
A Planning Guide for Moving to LDAP
as Naming Service
in the Solaris™ OS

Wajih Ahmed and Abdi Mohammadi

April 2009

Sun Microsystems, Inc.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.
This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is
a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
X/Open is a registered trademark of X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, OpenSolaris, Solaris, Sun BluePrints, and SunSolve are trademarks or
registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other countries.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws
in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated
nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 2

Table of Contents
Introduction..4
The Challenges of Moving to LDAP...4
Preparing a DIT..5
DIT Design...5
Implementing a Hybrid DIT..8
Other DIT Designs...9
Using an Existing DIT...9
Using Directory Proxy as a Virtual Directory Solution...10
Kerberos and LDAP Combinations...11
Using Netgroups..11
Integration With Microsoft Active Directory..12
Improvements Added by OpenSolaris Projects...12
Conclusion...13
For More Information..13
Licensing Information..15

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 3

Introduction
There are several important decisions for organizations preparing to migrate from Network Information
Service (NIS) or NIS+ to Lightweight Directory Access Protocol (LDAP). Similar yet simpler
challenges are experienced by organizations that are embracing LDAP as a naming service for the first
time.

The goal of this document is to identify the majority of these issues and help readers make informed
decisions with respect to their specific environments. This paper specifically deals with migration
design issues, but there is no reason why lessons cannot be gleaned from it for green-field
implementations.

One aspect of a migration is the heterogeneous nature of various UNIX® LDAP clients. UNIX LDAP
client is a term used to describe the pieces of the operating system that make up the libraries and
binaries required to connect to a LDAP server for authentication and naming services.

A typical organization has a mix of UNIX LDAP clients for major operating systems, such as the
Solaris™ Operating System, Red Hat Linux, AIX, and HP-UX. A prerequisite for these clients is RFC
2307 and LDAP v3 compliance.

Note: This document applies to Solaris 8 and later releases.

On the server side, the Solaris client is designed to work optimally with Sun Java™ System Directory
Server Enterprise Edition (hereafter call Directory Server). However, it can also work with other LDAP
v3 compliant directory servers, such as Microsoft Active Directory, eDirectory, and OpenLDAP.

The Solaris client also requires RFC 2307bis schema. In addition, Sun Java System Identity
Synchronization for Windows software can be used to synchronize user names and passwords (and for
that matter, other attributes) with Microsoft Active Directory (AD), thus providing the flexibility to run
parallel yet synchronized directory services.

The Challenges of Moving to LDAP
One of the biggest impact in migrations is the “folding” of the NIS/NIS+ domains into the LDAP
namespace. A typical organization can have several NIS/NIS+ domains, which could span geographic
boundaries.

And it is quite common to have uid numbers that are nonunique across these domains. This
nonunique pattern also can be true for other databases, such as groups, netgroups, and so on. LDAP,
on the other hand, has a tradition of having a flat namespace where the distinguished name (DN) is
unique. So mapping to this new namespace can be a formidable challenge for organizations that have a
large and complex NIS/NIS+ environment.

In addition to the namespace, the delegated administration model of NIS/NIS+ domains needs to be
kept in mind when migrating to LDAP. There are several approaches to these challenges, and the
design of the Directory Information Tree (DIT) plays a vital role in choosing the correct solution.
Hence, there are several sections in this document that discuss the DIT design.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 4

Preparing a DIT
The Solaris 8 OS and later releases provide a script called idsconfig(1M) to prepare a fresh
Directory Server instance for using LDAP as a naming service. Figure 1 shows how a fresh DIT looks
after idsconfig has been run on a root suffix.

Basically idsconfig creates the containers for the naming services databases, and adds additional
schema (not covered by RFC 2307bis), a default profile, a proxy user, associated Access Control
Information (ACI), and the required indexes. Note that the latest versions of idsconfig might add
additional LDAP containers for subsequent Solaris 10 updates.

Figure 1: Example of a Fresh Directory Information Tree

DIT Design
As a first decision point, there are typically two paths that can be taken in a migration. One path is to
perform a one-to-one mapping of the NIS/NIS+ domains directly into a container of their own
(typically ou) under the root suffix of the directory, as shown in Figure 2. This is the least disruptive
approach because it does not require any changes to the user IDs (uids), and hence implementation time
is also shorter.

Each container is thus self-contained and, in particular, it has its own people branch under which the
users reside. The search base for the LDAP client refers to each of these branch points, which would
correspond to the (former) NIS domains. Additional ACI might need to be added to give the former
domain owners rights to write to these branches, thus allowing them to manage their own branches.
Because the uids can be nonunique, it is important to configure the Directory Server uid uniqueness
plug-in so that it does not provide uniqueness for uids.

Note that if you want different home directories for your users in each of the domains, this one-to-one
DIT design is the only option.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 5

Figure 2: One-to-One Mapping of Domains

Another approach is to make all LDAP uids unique. (Many organizations these days are creating uids
that are a combination of the employees' initials and their employee IDs.) This method is actually
easier said than done, because it requires uniquely consolidating existing uids and, consequently, the
uid number.

Similarly, groups should also be consolidated and, consequently, effect the group ID (gid) number too.
The side effect of this consolidation is the daunting task of changing the uid number and possibly gid
number on all file systems, although if planned, this can be automated through carefully written scripts.

It is worth noting here that virtual directory, which is a feature of the JavaTM System Directory Proxy
Server (hereafter "Directory Proxy Server"), also can be used to create a virtual uid attribute derived
out of existing attributes. See the "Using Directory Proxy as a Virtual Directory Solution” section for
more details.

In Figure 3, there is still a one-to-one mapping between the domain names and the LDAP containers.
What is different here is that a single unified ou=people branch is used underneath the root suffix.
Note that ou=group is not shown in Figure 3 at the same level as ou=people. Ideally, if
ou=people is centralized, ou=group also would be centralized.

However, standardizing on the system group names and number and placing them under each
“domain” allows the flexibility of delegated administration. In the end, the decision to centralize
groups has to be carefully taken during the design phase of the migration. This “hybrid” approach
keeps the benefit of domain delegation, but on the other hand, it facilitates user account centralization
and enforces unique uids and, optionally, gids.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 6

Figure 3: Hybrid DIT Approach

As with any delegated administration approach, proper ACI is needed to assign rights to users or
groups that can write to their assigned branch points on the DIT. Note that each “domain container,”
such as east.example.com, requires the nisDomainObject object class and the nisDomain
attribute set to the appropriate value.

There are some use cases that could exhibit side effects from this “hybrid” approach. For example, the
user's shell and path (loginShell attribute) need to be the same on all workstations. This might
require standardization on the location of the shells on all UNIX workstations. If that is not easily
done, then an alternate approach can be devised, such as creating profiles that are friendly to each
flavor of UNIX, and then defining attribute maps in these profiles to point to an alternate attribute for
the shell using attribute mapping. Attribute and object class mappings are discussed further in the
“Existing DIT” section.

The question becomes: Why fuss so much over unique uids? Well, the biggest benefits are compliance
and management. In this approach, disabling the user, deleting the user, or both is required only in one
place. Having a unique uid also offers the benefit of mobility. When users travel from one location to
another, their uids can remain the same. A uid should be given to a user forever regardless of status
(married, changed name, and so on). Some companies, such as Sun, provide a uid (Sun ID) that is
unique across all former and current employees at Sun. So if employees leave and come back later,
they have the same Sun ID as before.

Another advantage of individual domains is sub-suffix replication. However, having too many
databases is discouraged, because that can result in a large number of replication agreements, which
could be cumbersome to manage. Therefore, create separate databases for those sub-suffixes that need
to be replicated to a remote location where a local directory is desired for performance as well as
bandwidth reasons.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 7

Implementing a Hybrid DIT
This hybrid DIT design requires the use of Service Search Descriptors (SSDs) for the passwd and
shadow databases, because the centralized ou=people container is at least one level above the
default search base in the profile. See Figure 4, which shows one such example in its simplest form.

Ideally, the SSDs should be restricted to only one level and can have LDAP filters. Similarly, if
deemed appropriate, you can place any other database, such as ou=group, outside the default search
base and add an SSD for it.

The SSD for each database can also point to multiple containers. This feature might be useful during
the transition phase. Other LDAP clients that are based on nss_ldap have similar features to SSDs
and mappings, so this approach is also viable in a heterogeneous UNIX environment.

Figure 4: Simple Hybrid Implementation

Additional ACI might also be needed (the default ACI added by idsconfig for proxyagent can
be used as examples). In particular, if an SSD for passwd is used, then the proxyagent under each
domain needs to read the userPassword attribute (in case pam_unix is being used) and, in
general, be allowed to proxy.

Obviously, the existing proxyagent (at the root level) can also be used; hence a “profile” container
is shown in Figure 4. As a matter of fact, all the containers at the root level can be left “intact.” They
have been deleted in the figures just for the sake of clarity. Note that in both cases (profiles at the top
level or within each domain container), the contents of /var/ldap/ldap_client_file is
exactly the same.

Another alternative to using SSDs could be LDAP referrals. However, because referrals cause an extra
hop and are sometimes cumbersome to manage, this method is not recommended.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 8

Note that our testing revealed that using SSDs invalidates some of the Virtual List View (VLV) indexes
defined by idsconfig, because they are defined with a vlvbase of the root suffix. For example, if
an SSD for passwd is used, then a getent passwd would give an unindexed search. The
requirement is to define similar VLV indexes at the correct search base of the SSD.

Other DIT Designs
There are several other combinations of the DIT design that might be more appropriate for an
organization. For example, the DIT can be made totally flat so that there is only one container for each
database. Thus, all the domains can be folded into a single flat namespace.

There are, however, side effects of this approach when trying to implement the same pre-migration
delegated administration model as with NIS/NIS+. Additional ACI has to be added to these containers
to control write access.

The benefit here is that there is a flat namespace, but the disadvantage is that additional ACI has to be
added and maintained and each entry has to be “tagged” with an attribute (Class of Service can also be
used here) that identifies its owner so that ACI can be properly enforced. For example, this attribute
could be the locality attribute.

The point is that the implementation using ACI is possible and there are several approaches to it.
However, the added administrative burden of mandating ACI could be significant and ACI also
impacts directory performance. Note that maps, such as automount maps, might no longer be able to
use wildcards.

Yet another approach is to use a virtual directory as in Sun Java System Directory Proxy Server 6.x
(hereafter "Directory Proxy"). The virtual directory presents a virtual view and makes the actual
directory a black box. See the “Virtual Directory (Directory Proxy Server)” section for more details.

It is worth noting here that in a green-field implementation, the DIT created (by idsconfig) is
actually flat. So a new implementation automatically inherits a flat DIT. This is actually quite suitable
for small to medium implementations. Large enterprises spanning geographic boundaries usually start
off with this flat DIT, but as LDAP naming services expand throughout the organization, some end up
breaking up the DIT for reasons discussed earlier.

Using an Existing DIT
In previous sections, we discussed using a new DIT for LDAP as naming services, one that is created
by idsconfig on an empty suffix. There are, however, many organizations that already have a well
established LDAP infrastructure and, hence, a DIT.

If you want to use an existing DIT for naming services, then it is advisable to first install (by running
idsconfig) on a separate fresh directory instance, test the instance, and then manually merge it into
the existing DIT along with the schema and indexes. It is not implied here that idsconfig cannot be
run on an existing DIT; however, you have more control when manual modifications are done to an
existing DIT, and thus, this is a safer option.

Alternatively, a new sub-suffix or branchpoint can be created and the naming services' DIT can be
moved into it. This approach allows you to keep a cleaner DIT and segregates corporate users from
UNIX users. Obviously, the base suffix for each of the clients now has to be the sub-suffix, but that is
easily dealt with using client profiles.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 9

Depending on the size of your organization, using an existing directory can also have the undesired
effect of inundating your directory servers with significant naming services (LDAP) traffic. So sizing
also becomes a very important factor to consider when using existing directories. Your directory
infrastructure might be more than enough for your corporate load, but it can be pushed really hard or
even tipped over with naming services queries.

The Solaris 10 05/08 OS and later releases now use nscd to create and manage a connection pool to
the directory server. This critical enhancement helps in reducing the load to directory servers
significantly. Obviously, for this enhancement to work, nscd must be started during system boot.

In addition, the RFC 2307bis schema has to be added to the existing directory instance, and the
required object classes have to be added to individual user entries. If you do not want to modify the
schema or user entries, then object class and attribute mapping can also be used. Keep in mind that the
existing attributes are mapped to hold the correct information, for example:

attributeMap=passwd:gecos=cn

A word of caution about using mapping in general: Although initially it might seem simpler, there are
certain things that could break later, because they might be specifically looking for RFC
2307bis-related object classes. In addition, when using object class mapping, it is important to
understand that the object class being mapped to is essentially similar (has the equivalent attributes) to
the existing one, and similarly, the mapped attribute has the same schema properties.

Using Directory Proxy as a Virtual Directory Solution
So far, we have been trying to overcome our challenges using pure directory design. Another approach
that can immensely change the nature of the challenge is to use the Directory Proxy Server 6.x, which
not only is an intelligent proxy (it can perform LDAP operation-based routing), but also has
virtualization capabilities.

A singular (joined) virtual view can be created for LDAP clients. This virtual view could be populated
from two or more DITs (sources). These sources could actually be on different directory instances or
even on separate physical servers. One source could provide only the user information, such as a
corporate-wide directory, while the other could be used purely for naming services.

This clear demarcation of duties has the benefit of adding the relatively smaller load of authentication
to the corporate directory, as opposed to the higher number of LDAP queries generated by naming
services.

Both versions of the Directory Proxy Server (5.2x and 6.x) also can be used for attribute mapping, and
hence mapping at the client can be eliminated. Note that the attribute mapping in version 5.x is only
for outgoing packets (searches only), while version 6.x can map bidirectionally (modifies too).

A word of caution about performance with Virtual Directory is necessary here. The Virtual Directory
pulls data on every query, and hence it does not provide the same performance as a pure directory. In
addition, a virtual DIT's performance is the lowest common denominator of the databases of which its
view is composed. Testing with accurate use cases is obviously the best way to validate whether a
virtual DIT can comply to your performance requirements.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 10

Kerberos and LDAP Combinations
Organizations using Kerberos for authentication before the migration can continue to do so. The
design of the DIT is not affected.

There are couple of approaches to using Kerberos and LDAP combinations. In the first approach, the
Directory Server is used purely for naming service lookups. Users authenticate to Kerberos using their
usual mechanism (pam_krb5.so), and the Key Distribution Center (KDC) can also be used for
account management. Thus authentication and account management are done through Kerberos,
whereas naming services are the Directory's responsibility.

In this case, the client profile in LDAP specifies anonymous as the value for the
credentialLevel and none for the authenticationMethod, since that is what is required
for pure naming service lookups.

Obviously, ACI needs to be in place to allow anonymous access. This particular marriage of Kerberos
and LDAP is quite elegant, because it eliminates the need to use Secure Sockets Layer (SSL) from the
LDAP clients to the Directory Server.

In the second approach, the Directory Server is configured to verify BINDs using Generic Security
Service Application Program Interface (GSSAPI) over Simple Authentication and Security Layer
(SASL) through Kerberos. This might be the case when, for example, account management is the
responsibility of the Directory Server and pam_ldap is being used.

As soon as a user is authenticated to the KDC (through pam_krb5.so) for account management, the
user still needs to BIND to the directory. Hence, the Directory Server uses the Kerberos ticket to
validate the user against the KDC and allow or disallow the BIND.

The user password stored in the Directory Server for this particular case is useless and can be set to
anything. As a matter of fact, as a best practice, it is advised that you do not create the
userPassword attribute at all, so that BINDs are not possible, unless, of course, the Directory
Server is being used for other purposes by LDAP clients that are not using Kerberos.

It is worth noting here that there is another unsupported approach, that is, to make LDAP BINDs
authenticate directly to Kerberos through a custom pre-op Directory Server plug-in. In this case, the
Directory Server acts as a proxy and the use of pam_krb5.so is not required for authentication. One
such plug-in has been around for quite a while and is now maintained by staff of Duke University.
This approach might seem simpler, but it does so at the cost of not being a pure Kerberos solution, and
hence, it raises security issues.

Using Netgroups
Netgroups are primarily used to restrict logins for a given system. With netgroups, you have to use
passwd compat mode and a lookup is done every time the system needs to map the numeric uid of
a user to the login name and vice-versa.

When you move to LDAP for naming services, you can also move your existing netgroups to the DIT.
However, you need to continue using compat mode, so your nsswtich.conf would minimally
look like this:

passwd: compat

passwd_compat: ldap

One side effect of using netgroups is that they cause quite a bit of additional traffic in compat mode.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 11

A common example will be when running the ls command: A lookup is done for every uid in that
particular directory to map the uid number to the userid. This can be further compounded when
netgroups are nested. So careful testing needs to be done to assess the impact of netgroups on your
directory servers, and when possible, old netgroups should be cleaned up before migrating to LDAP.

Starting with the Solaris 10 05/08 OS, a new module called pam_list.so.1 provides functionality
similar to pam_access or the unsupported pam_netgroup. This allows you to define access at the
application level (such as login or sshd), and hence eliminates extraneous traffic caused by compat
mode. In particular, unlike with netgroups in compat mode, when you use pam_list(5M), a
netgroup lookup is done only at login time.

Integration With Microsoft Active Directory
We discussed the subject of Kerberos, so it is worth mentioning that Microsoft Active Directory can
also be used as a KDC for the Solaris LDAP client. There are two approaches to this integration.

Prior to the Solaris 10 08/07 OS, you have to use a proxy account to access Active Directory. This
approach is described well in a blog (see the link for Solaris 10 and Active Directory integration in the
“For More Information” section), but it is not really good for auditing purposes, because a proxy
account is used for all users.

The other approach, which is possible with the Solaris 10 08/07 and later releases, may be more elegant
and uses the SASL/GSSAPI mechanism for the LDAP client to authenticate individual users to Active
Directory (called self-credentials). For more information on this method, see the link for “Using
Kerberos to Authenticate a Solaris 10 OS LDAP Client With Microsoft Active Directory” in the “For
More Information” section.

Improvements Added by OpenSolarisTM Projects
The OpenSolaris Sparks, Winchester, and Duckwater projects have added significant design
improvements to the naming services, new functionality, and management tools. However, only
Sparks has been back ported to Solaris 10 08/07 and later releases.

Sparks introduced several improvements in the Solaris name service framework. For example, nscd
now pools LDAP connections, which are shared by multiple name service requests instead of using the
expensive approach of creating and dropping a connection per request. nscd also caches more
databases than before.

The Solaris LDAP client now supports Kerberos and can use self-credentials to authenticate to the
LDAP server instead of using a proxy account. This self-credential functionality has already been back
ported to the Solaris 10 08/07 OS and later releases, as evident by the Active Directory integration
described in an earlier section.

Winchester provides a service that can be used by Solaris components, for example, the Solaris
Common Internet File System (CIFS) server, to map Microsoft Windows identities to Solaris identities
and vice-versa.

Duckwater is planned to simplify management of Solaris name services by providing unified tools to
configure and administer name services, support multiple name service configurations on a system with
the ability to switch easily between the configurations, and provide an improved LDAP client
configuration experience.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 12

Note that currently there are no plans to port Winchester and Duckwater to the Solaris 10 OS.

Conclusion
A couple of the important reasons for moving to LDAP as a naming service are to centralize user
management and to move away from NIS/NIS+.

In this paper, we presented few approaches for such a move and described their pros and cons. Using
unified people and group containers has long-term compliance and administrative advantages. But
these advantages can come at the cost of a potentially significant consolidation effort, depending on the
size and complexity of your environment.

Similarly, figuring out the ideal DIT for your environment largely depends on your requirements and
topology. Factors such as delegated administration, logistics, time tables, resources, geographic
displacement, and technology awareness also play an important role in this transition.

Our experience has shown that making user names and group names (and the uid and gid number)
unique should be a step that happens in the existing environment, if possible, before the transition to
LDAP. In addition, a phased approach should be used for the transition to make the goals realistic and
achievable.

For More Information
Here are additional resources:

● System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP):
http://docs.sun.com/app/docs/doc/816-4556

● Sparks/Reno/Duckwater/Winchester Overview (OpenSolaris projects):
http://www.opensolaris.org/os/project/sparks/overview/;jsessionid=2C00F42CD9
816BCB94B9FFBEB78DBF8E

● OpenSolaris Sparks Project: name service switch/nscd enhancements:
http://www.opensolaris.org/os/project/sparks/

● pam_list(5): http://docs.sun.com/app/docs/doc/819-2252/pam-list-5?a=view

● pam_netgroup.c: http://www.opensolaris.org/os/community/security/files/

● Windows Security and Directory Services for UNIX Guide v1.0:
http://technet.microsoft.com/en-us/library/bb463150.aspx

● Duke University Directory Plug-in: http://www.oit.duke.edu/~rob/krbdirp/

● RFC 2307: http://www.ietf.org/rfc/rfc2307.txt

● RFC 2307bis: http://www.padl.com/~lukeh/rfc2307bis.txt

● Blogs:

● Active Directory domain CIFS member server:
http://blogs.sun.com/jurasek/entry/ads_domain_member_server1

● Solaris 10 and Active Directory Integration:
http://blog.scottlowe.org/2006/08/15/solaris-10-and-active-directory-
integration/

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 13

http://docs.sun.com/app/docs/doc/816-4556
http://blog.scottlowe.org/2006/08/15/solaris-10-and-active-directory-integration/
http://blog.scottlowe.org/2006/08/15/solaris-10-and-active-directory-integration/
http://blogs.sun.com/jurasek/entry/ads_domain_member_server1
http://www.padl.com/~lukeh/rfc2307bis.txt
http://www.ietf.org/rfc/rfc2307.txt
http://www.oit.duke.edu/~rob/krbdirp/
http://technet.microsoft.com/en-us/library/bb463150.aspx
http://www.opensolaris.org/os/community/security/files/
http://docs.sun.com/app/docs/doc/819-2252/pam-list-5?a=view
http://www.opensolaris.org/os/project/sparks/
http://www.opensolaris.org/os/project/sparks/overview/;jsessionid=2C00F42CD9816BCB94B9FFBEB78DBF8E
http://www.opensolaris.org/os/project/sparks/overview/;jsessionid=2C00F42CD9816BCB94B9FFBEB78DBF8E

● Related articles on BigAdmin:

● Using Kerberos to Authenticate a Solaris 10 OS LDAP Client With Microsoft Active
Directory: http://www.sun.com/bigadmin/features/articles/kerberos_s10.jsp

● Sun Java System Directory Server 6.0 as an LDAP Naming Service:
http://www.sun.com/bigadmin/features/articles/nis_ldap_part1.jsp

● Benefits of Using the Solaris 10 OS With Sun Java System Directory Server Enterprise
Edition 6.x:
http://www.sun.com/bigadmin/features/articles/s10_dsee_benefits.jsp

● Benefits of an Exclusively Multimaster Deployment of Sun Java System Directory
Server Enterprise Edition 6:
http://www.sun.com/bigadmin/features/articles/dsee6_multimaster.jsp

● Maximizing Performance of the Sun Java System Directory Server:
http://www.sun.com/bigadmin/features/articles/slapd_sjsds.jsp

● Resetting the 'admin' Password in Sun Java System Directory Server:
http://www.sun.com/bigadmin/features/techtips/admin_pwd.jsp

● Sun Developer Network, including Identity Management section:

http://developers.sun.com/identity/

● Download page for Sun Java System Directory Server Enterprise Edition:
http://www.sun.com/software/products/directory_srvr_ee/get.jsp

● Sun Java System Directory Server Enterprise Edition web site:
http://www.sun.com/software/products/directory_srvr_ee/index.jsp

● Directory Proxy Server web site:
http://www.sun.com/software/products/directory_srvr_ee/dir_proxy/index.xml

● Sun training courses at http://www.sun.com/training/, for example:

● Sun Java System Directory Server Enterprise Edition 6.x: Analysis and Planning
(DIR-2217)

● Sun Java System Directory Server Enterprise Edition 6: Maintenance and Operations
(DIR-2340)

● Sun Java System Directory Server Enterprise Edition: LDAP Concepts (WMT-DIR-
1344)

● LDAP Design and Deployment (WI-3501)

● Sun forums, such as:

● Web and Directory Servers forum:
http://forums.sun.com/category.jspa?categoryID=51

● BigAdmin discussions: http://www.sun.com/bigadmin/discussions/

● Product documentation at http://docs.sun.com/, such as:

● Sun Java System Directory Server Enterprise Edition documentation:
http://docs.sun.com/app/docs/prod/dirsvr.ee#hic

● Solaris 10 OS documentation: http://docs.sun.com/app/docs/prod/solaris.10

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 14

http://docs.sun.com/app/docs/prod/solaris.10
http://docs.sun.com/app/docs/prod/dirsvr.ee#hic
http://docs.sun.com/
http://www.sun.com/bigadmin/discussions/
http://forums.sun.com/category.jspa?categoryID=51
http://www.sun.com/training/
http://www.sun.com/software/products/directory_srvr_ee/dir_proxy/index.xml
http://www.sun.com/software/products/directory_srvr_ee/index.jsp
http://www.sun.com/software/products/directory_srvr_ee/get.jsp
http://developers.sun.com/identity/
http://www.sun.com/bigadmin/features/techtips/admin_pwd.jsp
http://www.sun.com/bigadmin/features/articles/slapd_sjsds.jsp
http://www.sun.com/bigadmin/features/articles/dsee6_multimaster.jsp
http://www.sun.com/bigadmin/features/articles/s10_dsee_benefits.jsp
http://www.sun.com/bigadmin/features/articles/nis_ldap_part1.jsp
http://www.sun.com/bigadmin/features/articles/kerberos_s10.jsp

● OpenSolaris Documentation Community:
http://opensolaris.org/os/community/documentation/

● Sun wikis, such as:

● Sun BluePrints™ wiki: http://wikis.sun.com/display/BluePrints/Main

● BigAdmin wiki: http://wikis.sun.com/display/BigAdmin/Home

● Support:

● Sun resources:

● Register your Sun gear: https://inventory.sun.com/inventory/

● Services: http://www.sun.com/service/

● SunSolveSM Online: http://sunsolve.sun.com/

● Community system administration experts:
http://www.sun.com/bigadmin/content/communityexperts/

● Events of interest to users of Sun products:

● Worldwide Developer Events and Sun Tech Days:
http://developers.sun.com/events/

● Current Events: http://www.sun.com/events/index.jsp

Licensing Information
Unless otherwise specified, the use of this software is authorized pursuant to the terms of the license
found at http://www.sun.com/bigadmin/common/berkeley_license.html.

A Planning Guide for Moving to LDAP as Naming Service in the Solaris OS 15

http://www.sun.com/bigadmin/common/berkeley_license.html
http://www.sun.com/events/index.jsp
http://developers.sun.com/events/
http://www.sun.com/bigadmin/content/communityexperts/
http://sunsolve.sun.com/
http://www.sun.com/service/
https://inventory.sun.com/inventory/
http://wikis.sun.com/display/BigAdmin/Home
http://wikis.sun.com/display/BluePrints/Main
http://opensolaris.org/os/community/documentation/

	Introduction
	The Challenges of Moving to LDAP
	Preparing a DIT
	DIT Design
	Implementing a Hybrid DIT
	Other DIT Designs
	Using an Existing DIT
	Using Directory Proxy as a Virtual Directory Solution
	Kerberos and LDAP Combinations
	Using Netgroups
	Integration With Microsoft Active Directory
	Improvements Added by OpenSolarisTM Projects
	Conclusion
	For More Information
	Licensing Information

