracle
$ cd /mnt
$ DISPLAY=<your display>; export DISPLAY
$ Disk1/runInstaller

92 Oracle Installation • May 2005

Answer the following at the prompts:

After the Oracle Installer is finished the .profile of the oracle user must be updated so it
looks like this:

“welcome”

select <next>

“Inventory Location”

base directory: /u01/app/oracle/oraInventory

select <next>

“UNIX Group Name”

select <next>

execute /tmp/oraintRoot.sh

select <Continue> when done

“File locations”

- destination name: Home1

- destination path: /u01/app/oracle/product/9.2.0.1.0

select <next>

“Available Products”

- Oracle9i Database

select <next>

“Installation Types”

Enterprise Edition

select <next>

“Database Configuration”

Software Only

select <next>

“Summary”

select <Install>

execute /u01/app/oracle/product/9.2.0.1.0/root.sh as user root

select <OK> when done

select <Exit>

 cd
$ cat .profile
ORACLE_HOME=/u01/app/oracle/product/9.2.0.1.0
PATH=$ORACLE_HOME/bin:/usr/ccs/bin:/usr/bin:/usr/openwin/bin:/etc
export ORACLE_HOME PATH
$ exit
$

 References 93

C

Creating a Database

This appendix describes the procedure to create a simple Oracle database for the examples in
this document. The following script creates the required directories, the init.ora file for the
database and an SQL script to create the database. Save the script as createdb.sh in the
home directory of the oracle user.

#!/bin/sh
mkdir -p /u01/oradata/$ORACLE_SID/redo
mkdir -p /u01/oradata/$ORACLE_SID/ctl
mkdir -p /u01/oradata/$ORACLE_SID/undo
mkdir -p /u01/oradata/$ORACLE_SID/sys
mkdir -p /u01/oradata/$ORACLE_SID/temp
mkdir -p /u01/app/oracle/admin/$ORACLE_SID/bdump
mkdir -p /u01/app/oracle/admin/$ORACLE_SID/udump
mkdir -p /u01/app/oracle/admin/$ORACLE_SID/cdump

cat > createdb.sql <<EOF
create database $ORACLE_SID
controlfile reuse
logfile ’/u01/oradata/$ORACLE_SID/redo/redo_01.log’ size 64M reuse,
 ’/u01/oradata/$ORACLE_SID/redo/redo_02.log’ size 64M reuse,
 ’/u01/oradata/$ORACLE_SID/redo/redo_03.log’ size 64M reuse
datafile ’/u01/oradata/$ORACLE_SID/sys/system01.dbf’ size 512M reuse
 extent management local
default temporary tablespace temp
tempfile ’/u01/oradata/$ORACLE_SID/temp/temp01.dbf’ size 512M reuse
undo tablespace undo01
datafile ’/u01/oradata/$ORACLE_SID/undo/undo01.dbf’ size 512M reuse
character set WE8ISO8859P15
;
EOF

94 Creating a Database • May 2005

The script uses the current value of ORACLE_SID (the database identifier) to generate the
appropriate files. So to create the Marketing database, set ORACLE_SID to MKT, and to create
the Sales database set ORACLE_SID to SALES before executing createdb.sh.

cat > $ORACLE_HOME/dbs/init$ORACLE_SID.ora <<EOF
control_files = /u01/oradata/$ORACLE_SID/ctl/
control01.ctl
db_name = $ORACLE_SID
db_file_multiblock_read_count = 8
db_block_size = 8192
db_block_buffers = 5000
shared_pool_size = 10000000
audit_trail = false
timed_statistics = true
max_dump_file_size = 10240
log_checkpoint_interval = 10000
log_buffer = 163840
undo_management = auto
filesystemio_options = setall
global_names = TRUE
background_dump_dest = /u01/app/oracle/admin/$ORACLE_SID/
bdump
user_dump_dest = /u01/app/oracle/admin/$ORACLE_SID/
udump
core_dump_dest = /u01/app/oracle/admin/$ORACLE_SID/
cdump
compatible= 9.2.0.1.0
EOF

$ ORACLE_SID=MKT (or ORACLE_SID=SALES to create the SALES database)
$ export ORACLE_SID
$./createdb.sh
$ sqlplus “/ as sysdba”
SQL> starup nomount
SQL> @createdb.sql
SQL> @?/rdbms/admin/catalog
SQL> @?/rdbms/admin/catproc
SQL> shutdown
SQL> exit

 References 95

D

SMF Services for Oracle

This appendix describes the manifests and start and stop methods for the simple SMF
services for the Oracle instances used in the example chapters.

cat /u01/app/method/ora
#!/bin/sh
#
Usage: ora ‘start’ | ‘stop’ db_id
#
ORACLE_SID=$2
ORACLE_HOME=/u01/app/oracle/product/9.2.0.1.0
export ORACLE_SID ORACLE_HOME

case “$1” in
'start')

 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<START_EOF
startup
START_EOF
 ;;

'stop')
 $ORACLE_HOME/bin/sqlplus "/ as sysdba" <<STOP_EOF
shutdown immediate
STOP_EOF
 ;;
esac
exit 0

96 SMF Services for Oracle • May 2005

The manifest /var/svc/manifest/site/salesdb.xml defines the SMF service for the
sales database.

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
<service_bundle type='manifest' name='SalesDB'>
<service
 name='site/salesdb'
 type='service'
 version='1'>
 <single_instance />

 <dependency
 name='local-fs'
 type='service'
 grouping='require_all'
 restart_on='none'>
 <service_fmri value='svc:/system/filesystem/local' />
 </dependency>

 <exec_method
 type='method'
 name='start'
 exec='/u01/app/method/ora start SALES'
 timeout_seconds='0'>
 <method_context
 project='ora_sales'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>

 <exec_method
 type='method'
 name='stop'
 exec='/u01/app/method/ora stop SALES'
 timeout_seconds='0'>
 <method_context
 project='ora_sales'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>
 <instance name='default' enabled='false' />
</service>
</service_bundle>

 References 97

The manifest /var/svc/manifest/site/mktdb.xml defines the SMF service for the
marketing database.

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
<service_bundle type='manifest' name='MarketingDB'>
<service
 name='site/mktdb'
 type='service'
 version='1'>

 <single_instance />

 <dependency
 name='local-fs'
 type='service'
 grouping='require_all'
 restart_on='none'>
 <service_fmri value='svc:/system/filesystem/local' />
 </dependency>

 <exec_method
 type='method'
 name='start'
 exec='/u01/app/method/ora start MKT'
 timeout_seconds='0'>
 <method_context
 project='ora_mkt'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>

 <exec_method
 type='method'
 name='stop'
 exec='/u01/app/method/ora stop MKT'
 timeout_seconds='0'>
 <method_context
 project='ora_mkt'>
 <method_credential user='oracle' />
 </method_context>
 </exec_method>

 <instance name='default' enabled='false' />
</service>
</service_bundle>

