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Preface

DTrace is a comprehensive dynamic tracing framework for the Solaris™ Operating
System. DTrace provides a powerful infrastructure to permit administrators,
developers, and service personnel to concisely answer arbitrary questions about the
behavior of the operating system and user programs. The Solaris Dynamic Tracing
Guide describes how to use DTrace to observe, debug, and tune system behavior. This
book also includes a complete reference for bundled DTrace observability tools and
the D programming language.

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl/ (http://www.sun.com/bigadmin/hcl/).
This document cites any implementation differences between the platform types.

In this document the term “x86” refers to 64–bit and 32–bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
If you have ever wanted to understand the behavior of your system, DTrace is the tool
for you. DTrace is a comprehensive dynamic tracing facility that is built into Solaris.
The DTrace facility can be used to examine the behavior of user programs. The DTrace
facility can also be used to examine the behavior of the operating system. DTrace can
be used by system administrators or application developers, and is suitable for use
with live production systems. DTrace will allow you to explore your system to
understand how it works, track down performance problems across many layers of

19

http://www.sun.com/bigadmin/hcl/


software, or locate the cause of aberrant behavior. As you’ll see, DTrace lets you create
your own custom programs to dynamically instrument the system and provide
immediate, concise answers to arbitrary questions you can formulate using the DTrace
D programming language.

DTrace allows all Solaris users to:

� Dynamically enable and manage thousands of probes
� Dynamically associate logical predicates and actions with probes
� Dynamically manage trace buffers and buffer policies
� Display and examine trace data from the live system or a crash dump

DTrace allows Solaris developers and administrators to:

� Implement custom scripts that use the DTrace facility
� Implement layered tools that use DTrace to retrieve trace data

This guide will teach you everything you need to know about using DTrace. Basic
familiarity with a programming language such as C or a scripting language such as
awk(1) or perl(1) will help you learn DTrace and the D programming language faster,
but you need not be an expert in any of these areas. If you have never written a
program or script before in any language, “Related Information” on page 21 provides
references to other documents you might find useful.

How This Book Is Organized
Chapter 1 provides a whirlwind tour of the entire DTrace facility and introduces
readers to the D programming language. Chapter 2, Chapter 3, and Chapter 4 then
discuss the fundamentals of D in greater detail, and explain how D programs are
converted into dynamic instrumentation. This initial group of chapters should be read
first by all readers.

Chapter 5, Chapter 6, Chapter 7, and Chapter 8 discuss the remaining D language
features, most of which will be familiar already to C, C++, and Java™ programmers.
Readers who are unfamiliar with any of these languages should read these chapters;
more experienced programmers may wish to proceed directly to later chapters.

Chapter 9 and Chapter 10 discuss DTrace’s powerful primitive for aggregating data and
the set of built-in actions that can be used to build tracing experiments. All readers
should carefully read these chapters.

Chapter 11 describes the DTrace policies for buffering data and how these can be
configured. This chapter should be read by users once they are familiar with
constructing and running D programs.

20 Solaris Dynamic Tracing Guide • January 2005



Chapter 12 describes the D output formatting actions as well as the default policy for
formatting trace data. Readers who are familiar with the C printf() function can
rapidly skim this chapter. Readers who have never seen printf() before should read
this chapter carefully.

Chapter 13 discusses the DTrace facility for speculatively committing data to a trace
buffer. This chapter should be read by users who need to use DTrace in a situation
where data must be traced prior to understanding whether it is relevant to the
question at hand.

Chapter 14 provides a complete reference for the dtrace command-line utility,
similar to the corresponding on-line manual page. Readers may wish to refer to this
chapter when various command-line options are presented elsewhere in the book.
Chapter 15 then discusses how the dtrace utility can be used to construct executable
D scripts and process their command-line arguments, and Chapter 16 describes the
options that can be tuned on the command-line or from within a D program itself.

The group of chapters beginning with Chapter 17 and ending with Chapter 32 discuss
the various DTrace providers that can be used to instrument various aspects of the
Solaris system. All readers should skim these chapters to familiarize themselves with
the various providers, and then return back to read particular chapters in detail as
needed.

Chapter 33 discusses examples of using DTrace to instrument user processes.
Chapter 34 describes how application programmers can add customized DTrace
providers and probes to user applications. Readers who are user program developers
or administrators and wish to use DTrace to investigate user process behavior should
read these chapters.

Chapter 35 and the remaining chapters discuss advanced topics such as security,
versioning, and stability attributes of DTrace, and how to perform boot-time and
post-mortem tracing with DTrace. These chapters are intended for advanced DTrace
users.

Related Information
These books and papers are recommended and related to the tasks that you need to
perform with DTrace:

� Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice
Hall, 1988. ISBN 0–13–110370–9

� Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN
0-13-101908-2

� Mauro, Jim and McDougall, Richard. Solaris Internals: Core Kernel Components. Sun
Microsystems Press, 2001. ISBN 0-13-022496-0
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You can share your DTrace experiences and scripts with the rest of the DTrace
community on the web at http://www.sun.com/bigadmin/content/dtrace/.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.
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TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new terms, or terms to be
emphasized

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

MDB debugger prompt >
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CHAPTER 1

Introduction

Welcome to Dynamic Tracing in the Solaris Operating System! If you have ever
wanted to understand the behavior of your system, DTrace is the tool for you. DTrace
is a comprehensive dynamic tracing facility that is built into Solaris that can be used
by administrators and developers on live production systems to examine the behavior
of both user programs and of the operating system itself. DTrace enables you to
explore your system to understand how it works, track down performance problems
across many layers of software, or locate the cause of aberrant behavior. As you’ll see,
DTrace lets you create your own custom programs to dynamically instrument the
system and provide immediate, concise answers to arbitrary questions you can
formulate using the DTrace D programming language. The first section of this chapter
provides a quick introduction to DTrace and shows you how to write your very first D
program. The rest of the chapter introduces the complete set of rules for programming
in D as well as tips and techniques for performing in-depth analysis of your system.
You can share your DTrace experiences and scripts with the rest of the DTrace
community on the web at http://www.sun.com/bigadmin/content/dtrace/.
All of the example scripts presented in this guide can be found on your Solaris system
in the directory /usr/demo/dtrace.

Getting Started
DTrace helps you understand a software system by enabling you to dynamically
modify the operating system kernel and user processes to record additional data that
you specify at locations of interest, called probes. A probe is a location or activity to
which DTrace can bind a request to perform a set of actions, like recording a stack
trace, a timestamp, or the argument to a function. Probes are like programmable
sensors scattered all over your Solaris system in interesting places. If you want to
figure out what’s going on, you use DTrace to program the appropriate sensors to
record the information that is of interest to you. Then, as each probe fires, DTrace
gathers the data from your probes and reports it back to you. If you don’t specify any
actions for a probe, DTrace will just take note of each time the probe fires.
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Every probe in DTrace has two names: a unique integer ID and a human-readable
string name. We’re going to start learning DTrace by building some very simple
requests using the probe named BEGIN, which fires once each time you start a new
tracing request. You can use the dtrace(1M) utility’s -n option to enable a probe
using its string name. Type the following command:

# dtrace -n BEGIN

After a brief pause, you will see DTrace tell you that one probe was enabled and you
will see a line of output indicating that the BEGIN probe fired. Once you see this
output, dtrace remains paused waiting for other probes to fire. Since you haven’t
enabled any other probes and BEGIN only fires once, press Control-C in your shell to
exit dtrace and return to your shell prompt:

# dtrace -n BEGIN
dtrace: description ’BEGIN’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN

^C

#

The output tells you that the probe named BEGIN fired once and both its name and
integer ID, 1, are printed. Notice that by default, the integer name of the CPU on
which this probe fired is displayed. In this example, the CPU column indicates that the
dtrace command was executing on CPU 0 when the probe fired.

You can construct DTrace requests using arbitrary numbers of probes and actions.
Let’s create a simple request using two probes by adding the END probe to the
previous example command. The END probe fires once when tracing is completed.
Type the following command, and then again press Control-C in your shell after you
see the line of output for the BEGIN probe:

# dtrace -n BEGIN -n END
dtrace: description ’BEGIN’ matched 1 probe
dtrace: description ’END’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN

^C
0 2 :END

#

As you can see, pressing Control-C to exit dtrace triggers the END probe. dtrace
reports this probe firing before exiting.

Now that you understand a little bit about naming and enabling probes, you’re ready
to write the DTrace version of everyone’s first program, “Hello, World.” In addition to
constructing DTrace experiments on the command line, you can also write them in text
files using the D programming language. In a text editor, create a new file called
hello.d and type in your first D program:
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EXAMPLE 1–1 hello.d: Hello, World from the D Programming Language

BEGIN
{

trace("hello, world");
exit(0);

}

After you have saved your program, you can run it using the dtrace -s option. Type
the following command:

# dtrace -s hello.d
dtrace: script ’hello.d’ matched 1 probe
CPU ID FUNCTION:NAME
0 1 :BEGIN hello, world

#

As you can see, dtrace printed the same output as before followed by the text
“hello, world”. Unlike the previous example, you did not have to wait and press
Control-C, either. These changes were the result of the actions you specified for your
BEGIN probe in hello.d. Let’s explore the structure of your D program in more
detail in order to understand what happened.

Each D program consists of a series of clauses, each clause describing one or more
probes to enable, and an optional set of actions to perform when the probe fires. The
actions are listed as a series of statements enclosed in braces { } following the probe
name. Each statement ends with a semicolon (;). Your first statement uses the function
trace() to indicate that DTrace should record the specified argument, the string
“hello, world”, when the BEGIN probe fires, and then print it out. The second
statement uses the function exit() to indicate that DTrace should cease tracing and
exit the dtrace command. DTrace provides a set of useful functions like trace()
and exit() for you to call in your D programs. To call a function, you specify its
name followed by a parenthesized list of arguments. The complete set of D functions
is described in Chapter 10.

By now, if you’re familiar with the C programming language, you’ve probably
realized from the name and our examples that DTrace’s D programming language is
very similar to C. Indeed, D is derived from a large subset of C combined with a
special set of functions and variables to help make tracing easy. You’ll learn more
about these features in subsequent chapters. If you’ve written a C program before, you
will be able to immediately transfer most of your knowledge to building tracing
programs in D. If you’ve never written a C program before, learning D is still very
easy. You will understand all of the syntax by the end of this chapter. But first, let’s
take a step back from language rules and learn more about how DTrace works, and
then we’ll return to learning how to build more interesting D programs.
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Providers and Probes
In the preceding examples, you learned to use two simple probes named BEGIN and
END. But where did these probes come from? DTrace probes come from a set of kernel
modules called providers, each of which performs a particular kind of instrumentation
to create probes. When you use DTrace, each provider is given an opportunity to
publish the probes it can provide to the DTrace framework. You can then enable and
bind your tracing actions to any of the probes that have been published. To list all of
the available probes on your system, type the command:

# dtrace -l
ID PROVIDER MODULE FUNCTION NAME
1 dtrace BEGIN
2 dtrace END
3 dtrace ERROR
4 lockstat genunix mutex_enter adaptive-acquire
5 lockstat genunix mutex_enter adaptive-block
6 lockstat genunix mutex_enter adaptive-spin
7 lockstat genunix mutex_exit adaptive-release

... many lines of output omitted ...

#

It might take some time to display all of the output. To count up all your probes, you
can type the command:

# dtrace -l | wc -l

30122

You might observe a different total on your machine, as the number of probes varies
depending on your operating platform and the software you have installed. As you
can see, there are a very large number of probes available to you so you can peer into
every previously dark corner of the system. In fact, even this output isn’t the complete
list because, as you’ll see later, some providers offer the ability to create new probes
on-the-fly based on your tracing requests, making the actual number of DTrace probes
virtually unlimited.

Now look back at the output from dtrace -l in your terminal window. Notice that
each probe has the two names we mentioned earlier, an integer ID and a
human-readable name. The human readable name is composed of four parts, shown
as separate columns in the dtrace output. The four parts of a probe name are:
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Provider The name of the DTrace provider that is publishing this probe. The provider
name typically corresponds to the name of the DTrace kernel module that
performs the instrumentation to enable the probe.

Module If this probe corresponds to a specific program location, the name of the
module in which the probe is located. This name is either the name of a
kernel module or the name of a user library.

Function If this probe corresponds to a specific program location, the name of the
program function in which the probe is located.

Name The final component of the probe name is a name that gives you some idea
of the probe’s semantic meaning, such as BEGIN or END.

When writing out the full human-readable name of a probe, write all four parts of the
name separated by colons like this:

provider:module:function:name

Notice that some of the probes in the list do not have a module and function, such as
the BEGIN and END probes used earlier. Some probes leave these two fields blank
because these probes do not correspond to any specific instrumented program
function or location. Instead, these probes refer to a more abstract concept like the idea
of the end of your tracing request. A probe that has a module and function as part of
its name is known as an anchored probe, and one that does not is known as unanchored.

By convention, if you do not specify all of the fields of a probe name, then DTrace
matches your request to all of the probes that have matching values in the parts of the
name that you do specify. In other words, when you used the probe name BEGIN
earlier, you were actually telling DTrace to match any probe whose name field is
BEGIN, regardless of the value of the provider, module, and function fields. As it
happens, there is only one probe matching that description, so the result is the same.
But you now know that the true name of the BEGIN probe is dtrace:::BEGIN,
which indicates that this probe is provided by the DTrace framework itself and is not
anchored to any function. Therefore, the hello.d program could have been written
as follows and would produce the same result:

dtrace:::BEGIN
{

trace("hello, world");
exit(0);

}

Now that you understand where probes originate from and how they are named,
we’re going to learn a little more about what happens when you enable probes and
ask DTrace to do something, and then we’ll return to our whirlwind tour of D.
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Compilation and Instrumentation
When you write traditional programs in Solaris, you use a compiler to convert your
program from source code into object code that you can execute. When you use the
dtrace command you are invoking the compiler for the D language used earlier to
write the hello.d program. Once your program is compiled, it is sent into the
operating system kernel for execution by DTrace. There the probes that are named in
your program are enabled and the corresponding provider performs whatever
instrumentation is needed to activate them.

All of the instrumentation in DTrace is completely dynamic: probes are enabled
discretely only when you are using them. No instrumented code is present for inactive
probes, so your system does not experience any kind of performance degradation
when you are not using DTrace. Once your experiment is complete and the dtrace
command exits, all of the probes you used are automatically disabled and their
instrumentation is removed, returning your system to its exact original state. No
effective difference exists between a system where DTrace is not active and one where
the DTrace software is not installed.

The instrumentation for each probe is performed dynamically on the live running
operating system or on user processes you select. The system is not quiesced or
paused in any way, and instrumentation code is added only for the probes that you
enable. As a result, the probe effect of using DTrace is limited to exactly what you ask
DTrace to do: no extraneous data is traced, no one big “tracing switch” is turned on in
the system, and all of the DTrace instrumentation is designed to be as efficient as
possible. These features enable you to use DTrace in production to solve real problems
in real time.

The DTrace framework also provides support for an arbitrary number of virtual
clients. You can run as many simultaneous DTrace experiments and commands as you
like, limited only by your system’s memory capacity, and the commands all operate
independently using the same underlying instrumentation. This same capability also
permits any number of distinct users on the system to take advantage of DTrace
simultaneously: developers, administrators, and service personnel can all work
together or on distinct problems on the same system using DTrace without interfering
with one another.

Unlike programs written in C and C++ and similar to programs written in the Java™
programming language, DTrace D programs are compiled into a safe intermediate
form that is used for execution when your probes fire. This intermediate form is
validated for safety when your program is first examined by the DTrace kernel
software. The DTrace execution environment also handles any run-time errors that
might occur during your D program’s execution, including dividing by zero,
dereferencing invalid memory, and so on, and reports them to you. As a result, you
can never construct an unsafe program that would cause DTrace to inadvertently
damage the Solaris kernel or one of the processes running on your system. These
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safety features allow you to use DTrace in a production environment without
worrying about crashing or corrupting your system. If you make a programming
mistake, DTrace will report your error to you, disable your instrumentation, and you
can correct your mistake and try again. The DTrace error reporting and debugging
features are described later in this book.

The following diagram shows the different components of the DTrace architecture,
including providers, probes, the DTrace kernel software, and the dtrace command.

syscall profile

sysinfo vminfo

fbt sdt

fasttrap

DTrace

kernel

userland

DTrace
providers

dtrace(7D)

libdtrace(3LIB)

lockstat(1M)dtrace(1M)

plockstat(1M)intrstat(1M)

DTrace
consumers

a.d b.d ...

...

...

D program
source files

FIGURE 1–1 Overview of the DTrace Architecture and Components

Now that you understand how DTrace works, let’s return to the tour of the D
programming language and start writing some more interesting programs.
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Variables and Arithmetic Expressions
Our next example program makes use of the DTrace profile provider to implement
a simple time-based counter. The profile provider is able to create new probes based
on the descriptions found in your D program. If you create a probe named
profile:::tick-nsec for some integer n, the profile provider will create a probe
that fires every n seconds. Type the following source code and save it in a file named
counter.d:

/*
* Count off and report the number of seconds elapsed
*/
dtrace:::BEGIN
{

i = 0;
}

profile:::tick-1sec
{

i = i + 1;
trace(i);

}

dtrace:::END
{

trace(i);

}

When executed, the program counts off the number of elapsed seconds until you press
Control-C, and then prints the total at the end:

# dtrace -s counter.d
dtrace: script ’counter.d’ matched 3 probes
CPU ID FUNCTION:NAME
0 25499 :tick-1sec 1
0 25499 :tick-1sec 2
0 25499 :tick-1sec 3
0 25499 :tick-1sec 4
0 25499 :tick-1sec 5
0 25499 :tick-1sec 6

^C
0 2 :END 6

#

The first three lines of the program are a comment to explain what the program does.
Similar to C, C++, and the Java programming language, the D compiler ignores any
characters between the /* and */ symbols. Comments can be used anywhere in a D
program, including both inside and outside your probe clauses.
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The BEGIN probe clause defines a new variable named i and assigns it the integer
value zero using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by
simply using them in a program statement; explicit variable declarations are not
required. When a variable is used for the first time in a program, the type of the
variable is set based on the type of its first assignment. Each variable has only one
type over the lifetime of the program, so subsequent references must conform to the
same type as the initial assignment. In counter.d, the variable i is first assigned the
integer constant zero, so its type is set to int. D provides the same basic integer data
types as C, including:

char Character or single byte integer

int Default integer

short Short integer

long Long integer

long long Extended long integer

The sizes of these types are dependent on the operating system kernel’s data model,
described in Chapter 2. D also provides built-in friendly names for signed and
unsigned integer types of various fixed sizes, as well as thousands of other types that
are defined by the operating system.

The central part of counter.d is the probe clause that increments the counter i:

profile:::tick-1sec
{

i = i + 1;
trace(i);

}

This clause names the probe profile:::tick-1sec, which tells the profile
provider to create a new probe which fires once per second on an available processor.
The clause contains two statements, the first assigning i to the previous value plus
one, and the second tracing the new value of i. All the usual C arithmetic operators
are available in D; the complete list is found in Chapter 2. Also as in C, the ++ operator
can be used as shorthand for incrementing the corresponding variable by one. The
trace() function takes any D expression as its argument, so you could write
counter.d more concisely as follows:

profile:::tick-1sec
{

trace(++i);

}
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If you want to explicitly control the type of the variable i, you can surround the
desired type in parentheses when you assign it in order to cast the integer zero to a
specific type. For example, if you wanted to determine the maximum size of a char in
D, you could change the BEGIN clause as follows:

dtrace:::BEGIN
{

i = (char)0;

}

After running counter.d for a while, you should see the traced value grow and then
wrap around back to zero. If you grow impatient waiting for the value to wrap, try
changing the profile probe name to profile:::tick-100msec to make a
counter that increments once every 100 milliseconds, or 10 times per second.

Predicates
One major difference between D and other programming languages such as C, C++,
and the Java programming language is the absence of control-flow constructs such as
if-statements and loops. D program clauses are written as single straight-line
statement lists that trace an optional, fixed amount of data. D does provide the ability
to conditionally trace data and modify control flow using logical expressions called
predicates that can be used to prefix program clauses. A predicate expression is
evaluated at probe firing time prior to executing any of the statements associated with
the corresponding clause. If the predicate evaluates to true, represented by any
non-zero value, the statement list is executed. If the predicate is false, represented by a
zero value, none of the statements are executed and the probe firing is ignored.

Type the following source code for the next example and save it in a file named
countdown.d:

dtrace:::BEGIN
{

i = 10;
}

profile:::tick-1sec
/i > 0/
{

trace(i--);
}

profile:::tick-1sec
/i == 0/
{

trace("blastoff!");
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exit(0);

}

This D program implements a 10-second countdown timer using predicates. When
executed, countdown.d counts down from 10 and then prints a message and exits:

# dtrace -s countdown.d
dtrace: script ’countdown.d’ matched 3 probes
CPU ID FUNCTION:NAME

0 25499 :tick-1sec 10
0 25499 :tick-1sec 9
0 25499 :tick-1sec 8
0 25499 :tick-1sec 7
0 25499 :tick-1sec 6
0 25499 :tick-1sec 5
0 25499 :tick-1sec 4
0 25499 :tick-1sec 3
0 25499 :tick-1sec 2
0 25499 :tick-1sec 1
0 25499 :tick-1sec blastoff!

#

This example uses the BEGIN probe to initialize an integer i to 10 to begin the
countdown. Next, as in the previous example, the program uses the tick-1sec probe
to implement a timer that fires once per second. Notice that in countdown.d, the
tick-1sec probe description is used in two different clauses, each with a different
predicate and action list. The predicate is a logical expression surrounded by enclosing
slashes / / that appears after the probe name and before the braces { } that surround
the clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still
running:

profile:::tick-1sec
/i > 0/
{

trace(i--);

}

The relational operator > means greater than and returns the integer value zero for false
and one for true. All of the C relational operators are supported in D; the complete list
is found in Chapter 2. If i is not yet zero, the script traces i and then decrements it by
one using the -- operator.

The second predicate uses the == operator to return true when i is exactly equal to
zero, indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{

trace("blastoff!");
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exit(0);

}

Similar to the first example, hello.d, countdown.d uses a sequence of characters
enclosed in double quotes, called a string constant, to print a final message when the
countdown is complete. The exit() function is then used to exit dtrace and return
to the shell prompt.

If you look back at the structure of countdown.d, you will see that by creating two
clauses with the same probe description but different predicates and actions, we
effectively created the logical flow:

i = 10
once per second,

if i is greater than zero
trace(i--);

otherwise if i is equal to zero
trace("blastoff!");
exit(0);

When you wish to write complex programs using predicates, try to first visualize your
algorithm in this manner, and then transform each path of your conditional constructs
into a separate clause and predicate.

Now let’s combine predicates with a new provider, the syscall provider, and create
our first real D tracing program. The syscall provider permits you to enable probes
on entry to or return from any Solaris system call. The next example uses DTrace to
observe every time your shell performs a read(2) or write(2) system call. First, open
two terminal windows, one to use for DTrace and the other containing the shell
process you’re going to watch. In the second window, type the following command to
obtain the process ID of this shell:

# echo $$

12345

Now go back to your first terminal window and type the following D program and
save it in a file named rw.d. As you type in the program, replace the integer constant
12345 with the process ID of the shell that was printed in response to your echo
command.

syscall::read:entry,
syscall::write:entry
/pid == 12345/
{

}
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Notice that the body of rw.d’s probe clause is left empty because the program is only
intended to trace notification of probe firings and not to trace any additional data.
Once you’re done typing in rw.d, use dtrace to start your experiment and then go to
your second shell window and type a few commands, pressing return after each
command. As you type, you should see dtrace report probe firings in your first
window, similar to the following example:

# dtrace -s rw.d
dtrace: script ’rw.d’ matched 2 probes
CPU ID FUNCTION:NAME

0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry
0 34 write:entry
0 32 read:entry

...

You are now watching your shell perform read(2) and write(2) system calls to read a
character from your terminal window and echo back the result! This example includes
many of the concepts described so far and a few new ones as well. First, to instrument
read(2) and write(2) in the same manner, the script uses a single probe clause with
multiple probe descriptions by separating the descriptions with commas like this:

syscall::read:entry,

syscall::write:entry

For readability, each probe description appears on its own line. This arrangement is
not strictly required, but it makes for a more readable script. Next the script defines a
predicate that matches only those system calls that are executed by your shell process:

/pid == 12345/

The predicate uses the predefined DTrace variable pid, which always evaluates to the
process ID associated with the thread that fired the corresponding probe. DTrace
provides many built-in variable definitions for useful things like the process ID. Here
is a list of a few DTrace variables you can use to write your first D programs:

Variable Name Data Type Meaning

errno int Current errno value for system calls

execname string Name of the current process’s executable file

pid pid_t Process ID of the current process

tid id_t Thread ID of the current thread
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Variable Name Data Type Meaning

probeprov string Current probe description’s provider field

probemod string Current probe description’s module field

probefunc string Current probe description’s function field

probename string Current probe description’s name field

Now that you’ve written a real instrumentation program, try experimenting with it on
different processes running on your system by changing the process ID and the system
call probes that are instrumented. Then, you can make one more simple change and
turn rw.d into a very simple version of a system call tracing tool like truss(1). An
empty probe description field acts as a wildcard, matching any probe, so change your
program to the following new source code to trace any system call executed by your
shell:

syscall:::entry
/pid == 12345/
{

}

Try typing a few commands in the shell such as cd, ls, and date and see what your
DTrace program reports.

Output Formatting
System call tracing is a powerful way to observe the behavior of most user processes.
If you’ve used the Solaris truss(1) utility before as an administrator or developer,
you’ve probably learned that it’s a useful tool to keep around for whenever there is a
problem. If you’ve never used truss before, give it a try right now by typing this
command into one of your shells:

$ truss date

You will see a formatted trace of all the system calls executed by date(1) followed by
its one line of output at the end. The following example improves upon the earlier
rw.d program by formatting its output to look more like truss(1) so you can more
easily understand the output. Type the following program and save it in a file called
trussrw.d:

EXAMPLE 1–2 trussrw.d: Trace System Calls with truss(1) Output Format

syscall::read:entry,
syscall::write:entry
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EXAMPLE 1–2 trussrw.d: Trace System Calls with truss(1) Output Format (Continued)

/pid == $1/
{

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

syscall::read:return,
syscall::write:return
/pid == $1/
{

printf("\t\t = %d\n", arg1);

}

In this example, the constant 12345 is replaced with the label $1 in each predicate.
This label allows you to specify the process of interest as an argument to the script: $1
is replaced by the value of the first argument when the script is compiled. To execute
trussrw.d, use the dtrace options -q and -s, followed by the process ID of your
shell as the final argument. The -q option indicates that dtrace should be quiet and
suppress the header line and the CPU and ID columns shown in the preceding
examples. As a result, you will only see the output for the data that you explicitly
traced. Type the following command (replacing 12345 with the process ID of a shell
process) and then press return a few times in the specified shell:

# dtrace -q -s trussrw.d 12345
= 1

write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1) = 1
write(2, 0x8089e48, 1) = 1
read(63, 0x8090a38, 1024) = 0
read(63, 0x8090a38, 1024) = 0
write(2, 0x8089e48, 52) = 52
read(0, 0x8089878, 1)^C

#

Now let’s examine your D program and its output in more detail. First, a clause
similar to the earlier program instruments each of the shell’s calls to read(2) and
write(2). But for this example, a new function, printf(), is used to trace data and
print it out in a specific format:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
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printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

}

The printf() function combines the ability to trace data, as if by the trace()
function used earlier, with the ability to output the data and other text in a specific
format that you describe. The printf() function tells DTrace to trace the data
associated with each argument after the first argument, and then to format the results
using the rules described by the first printf() argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second
printf() argument, the second conversion to the third argument, and so on. All of
the text between conversions is printed verbatim. The character following the %
conversion character describes the format to use for the corresponding argument. Here
are the meanings of the three format conversions used in trussrw.d:

%d Print the corresponding value as a decimal integer

%s Print the corresponding value as a string

%x Print the corresponding value as a hexadecimal integer

DTrace printf() works just like the C printf(3C) library routine or the shell
printf(1) utility. If you’ve never seen printf() before, the formats and options are
explained in detail in Chapter 12. You should read this chapter carefully even if you’re
already familiar with printf() from another language. In D, printf() is provided
as a built-in and some new format conversions are available to you designed
specifically for DTrace.

To help you write correct programs, the D compiler validates each printf() format
string against its argument list. Try changing probefunc in the clause above to the
integer 123. If you run the modified program, you will see an error message telling
you that the string format conversion %s is not appropriate for use with an integer
argument:

# dtrace -q -s trussrw.d
dtrace: failed to compile script trussrw.d: line 4: printf( )

argument #2 is incompatible with conversion #1 prototype:
conversion: %s
prototype: char [] or string (or use stringof)
argument: int

#

To print the name of the read or write system call and its arguments, use the
printf() statement:

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
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to trace the name of the current probe function and the first three integer arguments to
the system call, available in the DTrace variables arg0, arg1, and arg2. For more
information about probe arguments, see Chapter 3. The first argument to read(2) and
write(2) is a file descriptor, printed in decimal. The second argument is a buffer
address, formatted as a hexadecimal value. The final argument is the buffer size,
formatted as a decimal value. The format specifier %4d is used for the third argument
to indicate that the value should be printed using the %d format conversion with a
minimum field width of 4 characters. If the integer is less than 4 characters wide,
printf() will insert extra blanks to align the output.

To print the result of the system call and complete each line of output, use the
following clause:

syscall::read:return,
syscall::write:return
/pid == $1/
{

printf("\t\t = %d\n", arg1);

}

Notice that the syscall provider also publishes a probe named return for each
system call in addition to entry. The DTrace variable arg1 for the syscall return
probes evaluates to the system call’s return value. The return value is formatted as a
decimal integer. The character sequences beginning with backwards slashes in the
format string expand to tab (\t) and newline (\n) respectively. These escape sequences
help you print or record characters that are difficult to type. D supports the same set of
escape sequences as C, C++, and the Java programming language. The complete list of
escape sequences is found in Chapter 2.

Arrays
D permits you to define variables that are integers, as well as other types to represent
strings and composite types called structs and unions. If you are familiar with C
programming, you’ll be happy to know you can use any type in D that you can in C. If
you’re not a C expert, don’t worry: the different kinds of data types are all described in
Chapter 2. D also supports a special kind of variable called an associative array. An
associative array is similar to a normal array in that it associates a set of keys with a
set of values, but in an associative array the keys are not limited to integers of a fixed
range.

D associative arrays can be indexed by a list of one or more values of any type.
Together the individual key values form a tuple that is used to index into the array and
access or modify the value corresponding to that key. Every tuple used with a given
associative array must conform to the same type signature; that is, each tuple key
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must be of the same length and have the same key types in the same order. The value
associated with each element of a given associative array is also of a single fixed type
for the entire array. For example, the following D statement defines a new associative
array a of value type int with the tuple signature [ string, int ] and stores the
integer value 456 in the array:

a["hello", 123] = 456;

Once an array is defined, its elements can be accessed like any other D variable. For
example, the following D statement modifies the array element previously stored in a
by incrementing the value from 456 to 457:

a["hello", 123]++;

The values of any array elements you have not yet assigned are set to zero. Now let’s
use an associative array in a D program. Type the following program and save it in a
file named rwtime.d:

EXAMPLE 1–3 rwtime.d: Time read(2) and write(2) Calls

syscall::read:entry,
syscall::write:entry
/pid == $1/
{

ts[probefunc] = timestamp;
}

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{

printf("%d nsecs", timestamp - ts[probefunc]);

}

As with trussrw.d, specify the ID of shell process when you execute rwtime.d. If
you type a few shell commands, you’ll see the amount time elapsed during each
system call. Type in the following command and then press return a few times in your
other shell:

# dtrace -s rwtime.d ‘pgrep -n ksh‘
dtrace: script ’rwtime.d’ matched 4 probes
CPU ID FUNCTION:NAME
0 33 read:return 22644 nsecs
0 33 read:return 3382 nsecs
0 35 write:return 25952 nsecs
0 33 read:return 916875239 nsecs
0 35 write:return 27320 nsecs
0 33 read:return 9022 nsecs
0 33 read:return 3776 nsecs
0 35 write:return 17164 nsecs

...
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^C

#

To trace the elapsed time for each system call, you must instrument both the entry to
and return from read(2) and write(2) and sample the time at each point. Then, on
return from a given system call, you must compute the difference between our first
and second timestamp. You could use separate variables for each system call, but this
would make the program annoying to extend to additional system calls. Instead, it’s
easier to use an associative array indexed by the probe function name. Here is the first
probe clause:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{

ts[probefunc] = timestamp;

}

This clause defines an array named ts and assigns the appropriate member the value
of the DTrace variable timestamp. This variable returns the value of an
always-incrementing nanosecond counter, similar to the Solaris library routine
gethrtime(3). Once the entry timestamp is saved, the corresponding return probe
samples timestamp again and reports the difference between the current time and
the saved value:

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{

printf("%d nsecs", timestamp - ts[probefunc]);

}

The predicate on the return probe requires that DTrace is tracing the appropriate
process and that the corresponding entry probe has already fired and assigned
ts[probefunc] a non-zero value. This trick eliminates invalid output when DTrace
first starts. If your shell is already waiting in a read(2) system call for input when you
execute dtrace, the read:return probe will fire without a preceding read:entry
for this first read(2) and ts[probefunc] will evaluate to zero because it has not yet
been assigned.

External Symbols and Types
DTrace instrumentation executes inside the Solaris operating system kernel, so in
addition to accessing special DTrace variables and probe arguments, you can also
access kernel data structures, symbols, and types. These capabilities enable advanced
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DTrace users, administrators, service personnel, and driver developers to examine
low-level behavior of the operating system kernel and device drivers. The reading list
at the start of this book includes books that can help you learn more about Solaris
operating system internals.

D uses the backquote character (‘) as a special scoping operator for accessing symbols
that are defined in the operating system and not in your D program. For example, the
Solaris kernel contains a C declaration of a system tunable named kmem_flags for
enabling memory allocator debugging features. See the Solaris Tunable Parameters
Reference Manualfor more information about kmem_flags. This tunable is declared in
C in the kernel source code as follows:

int kmem_flags;

To trace the value of this variable in a D program, you can write the D statement:

trace(‘kmem_flags);

DTrace associates each kernel symbol with the type used for it in the corresponding
operating system C code, providing easy source-based access to the native operating
system data structures. Kernel symbol names are kept in a separate namespace from D
variable and function identifiers, so you never need to worry about these names
conflicting with your D variables.

You have now completed a whirlwind tour of DTrace and you’ve learned many of the
basic DTrace building blocks necessary to build larger and more complex D programs.
The following chapters describe the complete set of rules for D and demonstrate how
DTrace can make complex performance measurements and functional analysis of the
system easy. Later, you’ll see how to use DTrace to connect user application behavior
to system behavior, giving you the capability to analyze your entire software stack.

You’ve only just begun!
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CHAPTER 2

Types, Operators, and Expressions

D provides the ability to access and manipulate a variety of data objects: variables and
data structures can be created and modified, data objects defined in the operating
system kernel and user processes can be accessed, and integer, floating-point, and
string constants can be declared. D provides a superset of the ANSI-C operators that
are used to manipulate objects and create complex expressions. This chapter describes
the detailed set of rules for types, operators, and expressions.

Identifier Names and Keywords
D identifier names are composed of upper case and lower case letters, digits, and
underscores where the first character must be a letter or underscore. All identifier
names beginning with an underscore (_) are reserved for use by the D system
libraries. You should avoid using such names in your D programs. By convention, D
programmers typically use mixed-case names for variables and all upper case names
for constants.

D language keywords are special identifiers reserved for use in the programming
language syntax itself. These names are always specified in lower case and may not be
used for the names of D variables.

TABLE 2–1 D Keywords

auto* goto* sizeof

break* if* static*

case* import*+ string+

char inline stringof+
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TABLE 2–1 D Keywords (Continued)
const int struct

continue* long switch*

counter*+ offsetof+ this+

default* probe*+ translator+

do* provider*+ typedef

double register* union

else* restrict* unsigned

enum return* void

extern self+ volatile

float short while*

for* signed xlate+

D reserves for use as keywords a superset of the ANSI-C keywords. The keywords
reserved for future use by the D language are marked with “*”. The D compiler will
produce a syntax error if you attempt to use a keyword that is reserved for future use.
The keywords defined by D but not defined by ANSI-C are marked with “+”. D
provides the complete set of types and operators found in ANSI-C. The major
difference in D programming is the absence of control-flow constructs. Keywords
associated with control-flow in ANSI-C are reserved for future use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants.
Arithmetic may only be performed on integers in D programs. Floating-point
constants may be used to initialize data structures, but floating-point arithmetic is not
permitted in D. D provides a 32-bit and 64-bit data model for use in writing programs.
The data model used when executing your program is the native data model
associated with the active operating system kernel. You can determine the native data
model for your system using isainfo -b.

The names of the integer types and their sizes in each of the two data models are
shown in the following table. Integers are always represented in twos-complement
form in the native byte-encoding order of your system.
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TABLE 2–2 D Integer Data Types

Type Name 32–bit Size 64–bit Size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

long long 8 bytes 8 bytes

Integer types may be prefixed with the signed or unsigned qualifier. If no sign
qualifier is present, the type is assumed to be signed. The D compiler also provides the
type aliases listed in the following table:

TABLE 2–3 D Integer Type Aliases

Type Name Description

int8_t 1 byte signed integer

int16_t 2 byte signed integer

int32_t 4 byte signed integer

int64_t 8 byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1 byte unsigned integer

uint16_t 2 byte unsigned integer

uint32_t 4 byte unsigned integer

uint64_t 8 byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type in
the previous table and are appropriately defined for each data model. For example, the
type name uint8_t is an alias for the type unsigned char. See Chapter 8 for
information on how to define your own type aliases for use in your D programs.

D provides floating-point types for compatibility with ANSI-C declarations and types.
Floating-point operators are not supported in D, but floating-point data objects can be
traced and formatted using the printf() function. The floating-point types listed in
the following table may be used:
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TABLE 2–4 D Floating-Point Data Types

Type Name 32–bit Size 64–bit Size

float 4 bytes 4 bytes

double 8 bytes 8 bytes

long double 16 bytes 16 bytes

D also provides the special type string to represent ASCII strings. Strings are
discussed in more detail in Chapter 6.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal
(0x12345). Octal (base 8) constants must be prefixed with a leading zero.
Hexadecimal (base 16) constants must be prefixed with either 0x or 0X. Integer
constants are assigned the smallest type among int, long, and long long that can
represent their value. If the value is negative, the signed version of the type is used. If
the value is positive and too large to fit in the signed type representation, the unsigned
type representation is used. You can apply one of the following suffixes to any integer
constant to explicitly specify its D type:

u or U unsigned version of the type selected by the compiler

l or L long

ul or UL unsigned long

ll or LL long long

ull or ULL unsigned long long

Floating-point constants are always written in decimal and must contain either a
decimal point (12.345) or an exponent (123e45) or both (123.34e-5).
Floating-point constants are assigned the type double by default. You can apply one
of the following suffixes to any floating-point constant to explicitly specify its D type:

f or F float

l or L long double
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Character constants are written as a single character or escape sequence enclosed in a
pair of single quotes (’a’). Character constants are assigned the type int and are
equivalent to an integer constant whose value is determined by that character’s value
in the ASCII character set. You can refer to ascii(5) for a list of characters and their
values. You can also use any of the special escape sequences shown in the following
table in your character constants. D supports the same escape sequences found in
ANSI-C.

TABLE 2–5 D Character Escape Sequences

\a alert \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \” double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value 0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create
integers whose individual bytes are initialized according to the corresponding
character specifiers. The bytes are read left-to-right from your character constant and
assigned to the resulting integer in the order corresponding to the native endian-ness
of your operating environment. Up to eight character specifiers can be included in a
single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double
quotes ("hello"). A string constant may not contain a literal newline character. To
create strings containing newlines, use the \n escape sequence instead of a literal
newline. String constants may contain any of the special character escape sequences
shown for character constants above. Similar to ANSI-C, strings are represented as
arrays of characters terminated by a null character (\0) that is implicitly added to each
string constant that you declare. String constants are assigned the special D type
string. The D compiler provides a set of special features for comparing and tracing
character arrays that are declared as strings, as described in Chapter 6.

Arithmetic Operators
D provides the binary arithmetic operators shown in the following table for use in
your programs. These operators all have the same meaning for integers as they do in
ANSI-C.
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TABLE 2–6 D Binary Arithmetic Operators

+ integer addition

- integer subtraction

* integer multiplication

/ integer division

% integer modulus

Arithmetic in D may only be performed on integer operands, or on pointers, as
discussed in Chapter 5. Arithmetic may not be performed on floating-point operands
in D programs. The DTrace execution environment does not take any action on integer
overflow or underflow. You must check for these conditions yourself in situations
where overflow and underflow can occur.

The DTrace execution environment does automatically check for and report division
by zero errors resulting from improper use of the / and % operators. If a D program
executes an invalid division operation, DTrace will automatically disable the affected
instrumentation and report the error. Errors detected by DTrace have no effect on other
DTrace users or on the operating system kernel, so you don’t need to worry about
causing any damage if your D program inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators may also be used as unary
operators as well; these operators have higher precedence than any of the binary
arithmetic operators. The order of precedence and associativity properties for all the D
operators is presented in Table 2–11. You can control precedence by grouping
expressions in parentheses ( ).

Relational Operators
D provides the binary relational operators shown in the following table for use in your
programs. These operators all have the same meaning as they do in ANSI-C.

TABLE 2–7 D Relational Operators

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

> left-hand operand is greater than right-hand operand

>= left-hand operand is greater than or equal to right-hand operand
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TABLE 2–7 D Relational Operators (Continued)
== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

Relational operators are most frequently used to write D predicates. Each operator
evaluates to a value of type int which is equal to one if the condition is true, or zero if
it is false.

Relational operators may be applied to pairs of integers, pointers, or strings. If
pointers are compared, the result is equivalent to an integer comparison of the two
pointers interpreted as unsigned integers. If strings are compared, the result is
determined as if by performing a strcmp(3C) on the two operands. Here are some
example D string comparisons and their results:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)

Relational operators may also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration.
Enumerations are a facility for creating named integer constants and are described in
more detail in Chapter 8.

Logical Operators
D provides the following binary logical operators for use in your programs. The first
two operators are equivalent to the corresponding ANSI-C operators.

TABLE 2–8 D Logical Operators

&& logical AND: true if both operands are true

|| logical OR: true if one or both operands are true

^^ logical XOR: true if exactly one operand is true

Logical operators are most frequently used in writing D predicates. The logical AND
operator performs short-circuit evaluation: if the left-hand operand is false, the
right-hand expression is not evaluated. The logical OR operator also performs
short-circuit evaluation: if the left-hand operand is true, the right-hand expression is
not evaluated. The logical XOR operator does not short-circuit: both expression
operands are always evaluated.
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In addition to the binary logical operators, the unary ! operator may be used to
perform a logical negation of a single operand: it converts a zero operand into a one,
and a non-zero operand into a zero. By convention, D programmers use ! when
working with integers that are meant to represent boolean values, and == 0 when
working with non-boolean integers, although both expressions are equivalent in
meaning.

The logical operators may be applied to operands of integer or pointer types. The
logical operators interpret pointer operands as unsigned integer values. As with all
logical and relational operators in D, operands are true if they have a non-zero integer
value and false if they have a zero integer value.

Bitwise Operators
D provides the following binary operators for manipulating individual bits inside of
integer operands. These operators all have the same meaning as in ANSI-C.

TABLE 2–9 D Bitwise Operators

& bitwise AND

| bitwise OR

^ bitwise XOR

<< shift the left-hand operand left by the number of bits specified by the
right-hand operand

>> shift the left-hand operand right by the number of bits specified by the
right-hand operand

The binary & operator is used to clear bits from an integer operand. The binary |
operator is used to set bits in an integer operand. The binary ^ operator returns one in
each bit position where exactly one of the corresponding operand bits is set.

The shift operators are used to move bits left or right in a given integer operand.
Shifting left fills empty bit positions on the right-hand side of the result with zeroes.
Shifting right using an unsigned integer operand fills empty bit positions on the
left-hand side of the result with zeroes. Shifting right using a signed integer operand
fills empty bit positions on the left-hand side with the value of the sign bit, also known
as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger
than the number of bits in the left-hand operand itself produces an undefined result.
The D compiler will produce an error message if the compiler can detect this condition
when you compile your D program.
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In addition to the binary logical operators, the unary ~ operator may be used to
perform a bitwise negation of a single operand: it converts each zero bit in the
operand into a one bit, and each one bit in the operand into a zero bit.

Assignment Operators
D provides the following binary assignment operators for modifying D variables. You
can only modify D variables and arrays. Kernel data objects and constants may not be
modified using the D assignment operators. The assignment operators have the same
meaning as they do in ANSI-C.

TABLE 2–10 D Assignment Operators

= set the left-hand operand equal to the right-hand expression value

+= increment the left-hand operand by the right-hand expression value

-= decrement the left-hand operand by the right-hand expression value

*= multiply the left-hand operand by the right-hand expression value

/= divide the left-hand operand by the right-hand expression value

%= modulo the left-hand operand by the right-hand expression value

|= bitwise OR the left-hand operand with the right-hand expression value

&= bitwise AND the left-hand operand with the right-hand expression value

^= bitwise XOR the left-hand operand with the right-hand expression value

<<= shift the left-hand operand left by the number of bits specified by the
right-hand expression value

>>= shift the left-hand operand right by the number of bits specified by the
right-hand expression value

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators described earlier.
For example, the expression x = x + 1 is equivalent to the expression x += 1, except
that the expression x is evaluated once. These assignment operators obey the same
rules for operand types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the
left-hand expression. You can use the assignment operators or any of the operators
described so far in combination to form expressions of arbitrary complexity. You can
use parentheses ( ) to group terms in complex expressions.
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Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing
pointers and integers. These operators have the same meaning as in ANSI-C. These
operators can only be applied to variables, and may be applied either before or after
the variable name. If the operator appears before the variable name, the variable is
first modified and then the resulting expression is equal to the new value of the
variable. For example, the following two expressions produce identical results:

x += 1; y = ++x;

y = x;

If the operator appears after the variable name, then the variable is modified after its
current value is returned for use in the expression. For example, the following two
expressions produce identical results:

y = x; y = x--;

x -= 1;

You can use the increment and decrement operators to create new variables without
declaring them. If a variable declaration is omitted and the increment or decrement
operator is applied to a variable, the variable is implicitly declared to be of type
int64_t.

The increment and decrement operators can be applied to integer or pointer variables.
When applied to integer variables, the operators increment or decrement the
corresponding value by one. When applied to pointer variables, the operators
increment or decrement the pointer address by the size of the data type referenced by
the pointer. Pointers and pointer arithmetic in D are discussed in Chapter 5.

Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide
support for simple conditional expressions using the ? and : operators. These
operators enable a triplet of expressions to be associated where the first expression is
used to conditionally evaluate one of the other two. For example, the following D
statement could be used to set a variable x to one of two strings depending on the
value of i:
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x = i == 0 ? "zero" : "non-zero";

In this example, the expression i == 0 is first evaluated to determine whether it is
true or false. If the first expression is true, the second expression is evaluated and the
?: expression returns its value. If the first expression is false, the third expression is
evaluated and the ?: expression return its value.

As with any D operator, you can use multiple ?: operators in a single expression to
create more complex expressions. For example, the following expression would take a
char variable c containing one of the characters 0-9, a-z, or A-Z and return the value
of this character when interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= ’0’ && c <= ’9’) ? c - ’0’ :

(c >= ’a’ && c <= ’z’) ? c + 10 - ’a’ : c + 10 - ’A’;

The first expression used with ?: must be a pointer or integer in order to be evaluated
for its truth value. The second and third expressions may be of any compatible types.
You may not construct a conditional expression where, for example, one path returns a
string and another path returns an integer. The second and third expressions also may
not invoke a tracing function such as trace() or printf(). If you want to
conditionally trace data, use a predicate instead, as discussed in Chapter 1.

Type Conversions
When expressions are constructed using operands of different but compatible types,
type conversions are performed in order to determine the type of the resulting
expression. The D rules for type conversions are the same as the arithmetic conversion
rules for integers in ANSI-C. These rules are sometimes referred to as the usual
arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is
ranked in the order char, short, int, long, long long, with the
corresponding unsigned types assigned a rank above its signed equivalent but below
the next integer type. When you construct an expression using two integer operands
such as x + y and the operands are of different integer types, the operand type with
the highest rank is used as the result type.

If a conversion is required, the operand of lower rank is first promoted to the type of
higher rank. Promotion does not actually change the value of the operand: it simply
extends the value to a larger container according to its sign. If an unsigned operand is
promoted, the unused high-order bits of the resulting integer are filled with zeroes. If
a signed operand is promoted, the unused high-order bits are filled by performing
sign extension. If a signed type is converted to an unsigned type, the signed type is
first sign-extended and then assigned the new unsigned type determined by the
conversion.
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Integers and other types can also be explicitly cast from one type to another. In D,
pointers and integers can be cast to any integer or pointer types, but not to other
types. Rules for casting and promoting strings and character arrays are discussed in
Chapter 6. An integer or pointer cast is formed using an expression such as:

y = (int)x;

where the destination type is enclosed in parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion.
Integers are cast to types of lower rank by zeroing the excess high-order bits of the
integer.

Because D does not permit floating-point arithmetic, no floating-point operand
conversion or casting is permitted and no rules for implicit floating-point conversion
are defined.

Precedence
The D rules for operator precedence and associativity are described in the following
table. These rules are somewhat complex, but are necessary to provide precise
compatibility with the ANSI-C operator precedence rules. The table entries are in
order from highest precedence to lowest precedence.

TABLE 2–11 D Operator Precedence and Associativity

Operators Associativity

() [] -> . left to right

! ~ ++ -- + - * & (type) sizeof stringof offsetof xlate right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

56 Solaris Dynamic Tracing Guide • January 2005



TABLE 2–11 D Operator Precedence and Associativity (Continued)
Operators Associativity

^^ left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

There are several operators in the table that we have not yet discussed; these will be
covered in subsequent chapters:

sizeof Computes the size of an object (Chapter 7)

offsetof Computes the offset of a type member (Chapter 7)

stringof Converts the operand to a string (Chapter 6)

xlate Translates a data type (Chapter 40)

unary & Computes the address of an object (Chapter 5)

unary * Dereferences a pointer to an object (Chapter 5)

-> and . Accesses a member of a structure or union type (Chapter 7)

The comma (,) operator listed in the table is for compatibility with the ANSI-C
comma operator, which can be used to evaluate a set of expressions in left-to-right
order and return the value of the rightmost expression. This operator is provided
strictly for compatibility with C and should generally not be used.

The () entry in the table of operator precedence represents a function call; examples
of calls to functions such as printf() and trace() are presented in Chapter 1. A
comma is also used in D to list arguments to functions and to form lists of associative
array keys. This comma is not the same as the comma operator and does not guarantee
left-to-right evaluation. The D compiler provides no guarantee as to the order of
evaluation of arguments to a function or keys to an associative array. You should be
careful of using expressions with interacting side-effects, such as the pair of
expressions i and i++, in these contexts.

The [] entry in the table of operator precedence represents an array or associative
array reference. Examples of associative arrays are presented in Chapter 1. A special
kind of associative array called an aggregation is described in Chapter 9. The []
operator can also be used to index into fixed-size C arrays as well, as described in
Chapter 5.
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CHAPTER 3

Variables

D provides two basic types of variables for use in your tracing programs: scalar
variables and associative arrays. We briefly illustrated the use of these variables in our
examples in Chapter 1. This chapter explores the rules for D variables in more detail
and how variables can be associated with different scopes. A special kind of array
variable, called an aggregation, is discussed in Chapter 9.

Scalar Variables
Scalar variables are used to represent individual fixed-size data objects, such as
integers and pointers. Scalar variables can also be used for fixed-size objects that are
composed of one or more primitive or composite types. D provides the ability to
create both arrays of objects as well as composite structures. DTrace also represents
strings as fixed-size scalars by permitting them to grow up to a predefined maximum
length. Control over string length in your D program is discussed further in Chapter 6.

Scalar variables are created automatically the first time you assign a value to a
previously undefined identifier in your D program. For example, to create a scalar
variable named x of type int, you can simply assign it a value of type int in any
probe clause:

BEGIN
{

x = 123;

}

Scalar variables created in this manner are global variables: their name and data
storage location is defined once and is visible in every clause of your D program. Any
time you reference the identifier x, you are referring to a single storage location
associated with this variable.
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Unlike ANSI-C, D does not require explicit variable declarations. If you do want to
declare a global variable to assign its name and type explicitly before using it, you can
place a declaration outside of the probe clauses in your program as shown in the
following example. Explicit variable declarations are not necessary in most D
programs, but are sometimes useful when you want to carefully control your variable
types or when you want to begin your program with a set of declarations and
comments documenting your program’s variables and their meanings.

int x; /* declare an integer x for later use */

BEGIN
{

x = 123;
...

}

Unlike ANSI-C declarations, D variable declarations may not assign initial values. You
must use a BEGIN probe clause to assign any initial values. All global variable storage
is filled with zeroes by DTrace before you first reference the variable.

The D language definition places no limit on the size and number of D variables, but
limits are defined by the DTrace implementation and by the memory available on your
system. The D compiler will enforce any of the limitations that can be applied at the
time you compile your program. You can learn more about how to tune options
related to program limits in Chapter 16.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be
retrieved by specifying a name called a key. D associative array keys are formed by a
list of scalar expression values called a tuple. You can think of the array tuple itself as
an imaginary parameter list to a function that is called to retrieve the corresponding
array value when you reference the array. Each D associative array has a fixed key
signature consisting of a fixed number of tuple elements where each element has a
given, fixed type. You can define different key signatures for each array in your D
program.

Associative arrays differ from normal, fixed-size arrays in that they have no
predefined limit on the number of elements, the elements can be indexed by any tuple
as opposed to just using integers as keys, and the elements are not stored in
preallocated consecutive storage locations. Associative arrays are useful in situations
where you would use a hash table or other simple dictionary data structure in a C,
C++, or Java™ language program. Associative arrays give you the ability to create a
dynamic history of events and state captured in your D program that you can use to
create more complex control flows.
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To define an associative array, you write an assignment expression of the form:

name [ key ] = expression ;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions. For example, the following statement defines an associative array a with
key signature [ int, string ] and stores the integer value 456 in a location named
by the tuple [ 123, "hello" ]:

a[123, "hello"] = 456;

The type of each object contained in the array is also fixed for all elements in a given
array. Because a was first assigned using the integer 456, every subsequent value
stored in the array will also be of type int. You can use any of the assignment
operators defined in Chapter 2 to modify associative array elements, subject to the
operand rules defined for each operator. The D compiler will produce an appropriate
error message if you attempt an incompatible assignment. You can use any type with
an associative array key or value that you can use with a scalar variable. You cannot
nest an associative array within another associative array as a key or value.

You can reference an associative array using any tuple that is compatible with the
array key signature. The rules for tuple compatibility are similar to those for function
calls and variable assignments: the tuple must be of the same length and each type in
the list of actual parameters must be compatible with the corresponding type in the
formal key signature. For example, if an associative array x is defined as follows:

x[123ull] = 0;

then the key signature is of type unsigned long long and the values are of type
int. This array can also be referenced using the expression x[’a’] because the tuple
consisting of the character constant ’a’ of type int and length one is compatible with
the key signature unsigned long long according to the arithmetic conversion rules
described in “Type Conversions” on page 55.

If you need to explicitly declare a D associative array before using it, you can create a
declaration of the array name and key signature outside of the probe clauses in your
program source code:

int x[unsigned long long, char];

BEGIN
{

x[123ull, ’a’] = 456;

}

Once an associative array is defined, references to any tuple of a compatible key
signature are permitted, even if the tuple in question has not been previously
assigned. Accessing an unassigned associative array element is defined to return a
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zero-filled object. A consequence of this definition is that underlying storage is not
allocated for an associative array element until a non-zero value is assigned to that
element. Conversely, assigning an associative array element to zero causes DTrace to
deallocate the underlying storage. This behavior is important because the dynamic
variable space out of which associative array elements are allocated is finite; if it is
exhausted when an allocation is attempted, the allocation will fail and an error
message will be generated indicating a dynamic variable drop. Always assign zero to
associative array elements that are no longer in use. See Chapter 16 for other
techniques to eliminate dynamic variable drops.

Thread-Local Variables
DTrace provides the ability to declare variable storage that is local to each operating
system thread, as opposed to the global variables demonstrated earlier in this chapter.
Thread-local variables are useful in situations where you want to enable a probe and
mark every thread that fires the probe with some tag or other data. Creating a
program to solve this problem is easy in D because thread-local variables share a
common name in your D code but refer to separate data storage associated with each
thread. Thread-local variables are referenced by applying the -> operator to the
special identifier self:

syscall::read:entry
{

self->read = 1;

}

This D fragment example enables the probe on the read(2) system call and associates
a thread-local variable named read with each thread that fires the probe. Similar to
global variables, thread-local variables are created automatically on their first
assignment and assume the type used on the right-hand side of the first assignment
statement (in this example, int).

Each time the variable self->read is referenced in your D program, the data object
referenced is the one associated with the operating system thread that was executing
when the corresponding DTrace probe fired. You can think of a thread-local variable as
an associative array that is implicitly indexed by a tuple that describes the thread’s
identity in the system. A thread’s identity is unique over the lifetime of the system: if
the thread exits and the same operating system data structure is used to create a new
thread, this thread does not reuse the same DTrace thread-local storage identity.

Once you have defined a thread-local variable, you can reference it for any thread in
the system even if the variable in question has not been previously assigned for that
particular thread. If a thread’s copy of the thread-local variable has not yet been
assigned, the data storage for the copy is defined to be filled with zeroes. As with
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associative array elements, underlying storage is not allocated for a thread-local
variable until a non-zero value is assigned to it. Also as with associative array
elements, assigning zero to a thread-local variable causes DTrace to deallocate the
underlying storage. Always assign zero to thread-local variables that are no longer in
use. See Chapter 16 for other techniques to fine-tune the dynamic variable space from
which thread-local variables are allocated.

Thread-local variables of any type can be defined in your D program, including
associative arrays. Some example thread-local variable definitions are:

self->x = 123; /* integer value */
self->s = "hello"; /* string value */
self->a[123, ’a’] = 456; /* associative array */

Like any D variable, you don’t need to explicitly declare thread-local variables before
using them. If you want to create a declaration anyway, you can place one outside of
your program clauses by prepending the keyword self:

self int x; /* declare int x as a thread-local variable */

syscall::read:entry
{

self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so you
can reuse names. Remember that x and self->x are not the same variable if you
overload names in your program! The following example shows how to use
thread-local variables. In a text editor, type in the following program and save it in a
file named rtime.d:

EXAMPLE 3–1 rtime.d: Compute Time Spent in read(2)

syscall::read:entry
{

self->t = timestamp;
}

syscall::read:return
/self->t != 0/
{

printf("%d/%d spent %d nsecs in read(2)\n",
pid, tid, timestamp - self->t);

/*
* We’re done with this thread-local variable; assign zero to it to
* allow the DTrace runtime to reclaim the underlying storage.
*/
self->t = 0;

}

Now go to your shell and start the program running. Wait a few seconds and you
should start to see some output. If no output appears, try running a few commands.
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# dtrace -q -s rtime.d
100480/1 spent 11898 nsecs in read(2)
100441/1 spent 6742 nsecs in read(2)
100480/1 spent 4619 nsecs in read(2)
100452/1 spent 19560 nsecs in read(2)
100452/1 spent 3648 nsecs in read(2)
100441/1 spent 6645 nsecs in read(2)
100452/1 spent 5168 nsecs in read(2)
100452/1 spent 20329 nsecs in read(2)
100452/1 spent 3596 nsecs in read(2)
...
^C
#

rtime.d uses a thread-local variable named t to capture a timestamp on entry to
read(2) by any thread. Then, in the return clause, the program prints out the amount
of time spent in read(2) by subtracting self->t from the current timestamp. The
built-in D variables pid and tid report the process ID and thread ID of the thread
performing the read(2). Because self->t is no longer needed once this information
is reported, it is then assigned 0 to allow DTrace to reuse the underlying storage
associated with t for the current thread.

Typically you will see many lines of output without even doing anything because,
behind the scenes, server processes and daemons are executing read(2) all the time
even when you aren’t doing anything. Try changing the second clause of rtime.d to
use the execname variable to print out the name of the process performing a read(2)
to learn more:

printf("%s/%d spent %d nsecs in read(2)\n",
execname, tid, timestamp - self->t);

If you find a process that’s of particular interest, add a predicate to learn more about
its read(2) behavior:

syscall::read:entry
/execname == "Xsun"/
{

self->t = timestamp;
}

Clause-Local Variables
You can also define D variables whose storage is reused for each D program clause.
Clause-local variables are similar to automatic variables in a C, C++, or Java language
program that are active during each invocation of a function. Like all D program
variables, clause-local variables are created on their first assignment. These variables
can be referenced and assigned by applying the -> operator to the special identifier
this:
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BEGIN
{

this->secs = timestamp / 1000000000;
...

}

If you want to explicitly declare a clause-local variable before using it, you can do so
using the this keyword:

this int x; /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{

this->x = 123;
this->c = ’D’;

}

Clause-local variables are only active for the lifetime of a given probe clause. After
DTrace performs the actions associated with your clauses for a given probe, the
storage for all clause-local variables is reclaimed and reused for the next clause. For
this reason, clause-local variables are the only D variables that are not initially filled
with zeroes. Note that if your program contains multiple clauses for a single probe,
any clause-local variables will remain intact as the clauses are executed, as shown in
the following example:

EXAMPLE 3–2 clause.d: Clause-local Variables

int me; /* an integer global variable */
this int foo; /* an integer clause-local variable */

tick-1sec
{

/*
* Set foo to be 10 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 10 : this->foo;
printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

tick-1sec
{

/*
* Set foo to be 20 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 20 : this->foo;
printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

tick-1sec
{

/*
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EXAMPLE 3–2 clause.d: Clause-local Variables (Continued)

* Set foo to be 30 if and only if this is the first clause executed.
*/
this->foo = (me % 3 == 0) ? 30 : this->foo;
printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

Because the clauses are always executed in program order, and because clause-local
variables are persistent across different clauses enabling the same probe, running the
above program will always produce the same output:

# dtrace -q -s clause.d
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12

^C

While clause-local variables are persistent across clauses enabling the same probe,
their values are undefined in the first clause executed for a given probe. Be sure to
assign each clause-local variable an appropriate value before using it, or your program
may have unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative
arrays may not be defined using clause-local scope. The scope of clause-local variables
only applies to the corresponding variable data, not to the name and type identity
defined for the variable. Once a clause-local variable is defined, this name and type
signature may be used in any subsequent D program clause. You cannot rely on the
storage location to be the same across different clauses.

You can use clause-local variables to accumulate intermediate results of calculations or
as temporary copies of other variables. Access to a clause-local variable is much faster
than access to an associative array. Therefore, if you need to reference an associative
array value multiple times in the same D program clause, it is more efficient to copy it
into a clause-local variable first and then reference the local variable repeatedly.
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Built-in Variables
The following table provides a complete list of D built-in variables. All of these
variables are scalar global variables; no thread-local or clause-local variables or built-in
associative arrays are currently defined by D.

TABLE 3–1 DTrace Built-in Variables

Type and Name Description

int64_t arg0, ..., arg9 The first ten input arguments to a probe
represented as raw 64-bit integers. If fewer
than ten arguments are passed to the current
probe, the remaining variables return zero.

args[] The typed arguments to the current probe, if
any. The args[] array is accessed using an
integer index, but each element is defined to
be the type corresponding to the given probe
argument. For example, if args[] is
referenced by a read(2) system call probe,
args[0] is of type int, args[1] is of type
void *, and args[2] is of type size_t.

uintptr_t caller The program counter location of the current
thread just before entering the current probe.

chipid_t chip The CPU chip identifier for the current
physical chip. See Chapter 26 for more
information.

processorid_t cpu The CPU identifier for the current CPU. See
Chapter 26 for more information.

cpuinfo_t *curcpu The CPU information for the current CPU. See
Chapter 26 for more information.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the
LWP associated with the current thread. This
structure is described in further detail in
theproc(4) man page.

psinfo_t *curpsinfo The process state of the process associated
with the current thread. This structure is
described in further detail in the proc(4) man
page.
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TABLE 3–1 DTrace Built-in Variables (Continued)
Type and Name Description

kthread_t *curthread The address of the operating system kernel’s
internal data structure for the current thread,
the kthread_t. The kthread_t is defined in
<sys/thread.h>. Refer to Solaris Internals
for more information on this variable and
other operating system data structures.

string cwd The name of the current working directory of
the process associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current
probe. This integer uniquely identifiers a
particular probe that is enabled with a specific
predicate and set of actions.

int errno The error value returned by the last system
call executed by this thread.

string execname The name that was passed to exec(2) to
execute the current process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is
the system-wide unique identifier for the
probe as published by DTrace and listed in the
output of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the
current CPU at probe firing time. Refer to
Solaris Internals for more information on
interrupt levels and interrupt handling in the
Solaris operating system kernel.

lgrp_id_t lgrp The latency group ID for the latency group of
which the current CPU is a member. See
Chapter 26 for more information.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current
probe’s description.

string probemod The module name portion of the current
probe’s description.

string probename The name portion of the current probe’s
description.
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TABLE 3–1 DTrace Built-in Variables (Continued)
Type and Name Description

string probeprov The provider name portion of the current
probe’s description.

psetid_t pset The processor set ID for the processor set
containing the current CPU. See Chapter 26
for more information.

string root The name of the root directory of the process
associated with the current thread.

uint_t stackdepth The current thread’s stack frame depth at
probe firing time.

id_t tid The thread ID of the current thread. For
threads associated with user processes, this
value is equal to the result of a call to
pthread_self(3C).

uint64_t timestamp The current value of a nanosecond timestamp
counter. This counter increments from an
arbitrary point in the past and should only be
used for relative computations.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread’s saved user-mode register
values at probe firing time. Use of the
uregs[] array is discussed in Chapter 33.

uint64_t vtimestamp The current value of a nanosecond timestamp
counter that is virtualized to the amount of
time that the current thread has been running
on a CPU, minus the time spent in DTrace
predicates and actions. This counter
increments from an arbitrary point in the past
and should only be used for relative time
computations.

uint64_t walltimestamp The current number of nanoseconds since
00:00 Universal Coordinated Time, January 1,
1970.

Functions built into the D language such as trace() are discussed in Chapter 10.
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External Variables
D uses the backquote character (‘) as a special scoping operator for accessing
variables that are defined in the operating system and not in your D program. For
example, the Solaris kernel contains a C declaration of a system tunable named
kmem_flags for enabling memory allocator debugging features. See the Solaris
Tunable Parameters Reference Manual for more information about kmem_flags. This
tunable is declared as a C variable in the kernel source code as follows:

int kmem_flags;

To access the value of this variable in a D program, use the D notation:

‘kmem_flags

DTrace associates each kernel symbol with the type used for the symbol in the
corresponding operating system C code, providing easy source-based access to the
native operating system data structures. In order to use external operating system
variables, you will need access to the corresponding operating system source code.

When you access external variables from a D program, you are accessing the internal
implementation details of another program such as the operating system kernel or its
device drivers. These implementation details do not form a stable interface upon
which you can rely! Any D programs you write that depend on these details might
cease to work when you next upgrade the corresponding piece of software. For this
reason, external variables are typically used by kernel and device driver developers
and service personnel in order to debug performance or functionality problems using
DTrace. To learn more about the stability of your D programs, refer to Chapter 39.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you never need to worry about these names conflicting with your D
variables. When you prefix a variable with a backquote, the D compiler searches the
known kernel symbols in order using the list of loaded modules in order to find a
matching variable definition. Because the Solaris kernel supports dynamically loaded
modules with separate symbol namespaces, the same variable name might be used
more than once in the active operating system kernel. You can resolve these name
conflicts by specifying the name of the kernel module whose variable should be
accessed prior to the backquote in the symbol name. For example, each loadable
kernel module typically provides a _fini(9E) function, so to refer to the address of
the _fini function provided by a kernel module named foo, you would write:

foo‘_fini

You can apply any of the D operators to external variables, except those that modify
values, subject to the usual rules for operand types. When you launch DTrace, the D
compiler loads the set of variable names corresponding to the active kernel modules,
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so declarations of these variables are not required. You may not apply any operator to
an external variable that modifies its value, such as = or +=. For safety reasons, DTrace
prevents you from damaging or corrupting the state of the software you are observing.
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CHAPTER 4

D Program Structure

D programs consist of a set of clauses that describe probes to enable and predicates
and actions to bind to these probes. D programs can also contain declarations of
variables, as described in Chapter 3, and definitions of new types, described in
Chapter 8. This chapter formally describes the overall structure of a D program and
features for constructing probe descriptions that match more than one probe. We’ll
also discuss the use of the C preprocessor, cpp, with D programs.

Probe Clauses and Declarations
As shown in our examples so far, a D program source file consists of one or more
probe clauses that describe the instrumentation to be enabled by DTrace. Each probe
clause has the general form:

probe descriptions
/ predicate /
{

action statements
}

The predicate and list of action statements may be omitted. Any directives found
outside probe clauses are referred to as declarations. Declarations may only be used
outside of probe clauses. No declarations inside of the enclosing { } are permitted
and declarations may not be interspersed between the elements of the probe clause
shown above. Whitespace can be used to separate any D program elements and to
indent action statements.
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Declarations can be used to declare D variables and external C symbols as discussed in
Chapter 3, or to define new types for use in D, as described in Chapter 8. Special D
compiler directives called pragmas may also appear anywhere in a D program,
including outside of probe clauses. D pragmas are specified on lines beginning with a
# character. D pragmas are used, for example, to set run-time DTrace options; see
Chapter 16 for details.

Probe Descriptions
Every D program clause begins with a list of one or more probe descriptions, each
taking the usual form:

provider:module:function:name

If one or more fields of the probe description are omitted, the specified fields are
interpreted from right to left by the D compiler. For example, the probe description
foo:bar would match a probe with function foo and name bar regardless of the
value of the probe’s provider and module fields. Therefore, a probe description is
really more accurately viewed as a pattern that can be used to match one or more
probes based on their names.

You should write your D probe descriptions specifying all four field delimiters so that
you can specify the desired provider on the left-hand side. If you don’t specify the
provider, you might obtain unexpected results if multiple providers publish probes
with the same name. Similarly, future versions of DTrace might include new providers
whose probes unintentionally match your partially specified probe descriptions. You
can specify a provider but match any of its probes by leaving any of the module,
function, and name fields blank. For example, the description syscall::: can be
used to match every probe published by the DTrace syscall provider.

Probe descriptions also support a pattern matching syntax similar to the shell globbing
pattern matching syntax described in sh(1). Before matching a probe to a description,
DTrace scans each description field for the characters *, ?, and [. If one of these
characters appears in a probe description field and is not preceded by a \, the field is
regarded as a pattern. The description pattern must match the entire corresponding
field of a given probe. The complete probe description must match on every field in
order to successfully match and enable a probe. A probe description field that is not a
pattern must exactly match the corresponding field of the probe. A description field
that is empty matches any probe.

The special characters in the following table are recognized in probe name patterns:
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TABLE 4–1 Probe Name Pattern Matching Characters

Symbol Description

* Matches any string, including the null string.

? Matches any single character.

[ ... ] Matches any one of the enclosed characters. A pair of characters separated
by - matches any character between the pair, inclusive. If the first character
after the [ is !, any character not enclosed in the set is matched.

\ Interpret the next character as itself, without any special meaning.

Pattern match characters can be used in any or all of the four fields of your probe
descriptions. You can also use patterns to list matching probes by using the patterns
on the command line with dtrace -l. For example, the command dtrace -l -f
kmem_* lists all DTrace probes in functions whose names begin with the prefix kmem_.

If you want to specify the same predicate and actions for more than one probe
description or description pattern, you can place the descriptions in a
comma-separated list. For example, the following D program would trace a timestamp
each time probes associated with entry to system calls containing the words “lwp” or
“sock” fire:

syscall::*lwp*:entry, syscall::*sock*:entry
{

trace(timestamp);

}

A probe description may also specify a probe using its integer probe ID. For example,
the clause:

12345
{

trace(timestamp);

}

could be used to enable probe ID 12345, as reported by dtrace -l -i 12345. You
should always write your D programs using human-readable probe descriptions.
Integer probe IDs are not guaranteed to remain consistent as DTrace provider kernel
modules are loaded and unloaded or following a reboot.
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Predicates
Predicates are expressions enclosed in slashes / / that are evaluated at probe firing
time to determine whether the associated actions should be executed. Predicates are
the primary conditional construct used for building more complex control flow in a D
program. You can omit the predicate section of the probe clause entirely for any probe,
in which case the actions are always executed when the probe fires.

Predicate expressions can use any of the previously described D operators and may
refer to any D data objects such as variables and constants. The predicate expression
must evaluate to a value of integer or pointer type so that it can be considered as true
or false. As with all D expressions, a zero value is interpreted as false and any
non-zero value is interpreted as true.

Actions
Probe actions are described by a list of statements separated by semicolons (;) and
enclosed in braces { }. If you only want to note that a particular probe fired on a
particular CPU without tracing any data or performing any additional actions, you
can specify an empty set of braces with no statements inside.

Use of the C Preprocessor
The C programming language used for defining Solaris system interfaces includes a
preprocessor that performs a set of initial steps in C program compilation. The C
preprocessor is commonly used to define macro substitutions where one token in a C
program is replaced with another predefined set of tokens, or to include copies of
system header files. You can use the C preprocessor in conjunction with your D
programs by specifying the dtrace -C option. This option causes dtrace to first
execute the cpp(1) preprocessor on your program source file and then pass the results
to the D compiler. The C preprocessor is described in more detail in The C
Programming Language.

The D compiler automatically loads the set of C type descriptions associated with the
operating system implementation, but you can use the preprocessor to include other
type definitions such as types used in your own C programs. You can also use the
preprocessor to perform other tasks such as creating macros that expand to chunks of
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D code and other program elements. If you use the preprocessor with your D
program, you may only include files that contain valid D declarations. Typical C
header files include only external declarations of types and symbols, which will be
correctly interpreted by the D compiler. The D compiler cannot parse C header files
that include additional program elements like C function source code and will
produce an appropriate error message.
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CHAPTER 5

Pointers and Arrays

Pointers are memory addresses of data objects in the operating system kernel or in the
address space of a user process. D provides the ability to create and manipulate
pointers and store them in variables and associative arrays. This chapter describes the
D syntax for pointers, operators that can be applied to create or access pointers, and
the relationship between pointers and fixed-size scalar arrays. Also discussed are
issues relating to the use of pointers in different address spaces.

Note – If you are an experienced C or C++ programmer, you can skim most of this
chapter as the D pointer syntax is the same as the corresponding ANSI-C syntax. You
should read “Pointers to DTrace Objects” on page 86 and “Pointers and Address
Spaces” on page 87 as they describe features and issues specific to DTrace.

Pointers and Addresses
The Solaris Operating System uses a technique called virtual memory to provide each
user process with its own virtual view of the memory resources on your system. A
virtual view on memory resources is referred to as an address space, which associates a
range of address values (either [0 ... 0xffffffff] for a 32-bit address space or
[0 ... 0xffffffffffffffff] for a 64-bit address space) with a set of translations
that the operating system and hardware use to convert each virtual address to a
corresponding physical memory location. Pointers in D are data objects that store an
integer virtual address value and associate it with a D type that describes the format of
the data stored at the corresponding memory location.

You can declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending an asterisk (*) to the type name to indicate you
want to declare a pointer type. For example, the declaration:

79



int *p;

declares a D global variable named p that is a pointer to an integer. This declaration
means that p itself is an integer of size 32 or 64-bits whose value is the address of
another integer located somewhere in memory. Because the compiled form of your D
code is executed at probe firing time inside the operating system kernel itself, D
pointers are typically pointers associated with the kernel’s address space. You can use
the isainfo(1) -b command to determine the number of bits used for pointers by the
active operating system kernel.

If you want to create a pointer to a data object inside of the kernel, you can compute
its address using the & operator. For example, the operating system kernel source code
declares an int kmem_flags tunable. You could trace the address of this int by
tracing the result of applying the & operator to the name of that object in D:

trace(&‘kmem_flags);

The * operator can be used to refer to the object addressed by the pointer, and acts as
the inverse of the & operator. For example, the following two D code fragments are
equivalent in meaning:

p = &‘kmem_flags; trace(‘kmem_flags);

trace(*p);

The left-hand fragment creates a D global variable pointer p. Because the
kmem_flags object is of type int, the type of the result of &‘kmem_flags is int *
(that is, pointer to int). The left-hand fragment traces the value of *p, which follows
the pointer back to the data object kmem_flags. This fragment is therefore the same
as the right-hand fragment, which simply traces the value of the data object directly
using its name.

Pointer Safety
If you are a C or C++ programmer, you may be a bit frightened after reading the
previous section because you know that misuse of pointers in your programs can
cause your programs to crash. DTrace is a robust, safe environment for executing your
D programs where these mistakes cannot cause program crashes. You may indeed
write a buggy D program, but invalid D pointer accesses will not cause DTrace or the
operating system kernel to fail or crash in any way. Instead, the DTrace software will
detect any invalid pointer accesses, disable your instrumentation, and report the
problem back to you for debugging.

If you have programmed in the Java programming language, you probably know that
the Java language does not support pointers for precisely the same reasons of safety.
Pointers are needed in D because they are an intrinsic part of the operating system’s
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implementation in C, but DTrace implements the same kind of safety mechanisms
found in the Java programming language that prevent buggy programs from
damaging themselves or each other. DTrace’s error reporting is similar to the run-time
environment for the Java programming language that detects a programming error
and reports an exception back to you.

To see DTrace’s error handling and reporting, write a deliberately bad D program
using pointers. In an editor, type the following D program and save it in a file named
badptr.d:

EXAMPLE 5–1 badptr.d: Demonstration of DTrace Error Handling

BEGIN
{

x = (int *)NULL;
y = *x;
trace(y);

}

The badptr.d program creates a D pointer named x that is a pointer to int. The
program assigns this pointer the special invalid pointer value NULL, which is a built-in
alias for address 0. By convention, address 0 is always defined to be invalid so that
NULL can be used as a sentinel value in C and D programs. The program uses a cast
expression to convert NULL to be a pointer to an integer. The program then
dereferences the pointer using the expression *x, and assigns the result to another
variable y, and then attempts to trace y. When the D program is executed, DTrace
detects an invalid pointer access when the statement y = *x is executed and reports
the error:

# dtrace -s badptr.d
dtrace: script ’/dev/stdin’ matched 1 probe
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #2 at DIF offset 4
dtrace: 1 error on CPU 0
^C

#

The other problem that can arise from programs that use invalid pointers is an
alignment error. By architectural convention, fundamental data objects such as integers
are aligned in memory according to their size. For example, 2-byte integers are aligned
on addresses that are multiples of 2, 4-byte integers on multiples of 4, and so on. If you
dereference a pointer to a 4-byte integer and your pointer address is an invalid value
that is not a multiple of 4, your access will fail with an alignment error. Alignment
errors in D almost always indicate that your pointer has an invalid or corrupt value
due to a bug in your D program. You can create an example alignment error by
changing the source code of badptr.d to use the address (int *)2 instead of NULL.
Because int is 4 bytes and 2 is not a multiple of 4, the expression *x results in a
DTrace alignment error.

For details about the DTrace error mechanism, see “ERROR Probe” on page 193.
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Array Declarations and Storage
D provides support for scalar arrays in addition to the dynamic associative arrays
described in Chapter 3. Scalar arrays are a fixed-length group of consecutive memory
locations that each store a value of the same type. Scalar arrays are accessed by
referring to each location with an integer starting from zero. Scalar arrays correspond
directly in concept and syntax with arrays in C and C++. Scalar arrays are not used as
frequently in D as associative arrays and their more advanced counterparts
aggregations, but these are sometimes needed when accessing existing operating
system array data structures declared in C. Aggregations are described in Chapter 9.

A D scalar array of 5 integers would be declared by using the type int and suffixing
the declaration with the number of elements in square brackets as follows:

int a[5];

The following diagram shows a visual representation of the array storage:

a a[0] a[1] a[3]a[2] a[4]

FIGURE 5–1 Scalar Array Representation

The D expression a[0] is used to refer to the first array element, a[1] refers to the
second, and so on. From a syntactic perspective, scalar arrays and associative arrays
are very similar. You can declare an associative array of five integers referenced by an
integer key as follows:

int a[int];

and also reference this array using the expression a[0]. But from a storage and
implementation perspective, the two arrays are very different. The static array a
consists of five consecutive memory locations numbered from zero and the index
refers to an offset in the storage allocated for the array. An associative array, on the
other hand, has no predefined size and does not store elements in consecutive
memory locations. In addition, associative array keys have no relationship to the
corresponding’s value storage location. You can access associative array elements
a[0] and a[-5] and only two words of storage will be allocated by DTrace which
may or may not be consecutive. Associative array keys are abstract names for the
corresponding value that have no relationship to the value storage locations.
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If you create an array using an initial assignment and use a single integer expression
as the array index (for example, a[0] = 2), the D compiler will always create a new
associative array, even though in this expression a could also be interpreted as an
assignment to a scalar array. Scalar arrays must be predeclared in this situation so that
the D compiler can see the definition of the array size and infer that the array is a
scalar array.

Pointer and Array Relationship
Pointers and arrays have a special relationship in D, just as they do in ANSI-C. An
array is represented by a variable that is associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type, so D
permits the use of the array [ ] index notation with both pointer variables and array
variables. For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(a[2]);

trace(p[2]);

In the left-hand fragment, the pointer p is assigned to the address of the first array
element in a by applying the & operator to the expression a[0]. The expression p[2]
traces the value of the third array element (index 2). Because p now contains the same
address associated with a, this expression yields the same value as a[2], shown in the
right-hand fragment. One consequence of this equivalence is that C and D permit you
to access any index of any pointer or array. Array bounds checking is not performed
for you by the compiler or DTrace runtime environment. If you access memory
beyond the end of an array’s predefined value, you will either get an unexpected
result or DTrace will report an invalid address error, as shown in the previous
example. As always, you can’t damage DTrace itself or your operating system, but you
will need to debug your D program.

The difference between pointers and arrays is that a pointer variable refers to a
separate piece of storage that contains the integer address of some other storage. An
array variable names the array storage itself, not the location of an integer that in turn
contains the location of the array. This difference is illustrated in the following
diagram:
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a a[0] a[1] a[3]a[2] a[4]

p 0x12345678

FIGURE 5–2 Pointer and Array Storage

This difference is manifested in the D syntax if you attempt to assign pointers and
scalar arrays. If x and y are pointer variables, the expression x = y is legal; it simply
copies the pointer address in y to the storage location named by x. If x and y are
scalar array variables, the expression x = y is not legal. Arrays may not be assigned as
a whole in D. However, an array variable or symbol name can be used in any context
where a pointer is permitted. If p is a pointer and a is an array, the statement p = a is
permitted; this statement is equivalent to the statement p = &a[0].

Pointer Arithmetic
Since pointers are just integers used as addresses of other objects in memory, D
provides a set of features for performing arithmetic on pointers. However, pointer
arithmetic is not identical to integer arithmetic. Pointer arithmetic implicitly adjusts
the underlying address by multiplying or dividing the operands by the size of the
type referenced by the pointer. The following D fragment illustrates this property:

int *x;

BEGIN
{

trace(x);
trace(x + 1);
trace(x + 2);

}

This fragment creates an integer pointer x and then trace its value, its value
incremented by one, and its value incremented by two. If you create and execute this
program, DTrace reports the integer values 0, 4, and 8.
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Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying
pointer value. This property is useful when using pointers to refer to consecutive
storage locations such as arrays. For example, if x were assigned to the address of an
array a like the one shown in Figure 5–2, the expression x + 1 would be equivalent to
the expression &a[1]. Similarly, the expression *(x + 1) would refer to the value
a[1]. Pointer arithmetic is implemented by the D compiler whenever a pointer value
is incremented using the +=, +, or ++ operators.

Pointer arithmetic is also applied when an integer is subtracted from a pointer on the
left-hand side, when a pointer is subtracted from another pointer, or when the --
operator is applied to a pointer. For example, the following D program would trace
the result 2:

int *x, *y;
int a[5];

BEGIN
{

x = &a[0];
y = &a[2];
trace(y - x);

}

Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D
program without specifying the type of data referred to by the pointer. Generic
pointers can be specified using the type void *, where the keyword void represents
the absence of specific type information, or using the built-in type alias uintptr_t
which is aliased to an unsigned integer type of size appropriate for a pointer in the
current data model. You may not apply pointer arithmetic to an object of type void *,
and these pointers cannot be dereferenced without casting them to another type first.
You can cast a pointer to the uintptr_t type when you need to perform integer
arithmetic on the pointer value.

Pointers to void may be used in any context where a pointer to another data type is
required, such as an associative array tuple expression or the right-hand side of an
assignment statement. Similarly, a pointer to any data type may be used in a context
where a pointer to void is required. To use a pointer to a non-void type in place of
another non-void pointer type, an explicit cast is required. You must always use
explicit casts to convert pointers to integer types such as uintptr_t, or to convert
these integers back to the appropriate pointer type.
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Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for
compatibility with ANSI-C and for observing and accessing operating system data
structures created using this capability in C. A multi-dimensional array is declared as a
consecutive series of scalar array sizes enclosed in square brackets [ ] following the
base type. For example, to declare a fixed-size two-dimensional rectangular array of
integers of dimensions 12 rows by 34 columns, you would write the declaration:

int a[12][34];

A multi-dimensional scalar array is accessed using similar notation. For example, to
access the value stored at row 0 column 1 you would write the D expression:

a[0][1]

Storage locations for multi-dimensional scalar array values are computed by
multiplying the row number by the total number of columns declared, and then
adding the column number.

You should be careful not to confuse the multi-dimensional array syntax with the D
syntax for associative array accesses (that is, a[0][1] is not the same as a[0, 1]). If
you use an incompatible tuple with an associative array or attempt an associative
array access of a scalar array, the D compiler will report an appropriate error message
and refuse to compile your program.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace
objects such as associative arrays, built-in functions, and variables. You are prohibited
from obtaining the address of these variables so that the DTrace runtime environment
is free to relocate them as needed between probe firings in order to more efficiently
manage the memory required for your programs. If you create composite structures, it
is possible to construct expressions that do retrieve the kernel address of your DTrace
object storage. You should avoid creating such expressions in your D programs. If you
need to use such an expression, be sure not to cache the address across probe firings.

In ANSI-C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator on
the left-hand side of an assignment operator. In D, these types of expressions using
pointers are not permitted. You may only assign values directly to D variables using
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their name or by applying the array index operator [] to a D scalar or associative
array. You may only call functions defined by the DTrace environment by name as
specified in Chapter 10. Indirect function calls using pointers are not permitted in D.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to
a piece of physical memory. DTrace executes your D programs within the address
space of the operating system kernel itself. Your entire Solaris system manages many
address spaces: one for the operating system kernel, and one for each user process.
Since each address space provides the illusion that it can access all of the memory on
the system, the same virtual address pointer value can be reused across address spaces
but translate to different physical memory. Therefore, when writing D programs that
use pointers, you must be aware of the address space corresponding to the pointers
you intend to use.

For example, if you use the syscall provider to instrument entry to a system call
that takes a pointer to an integer or array of integers as an argument (for example,
pipe(2)), it would not be valid to dereference that pointer or array using the * or []
operators because the address in question is an address in the address space of the
user process that performed the system call. Applying the * or [] operators to this
address in D would result in a kernel address space access, which would result in an
invalid address error or in returning unexpected data to your D program depending
upon whether the address happened to match a valid kernel address.

To access user process memory from a DTrace probe, you must apply one of the
copyin(), copyinstr(), or copyinto() functions described in Chapter 10 to the
user address space pointer. Take care when writing your D programs to name and
comment variables storing user addresses appropriately to avoid confusion. You can
also store user addresses as uintptr_t so you don’t accidentally compile D code that
dereferences them. Techniques for using DTrace on user processes are described in
Chapter 33.
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CHAPTER 6

Strings

DTrace provides support for tracing and manipulating strings. This chapter describes
the complete set of D language features for declaring and manipulating strings. Unlike
ANSI-C, strings in D have their own built-in type and operator support so you can
easily and unambiguously use them in your tracing programs.

String Representation
Strings are represented in DTrace as an array of characters terminated by a null byte
(that is, a byte whose value is zero, usually written as ’\0’). The visible part of the
string is of variable length, depending on the location of the null byte, but DTrace
stores each string in a fixed-size array so that each probe traces a consistent amount of
data. Strings may not exceed the length of this predefined string limit, but the limit
can be modified in your D program or on the dtrace command line by tuning the
strsize option. Refer to Chapter 16 for more information on tunable DTrace options.
The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char *
to refer to strings. The string type is equivalent to a char * in that it is the address
of a sequence of characters, but the D compiler and D functions like trace() provide
enhanced capabilities when applied to expressions of type string. For example, the
string type removes the ambiguity of the type char * when you need to trace the
actual bytes of a string. In the D statement:

trace(s);

if s is of type char *, DTrace will trace the value of the pointer s (that is, it will trace
an integer address value). In the D statement:

trace(*s);
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by definition of the * operator, the D compiler will dereference the pointer s and trace
the single character at that location. These behaviors are essential to permitting you to
manipulate character pointers that by design refer to either single characters, or to
arrays of byte-sized integers that are not strings and do not end with a null byte. In
the D statement:

trace(s);

if s is of type string, the string type indicates to the D compiler that you want
DTrace to trace a null terminated string of characters whose address is stored in the
variable s. You can also perform lexical comparison of expressions of type string, as
described in “String Comparison” on page 91.

String Constants
String constants are enclosed in double quotes (") and are automatically assigned the
type string by the D compiler. You can define string constants of any length, limited
only by the amount of memory DTrace is permitted to consume on your system. The
terminating null byte (\0) is added automatically by the D compiler to any string
constants that you declare. The size of a string constant object is the number of bytes
associated with the string plus one additional byte for the terminating null byte.

A string constant may not contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String
constants may also contain any of the special character escape sequences defined for
character constants in Table 2–5.

String Assignment
Unlike assignment of char * variables, strings are copied by value, not by reference.
String assignment is performed using the = operator and copies the actual bytes of the
string from the source operand up to and including the null byte to the variable on the
left-hand side, which must be of type string. You can create a new variable of type
string by assigning it an expression of type string. For example, the D statement:

s = "hello";

would create a new variable s of type string and copy the 6 bytes of the string
"hello" into it (5 printable characters plus the null byte). String assignment is
analogous to the C library function strcpy(3C), except that if the source string
exceeds the limit of the storage of the destination string, the resulting string is
automatically truncated at this limit.
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You can also assign to a string variable an expression of a type that is compatible with
strings. In this case, the D compiler automatically promotes the source expression to
the string type and performs a string assignment. The D compiler permits any
expression of type char * or of type char[n] (that is, a scalar array of char of any
size), to be promoted to a string.

String Conversion
Expressions of other types may be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in
meaning:

s = (string) expression s = stringof ( expression )

The stringof operator binds very tightly to the operand on its right-hand side.
Typically, parentheses are used to surround the expression for clarity, although they
are not strictly necessary.

Any expression that is a scalar type such as a pointer or integer or a scalar array
address may be converted to string. Expressions of other types such as void may not
be converted to string. If you erroneously convert an invalid address to a string, the
DTrace safety features will prevent you from damaging the system or DTrace, but you
might end up tracing a sequence of undecipherable characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string, or when one operand is of
type string and the other operand can be promoted to type string, as described in
“String Assignment” on page 90. All of the relational operators can be used to
compare strings:

TABLE 6–1 D Relational Operators for Strings

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

Chapter 6 • Strings 91



TABLE 6–1 D Relational Operators for Strings (Continued)
> left-hand operand is greater than right-hand operand

>= left-hand operand is greater than or equal to right-hand operand

== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

As with integers, each operator evaluates to a value of type int which is equal to one
if the condition is true, or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similar to the C
library routine strcmp(3C). Each byte is compared using its corresponding integer
value in the ASCII character set, as shown in ascii(5), until a null byte is read or the
maximum string length is reached. Some example D string comparisons and their
results are:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)
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CHAPTER 7

Structs and Unions

Collections of related variables can be grouped together into composite data objects
called structs and unions. You can define these objects in D by creating new type
definitions for them. You can use your new types for any D variables, including
associative array values. This chapter explores the syntax and semantics for creating
and manipulating these composite types and the D operators that interact with them.
The syntax for structs and unions is illustrated using several example programs that
demonstrate the use of the DTrace fbt and pid providers.

Structs
The D keyword struct, short for structure, is used to introduce a new type composed
of a group of other types. The new struct type can be used as the type for D variables
and arrays, enabling you to define groups of related variables under a single name. D
structs are the same as the corresponding construct in C and C++. If you have
programmed in the Java programming language, think of a D struct as a class, but one
with data members only and no methods.

Let’s suppose you want to create a more sophisticated system call tracing program in
D that records a number of things about each read(2) and write(2) system call
executed by your shell, such as the elapsed time, number of calls, and the largest byte
count passed as an argument. You could write a D clause to record these properties in
three separate associative arrays as shown in the following example:

syscall::read:entry, syscall::write:entry
/pid == 12345/
{

ts[probefunc] = timestamp;
calls[probefunc]++;
maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?

arg2 : maxbytes[probefunc];
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}

However, this clause is inefficient because DTrace must create three separate
associative arrays and store separate copies of the identical tuple values corresponding
to probefunc for each one. Instead, you can conserve space and make your program
easier to read and maintain by using a struct. First, declare a new struct type at the top
of the program source file:

struct callinfo {
uint64_t ts; /* timestamp of last syscall entry */
uint64_t elapsed; /* total elapsed time in nanoseconds */
uint64_t calls; /* number of calls made */
size_t maxbytes; /* maximum byte count argument */

};

The struct keyword is followed by an optional identifier used to refer back to our
new type, which is now known as struct callinfo. The struct members are then
enclosed in a set of braces { } and the entire declaration is terminated by a semicolon
(;). Each struct member is defined using the same syntax as a D variable declaration,
with the type of the member listed first followed by an identifier naming the member
and another semicolon (;).

The struct declaration itself simply defines the new type; it does not create any
variables or allocate any storage in DTrace. Once declared, you can use struct
callinfo as a type throughout the remainder of your D program, and each variable
of type struct callinfo will store a copy of the four variables described by our
structure template. The members will be arranged in memory in order according to
the member list, with padding space introduced between members as required for
data object alignment purposes.

You can use the member identifier names to access the individual member values
using the “.” operator by writing an expression of the form:

variable-name.member-name

The following example is an improved program using the new structure type. Go to
your editor and type in the following D program and save it in a file named
rwinfo.d:

EXAMPLE 7–1 rwinfo.d: Gather read(2) and write(2) Statistics

struct callinfo {
uint64_t ts; /* timestamp of last syscall entry */
uint64_t elapsed; /* total elapsed time in nanoseconds */
uint64_t calls; /* number of calls made */
size_t maxbytes; /* maximum byte count argument */

};

struct callinfo i[string]; /* declare i as an associative array */
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EXAMPLE 7–1 rwinfo.d: Gather read(2) and write(2) Statistics (Continued)

syscall::read:entry, syscall::write:entry
/pid == $1/
{

i[probefunc].ts = timestamp;
i[probefunc].calls++;
i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?

arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $1/
{

i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{

printf(" calls max bytes elapsed nsecs\n");
printf("------ ----- --------- -------------\n");
printf(" read %5d %9d %d\n",

i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
printf(" write %5d %9d %d\n",

i["write"].calls, i["write"].maxbytes, i["write"].elapsed);

}

After you type in the program, run dtrace -q -s rwinfo.d, specifying one of your
shell processes. Then go type in a few commands in your shell and, when you’re done
entering your shell commands, type Control-C in the dtrace terminal to fire the END
probe and print the results:

# dtrace -q -s rwinfo.d ‘pgrep -n ksh‘
^C

calls max bytes elapsed nsecs
------ ----- --------- -------------
read 36 1024 3588283144
write 35 59 14945541

#

Pointers to Structs
Referring to structs using pointers is very common in C and D. You can use the
operator -> to access struct members through a pointer. If a struct s has a member
m and you have a pointer to this struct named sp (that is, sp is a variable of type
struct s *), you can either use the * operator to first dereference sp pointer in
order to access the member:
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struct s *sp;

(*sp).m

or you can use the -> operator as a shorthand for this notation. The following two D
fragments are equivalent in meaning if sp is a pointer to a struct:

(*sp).m sp->m

DTrace provides several built-in variables which are pointers to structs, including
curpsinfo and curlwpsinfo. These pointers refer to the structs psinfo and
lwpsinfo respectively, and their content provides a snapshot of information about
the state of the current process and lightweight process (LWP) associated with the
thread that has fired the current probe. A Solaris LWP is the kernel’s representation of
a user thread, upon which the Solaris threads and POSIX threads interfaces are built.
For convenience, DTrace exports this information in the same form as the /proc
filesystem files /proc/pid/psinfo and /proc/pid/lwps/lwpid/lwpsinfo. The
/proc structures are used by observability and debugging tools such as ps(1),
pgrep(1), and truss(1), and are defined in the system header file <sys/procfs.h>
and are described in the proc(4) man page. Here are few example expressions using
curpsinfo, their types, and their meanings:

curpsinfo->pr_pid pid_t current process ID

curpsinfo->pr_fname char [] executable file name

curpsinfo->pr_psargs char [] initial command line arguments

You should review the complete structure definition later by examining the
<sys/procfs.h> header file and the corresponding descriptions in proc(4). The
next example uses the pr_psargs member to identify a process of interest by
matching command-line arguments.

Structs are used frequently to create complex data structures in C programs, so the
ability to describe and reference structs from D also provides a powerful capability for
observing the inner workings of the Solaris operating system kernel and its system
interfaces. In addition to using the aforementioned curpsinfo struct, the next
example examines some kernel structs as well by observing the relationship between
the ksyms(7D) driver and read(2) requests. The driver makes use of two common
structs, known as uio(9S) and iovec(9S), to respond to requests to read from the
character device file /dev/ksyms.

The uio struct, accessed using the name struct uio or type alias uio_t, is
described in the uio(9S) man page and is used to describe an I/O request that
involves copying data between the kernel and a user process. The uio in turn contains
an array of one or more iovec(9S) structures which each describe a piece of the
requested I/O, in the event that multiple chunks are requested using the readv(2) or
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writev(2) system calls. One of the kernel device driver interface (DDI) routines that
operates on struct uio is the function uiomove(9F), which is one of a family of
functions kernel drivers use to respond to user process read(2) requests and copy
data back to user processes.

The ksyms driver manages a character device file named /dev/ksyms, which
appears to be an ELF file containing information about the kernel’s symbol table, but
is in fact an illusion created by the driver using the set of modules that are currently
loaded into the kernel. The driver uses the uiomove(9F) routine to respond to read(2)
requests. The next example illustrates that the arguments and calls to read(2) from
/dev/ksyms match the calls by the driver to uiomove(9F) to copy the results back
into the user address space at the location specified to read(2).

We can use the strings(1) utility with the -a option to force a bunch of reads from
/dev/ksyms. Try running strings -a /dev/ksyms in your shell and see what
output it produces. In an editor, type in the first clause of the example script and save
it in a file named ksyms.d:

syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);

}

This first clause uses the expression curpsinfo->pr_psargs to access and match
the command-line arguments of our strings(1) command so that the script selects
the correct read(2) requests before tracing the arguments. Notice that by using
operator == with a left-hand argument that is an array of char and a right-hand
argument that is a string, the D compiler infers that the left-hand argument should be
promoted to a string and a string comparison should be performed. Type in and
execute the command dtrace -q -s ksyms.d in one shell, and then type in the
command strings -a /dev/ksyms in another shell. As strings(1) executes, you
will see output from DTrace similar to the following example:

# dtrace -q -s ksyms.d
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
read 8192 bytes to user address 80639fc
...
^C

#

This example can be extended using a common D programming technique to follow a
thread from this initial read(2) request deeper into the kernel. Upon entry to the
kernel in syscall::read:entry, the next script sets a thread-local flag variable
indicating this thread is of interest, and clears this flag on syscall::read:return.
Once the flag is set, it can be used as a predicate on other probes to instrument kernel
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functions such as uiomove(9F). The DTrace function boundary tracing (fbt) provider
publishes probes for entry and return to functions defined within the kernel, including
those in the DDI. Type in the following source code which uses the fbt provider to
instrument uiomove(9F) and again save it in the file ksyms.d:

EXAMPLE 7–2 ksyms.d: Trace read(2) and uiomove(9F) Relationship

/*
* When our strings(1) invocation starts a read(2), set a watched flag on
* the current thread. When the read(2) finishes, clear the watched flag.
*/
syscall::read:entry
/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);
self->watched = 1;

}

syscall::read:return
/self->watched/
{

self->watched = 0;
}

/*
* Instrument uiomove(9F). The prototype for this function is as follows:
* int uiomove(caddr_t addr, size_t nbytes, enum uio_rw rwflag, uio_t *uio);
*/
fbt::uiomove:entry
/self->watched/
{

this->iov = args[3]->uio_iov;

printf("uiomove %u bytes to %p in pid %d\n",
this->iov->iov_len, this->iov->iov_base, pid);

}

The final clause of the example uses the thread-local variable self->watched to
identify when a kernel thread of interest enters the DDI routine uiomove(9F). Once
there, the script uses the built-in args array to access the fourth argument (args[3])
to uiomove(), which is a pointer to the struct uio representing the request. The D
compiler automatically associates each member of the args array with the type
corresponding to the C function prototype for the instrumented kernel routine. The
uio_iov member contains a pointer to the struct iovec for the request. A copy of
this pointer is saved for use in our clause in the clause-local variable this->iov. In
the final statement, the script dereferences this->iov to access the iovec members
iov_len and iov_base, which represent the length in bytes and destination base
address for uiomove(9F), respectively. These values should match the input
parameters to the read(2) system call issued on the driver. Go to your shell and run
dtrace -q -s ksyms.d and then again enter the command strings -a
/dev/ksyms in another shell. You should see output similar to the following
example:
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# dtrace -q -s ksyms.d
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
read 8192 bytes at user address 80639fc
uiomove 8192 bytes to 80639fc in pid 101038
...
^C

#

The addresses and process IDs will be different in your output, but you should
observe that the input arguments to read(2) match the parameters passed to
uiomove(9F) by the ksyms driver.

Unions
Unions are another kind of composite type supported by ANSI-C and D, and are
closely related to structs. A union is a composite type where a set of members of
different types are defined and the member objects all occupy the same region of
storage. A union is therefore an object of variant type, where only one member is valid
at any given time, depending on how the union has been assigned. Typically, some
other variable or piece of state is used to indicate which union member is currently
valid. The size of a union is the size of its largest member, and the memory alignment
used for the union is the maximum alignment required by the union members.

The Solaris kstat framework defines a struct containing a union that is used in the
following example to illustrate and observe C and D unions. The kstat framework is
used to export a set of named counters representing kernel statistics such as memory
usage and I/O throughput. The framework is used to implement utilities such as
mpstat(1M) and iostat(1M). This framework uses struct kstat_named to
represent a named counter and its value and is defined as follows:

struct kstat_named {
char name[KSTAT_STRLEN]; /* name of counter */
uchar_t data_type; /* data type */
union {

char c[16];
int32_t i32;
uint32_t ui32;
long l;
ulong_t ul;
...

} value; /* value of counter */
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};

The examine declaration is shortened the declaration for illustrative purposes. The
complete structure definition can be found in the <sys/kstat.h> header file and is
described in kstat_named(9S). The declaration above is valid in both ANSI-C and D,
and defines a struct containing as one of its members a union value with members of
various types, depending on the type of the counter. Notice that since the union itself
is declared inside of another type, struct kstat_named, a formal name for the
union type is omitted. This declaration style is known as an anonymous union. The
member named value is of a union type described by the preceding declaration, but
this union type itself has no name because it does not need to be used anywhere else.
The struct member data_type is assigned a value that indicates which union
member is valid for each object of type struct kstat_named. A set of C
preprocessor tokens are defined for the values of data_type. For example, the token
KSTAT_DATA_CHAR is equal to zero and indicates that the member value.c is where
the value is currently stored.

Example 7–3 demonstrates accessing the kstat_named.value union by tracing a
user process. The kstat counters can be sampled from a user process using the
kstat_data_lookup(3KSTAT) function, which returns a pointer to a struct
kstat_named. The mpstat(1M) utility calls this function repeatedly as it executes in
order to sample the latest counter values. Go to your shell and try running mpstat 1
and observe the output. Press Control-C in your shell to abort mpstat after a few
seconds. To observe counter sampling, we would like to enable a probe that fires each
time the mpstat command calls the kstat_data_lookup(3KSTAT) function in
libkstat. To do so, we’re going to make use of a new DTrace provider: pid. The
pid provider permits you to dynamically create probes in user processes at C symbol
locations such as function entry points. You can ask the pid provider to create a probe
at a user function entry and return sites by writing probe descriptions of the form:

pidprocess-ID:object-name:function-name:entry
pidprocess-ID:object-name:function-name:return

For example, if you wanted to create a probe in process ID 12345 that fires on entry to
kstat_data_lookup(3KSTAT), you would write the following probe description:

pid12345:libkstat:kstat_data_lookup:entry

The pid provider inserts dynamic instrumentation into the specified user process at
the program location corresponding to the probe description. The probe
implementation forces each user thread that reaches the instrumented program
location to trap into the operating system kernel and enter DTrace, firing the
corresponding probe. So although the instrumentation location is associated with a
user process, the DTrace predicates and actions you specify still execute in the context
of the operating system kernel. The pid provider is described in further detail in
Chapter 30.
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Instead of having to edit your D program source each time you wish to apply your
program to a different process, you can insert identifiers called macro variables into
your program that are evaluated at the time your program is compiled and replaced
with the additional dtrace command-line arguments. Macro variables are specified
using a dollar sign $ followed by an identifier or digit. If you execute the command
dtrace -s script foo bar baz, the D compiler will automatically define the macro
variables $1, $2, and $3 to be the tokens foo, bar, and baz respectively. You can use
macro variables in D program expressions or in probe descriptions. For example, the
following probe descriptions instrument whatever process ID is specified as an
additional argument to dtrace:

pid$1:libkstat:kstat_data_lookup:entry
{

self->ksname = arg1;
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 != NULL/
{

this->ksp = (kstat_named_t *)copyin(arg1, sizeof (kstat_named_t));
printf("%s has ui64 value %u\n", copyinstr(self->ksname),

this->ksp->value.ui64);
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 == NULL/
{

self->ksname = NULL;

}

Macro variables and reusable scripts are described in further detail in Chapter 15.
Now that we know how to instrument user processes using their process ID, let’s
return to sampling unions. Go to your editor and type in the source code for our
complete example and save it in a file named kstat.d:

EXAMPLE 7–3 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT)

pid$1:libkstat:kstat_data_lookup:entry
{

self->ksname = arg1;
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 != NULL/
{

this->ksp = (kstat_named_t *) copyin(arg1, sizeof (kstat_named_t));
printf("%s has ui64 value %u\n",

copyinstr(self->ksname), this->ksp->value.ui64);
}

pid$1:libkstat:kstat_data_lookup:return
/self->ksname != NULL && arg1 == NULL/
{
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EXAMPLE 7–3 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT) (Continued)

self->ksname = NULL;

}

Now go to one of your shells and execute the command mpstat 1 to start
mpstat(1M) running in a mode where it samples statistics and reports them once per
second. Once mpstat is running, execute the command dtrace -q -s kstat.d
‘pgrep mpstat‘ in your other shell. You will see output corresponding to the
statistics that are being accessed. Press Control-C to abort dtrace and return to the
shell prompt.

# dtrace -q -s kstat.d ‘pgrep mpstat‘
cpu_ticks_idle has ui64 value 41154176
cpu_ticks_user has ui64 value 1137
cpu_ticks_kernel has ui64 value 12310
cpu_ticks_wait has ui64 value 903
hat_fault has ui64 value 0
as_fault has ui64 value 48053
maj_fault has ui64 value 1144
xcalls has ui64 value 123832170
intr has ui64 value 165264090
intrthread has ui64 value 124094974
pswitch has ui64 value 840625
inv_swtch has ui64 value 1484
cpumigrate has ui64 value 36284
mutex_adenters has ui64 value 35574
rw_rdfails has ui64 value 2
rw_wrfails has ui64 value 2
...
^C

#

If you capture the output in each terminal window and subtract each value from the
value reported by the previous iteration through the statistics, you should be able to
correlate the dtrace output with the mpstat output. The example program records
the counter name pointer on entry to the lookup function, and then performs most of
the tracing work on return from kstat_data_lookup(3KSTAT). The D built-in
functions copyinstr() and copyin() copy the function results from the user
process back into DTrace when arg1 (the return value) is not NULL. Once the kstat
data has been copied, the example reports the ui64 counter value from the union.
This simplified example assumes that mpstat samples counters that use the
value.ui64 member. As an exercise, try recoding kstat.d to use multiple
predicates and print out the union member corresponding to the data_type member.
You can also try to create a version of kstat.d that computes the difference between
successive data values and actually produces output similar to mpstat.
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Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or
union, using the sizeof operator. The sizeof operator can be applied either to an
expression or to the name of a type surrounded by parentheses, as illustrated by the
following two examples:

sizeof expression sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the
expression sizeof (callinfo.ts) would also return 8 if inserted into the source
code of our example program above. The formal return type of the sizeof operator is
the type alias size_t, which is defined to be an unsigned integer of the same size as a
pointer in the current data model, and is used to represent byte counts. When the
sizeof operator is applied to an expression, the expression is validated by the D
compiler but the resulting object size is computed at compile time and no code for the
expression is generated. You can use sizeof anywhere an integer constant is
required.

You can use the companion operator offsetof to determine the offset in bytes of a
struct or union member from the start of the storage associated with any object of the
struct or union type. The offsetof operator is used in an expression of the following
form:

offsetof (type-name, member-name)

Here type-name is the name of any struct or union type or type alias, and member-name
is the identifier naming a member of that struct or union. Similar to sizeof,
offsetof returns a size_t and can be used anywhere in a D program that an
integer constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary
numbers of bits, known as bit-fields. A bit-field is declared by specifying a signed or
unsigned integer base type, a member name, and a suffix indicating the number of bits
to be assigned for the field, as shown in the following example:

struct s {
int a : 1;
int b : 3;
int c : 12;
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};

The bit-field width is an integer constant separated from the member name by a
trailing colon. The bit-field width must be positive and must be of a number of bits not
larger than the width of the corresponding integer base type. Bit-fields larger than 64
bits may not be declared in D. D bit-fields provide compatibility with and access to the
corresponding ANSI-C capability. Bit-fields are typically used in situations when
memory storage is at a premium or when a struct layout must match a hardware
register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of
masks to extract the member values. The same result can be achieved by simply
defining the masks yourself and using the & operator. C and D compilers try to pack
bits as efficiently as possible, but they are free to do so in any order or fashion they
desire, so bit-fields are not guaranteed to produce identical bit layouts across differing
compilers or architectures. If you require stable bit layout, you should construct the bit
masks yourself and extract the values using the & operator.

A bit-field member is accessed by simply specifying its name in combination with the
“.” or -> operators like any other struct or union member. The bit-field is
automatically promoted to the next largest integer type for use in any expressions.
Because bit-field storage may not be aligned on a byte boundary or be a round
number of bytes in size, you may not apply the sizeof or offsetof operators to a
bit-field member. The D compiler also prohibits you from taking the address of a
bit-field member using the & operator.
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CHAPTER 8

Type and Constant Definitions

This chapter describes how to declare type aliases and named constants in D. This
chapter also discusses D type and namespace management for program and operating
system types and identifiers.

Typedef
The typedef keyword is used to declare an identifier as an alias for an existing type.
Like all D type declarations, the typedef keyword is used outside probe clauses in a
declaration of the form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as
the alias for this type. For example, the declaration:

typedef unsigned char uint8_t;

is used internally by the D compiler to create the uint8_t type alias. Type aliases can
be used anywhere that a normal type can be used, such as the type of a variable or
associative array value or tuple member. You can also combine typedef with more
elaborate declarations such as the definition of a new struct:

typedef struct foo {
int x;
int y;

} foo_t;

In this example, struct foo is defined as the same type as its alias, foo_t. Solaris C
system headers often use the suffix _t to denote a typedef alias.
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Enumerations
Defining symbolic names for constants in a program eases readability and simplifies
the process of maintaining the program in the future. One method is to define an
enumeration, which associates a set of integers with a set of identifiers called
enumerators that the compiler recognizes and replaces with the corresponding integer
value. An enumeration is defined using a declaration such as:

enum colors {
RED,
GREEN,
BLUE

};

The first enumerator in the enumeration, RED, is assigned the value zero and each
subsequent identifier is assigned the next integer value. You can also specify an
explicit integer value for any enumerator by suffixing it with an equal sign and an
integer constant, as in the following example:

enum colors {
RED = 7,
GREEN = 9,
BLUE

};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. Once an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant can be
used. In addition, the enumeration enum colors is also defined as a type that is
equivalent to an int. The D compiler will allow a variable of enum type to be used
anywhere an int can be used, and will allow any integer value to be assigned to a
variable of enum type. You can also omit the enum name in the declaration if the type
name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program, so
you cannot define the same enumerator identifier in more than one enumeration.
However, you may define more than one enumerator that has the same value in either
the same or different enumerations. You may also assign integers that have no
corresponding enumerator to a variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI-C. D also
provides access to enumerations defined in the operating system kernel and its
loadable modules, but these enumerators are not globally visible in your D program.
Kernel enumerators are only visible when used as an argument to one of the binary
comparison operators when compared to an object of the corresponding enumeration
type. For example, the function uiomove(9F) has a parameter of type enum uio_rw
defined as follows:
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enum uio_rw { UIO_READ, UIO_WRITE };

The enumerators UIO_READ and UIO_WRITE are not normally visible in your D
program, but you can promote them to global visibility by comparing one a value of
type enum uio_rw, as shown in the following example clause:

fbt::uiomove:entry
/args[2] == UIO_WRITE/
{

...

}

This example traces calls to the uiomove(9F) function for write requests by comparing
args[2], a variable of type enum uio_rw, to the enumerator UIO_WRITE. Because
the left-hand argument is an enumeration type, the D compiler searches the
enumeration when attempting to resolve the right-hand identifier. This feature
protects your D programs against inadvertent identifier name conflicts with the large
collection of enumerations defined in the operating system kernel.

Inlines
D named constants can also be defined using inline directives, which provide a
more general means of creating identifiers that are replaced by predefined values or
expressions during compilation. Inline directives are a more powerful form of lexical
replacement than the #define directive provided by the C preprocessor because the
replacement is assigned an actual type and is performed using the compiled syntax
tree and not simply a set of lexical tokens. An inline directive is specified using a
declaration of the form:

inline type name = expression ;

where type is a type declaration of an existing type, name is any valid D identifier that
is not previously defined as an inline or global variable, and expression is any valid D
expression. Once the inline directive is processed, the D compiler substitutes the
compiled form of expression for each subsequent instance of name in the program
source. For example, the following D program would trace the string "hello" and
integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{

trace(hello);
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trace(number);

}

An inline name may be used anywhere a global variable of the corresponding type can
be used. If the inline expression can be evaluated to an integer or string constant at
compile time, then the inline name can also be used in contexts that require constant
expressions, such as scalar array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive.
The expression result type must be compatible with the type defined by the inline,
according to the same rules used for the D assignment operator (=). An inline
expression may not reference the inline identifier itself: recursive definitions are not
permitted.

The DTrace software packages install a number of D source files in the system
directory /usr/lib/dtrace that contain inline directives you can use in your D
programs. For example, the signal.d library includes directives of the form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;

...

These inline definitions provide you access to the current set of Solaris signal names
described in signal(3HEAD). Similarly, the errno.d library contains inline
directives for the C errno constants described in Intro(2).

By default, the D compiler includes all of the provided D library files automatically so
you can use these definitions in any D program.

Type Namespaces
This section discusses D namespaces and namespace issues related to types. In
traditional languages such as ANSI-C, type visibility is determined by whether a type
is nested inside of a function or other declaration. Types declared at the outer scope of
a C program are associated with a single global namespace and are visible throughout
the entire program. Types defined in C header files are typically included in this outer
scope. Unlike these languages, D provides access to types from multiple outer scopes.

D is a language that facilitates dynamic observability across multiple layers of a
software stack, including the operating system kernel, an associated set of loadable
kernel modules, and user processes running on the system. A single D program may
instantiate probes to gather data from multiple kernel modules or other software
entities that are compiled into independent binary objects. Therefore, more than one
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data type of the same name, perhaps with different definitions, might be present in the
universe of types available to DTrace and the D compiler. To manage this situation, the
D compiler associates each type with a namespace identified by the containing
program object. Types from a particular program object can be accessed by specifying
the object name and backquote (‘) scoping operator in any type name.

For example, if a kernel module named foo contains the following C type declaration:

typedef struct bar {
int x;

} bar_t;

then the types struct bar and bar_t could be accessed from D using the type
names:

struct foo‘bar foo‘bar_t

The backquote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D
probe clauses.

The D compiler also provides two special built-in type namespaces that use the names
C and D respectively. The C type namespace is initially populated with the standard
ANSI-C intrinsic types such as int. In addition, type definitions acquired using the C
preprocessor cpp(1) using the dtrace -C option will be processed by and added to
the C scope. As a result, you can include C header files containing type declarations
which are already visible in another type namespace without causing a compilation
error.

The D type namespace is initially populated with the D type intrinsics such as int
and string as well as the built-in D type aliases such as uint32_t. Any new type
declarations that appear in the D program source are automatically added to the D
type namespace. If you create a complex type such as a struct in your D program
consisting of member types from other namespaces, the member types will be copied
into the D namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit
namespace using the backquote operator, the compiler searches the set of active type
namespaces to find a match using the specified type name. The C namespace is always
searched first, followed by the D namespace. If the type name is not found in either
the C or D namespace, the type namespaces of the active kernel modules are searched
in ascending order by kernel module ID. This ordering guarantees that the binary
objects that form the core kernel are searched before any loadable kernel modules, but
does not guarantee any ordering properties among the loadable modules. You should
use the scoping operator when accessing types defined in loadable kernel modules to
avoid type name conflicts with other kernel modules.

The D compiler uses compressed ANSI-C debugging information provided with the
core Solaris kernel modules in order to automatically access the types associated with
the operating system source code without the need for accessing the corresponding C
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include files. This symbolic debugging information might not be available for all
kernel modules on your system. The D compiler will report an error if you attempt to
access a type within the namespace of a module that lacks compressed C debugging
information intended for use with DTrace.
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CHAPTER 9

Aggregations

When instrumenting the system to answer performance-related questions, it is useful
to consider how data can be aggregated to answer a specific question rather than
thinking in terms of data gathered by individual probes. For example, if you wanted
to know the number of system calls by user ID, you would not necessarily care about
the datum collected at each system call. You simply want to see a table of user IDs and
system calls. Historically, you would answer this question by gathering data at each
system call, and postprocessing the data using a tool like awk(1) or perl(1). However,
in DTrace the aggregating of data is a first-class operation. This chapter describes the
DTrace facilities for manipulating aggregations.

Aggregating Functions
An aggregating function is one that has the following property:

f(f(x0) U f(x1) U ... U f(xn)) = f(x0 U x1 U ... U xn)

where xn is a set of arbitrary data. That is, applying an aggregating function to subsets
of the whole and then applying it again to the results gives the same result as applying
it to the whole itself. For example, consider a function SUM that yields the summation
of a given data set. If the raw data consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result of
applying SUM to the entire set is {29}. Similarly, the result of applying SUM to the subset
consisting of the first three elements is {5}, the result of applying SUM to the set
consisting of the subsequent three elements is {12}, and the result of of applying SUM
to the remaining three elements is also {12}. SUM is an aggregating function because
applying it to the set of these results, {5, 12, 12}, yields the same result, {29}, as
applying SUM to the original data.

Not all functions are aggregating functions. An example of a non-aggregating function
is the function MEDIAN that determines the median element of the set. (The median is
defined to be that element of a set for which as many elements in the set are greater
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than it as are less than it.) The MEDIAN is derived by sorting the set and selecting the
middle element. Returning to the original raw data, if MEDIAN is applied to the set
consisting of the first three elements, the result is {2}. (The sorted set is {1, 2, 2}; {2} is
the set consisting of the middle element.) Likewise, applying MEDIAN to the next three
elements yields {4} and applying MEDIAN to the final three elements yields {4}.
Applying MEDIAN to each of the subsets thus yields the set {2, 4, 4}. Applying MEDIAN
to this set yields the result {4}. However, sorting the original set yields {1, 2, 2, 2, 3, 4, 4,
5, 6}. Applying MEDIAN to this set thus yields {3}. Because these results do not match,
MEDIAN is not an aggregating function.

Many common functions for understanding a set of data are aggregating functions.
These functions include counting the number of elements in the set, computing the
minimum value of the set, computing the maximum value of the set, and summing all
elements in the set. Determining the arithmetic mean of the set can be constructed
from the function to count the number of elements in the set and the function to sum
the number the elements in the set.

However, several useful functions are not aggregating functions. These functions
include computing the mode (the most common element) of a set, the median value of
the set, or the standard deviation of the set.

Applying aggregating functions to data as it is traced has a number of advantages:

� The entire data set need not be stored. Whenever a new element is to be added to
the set, the aggregating function is calculated given the set consisting of the current
intermediate result and the new element. After the new result is calculated, the
new element may be discarded. This process reduces the amount of storage
required by a factor of the number of data points, which is often quite large.

� Data collection does not induce pathological scalability problems. Aggregating
functions enable intermediate results to be kept per-CPU instead of in a shared data
structure. DTrace then applies the aggregating function to the set consisting of the
per-CPU intermediate results to produce the final system-wide result.

Aggregations
DTrace stores the results of aggregating functions in objects called aggregations. The
aggregation results are indexed using a tuple of expressions similar to those used for
associative arrays. In D, the syntax for an aggregation is:

@name[ keys ] = aggfunc ( args );

where name is the name of the aggregation, keys is a comma-separated list of D
expressions, aggfunc is one of the DTrace aggregating functions, and args is a
comma-separated list of arguments appropriate for the aggregating function. The
aggregation name is a D identifier that is prefixed with the special character @. All
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aggregations named in your D programs are global variables; there are no thread- or
clause-local aggregations. The aggregation names are kept in a separate identifier
namespace from other D global variables. Remember that a and @a are not the same
variable if you reuse names. The special aggregation name @ can be used to name an
anonymous aggregation in simple D programs. The D compiler treats this name as an
alias for the aggregation name @_.

The DTrace aggregating functions are shown in the following table. Most aggregating
functions take just a single argument that represents the new datum.

TABLE 9–1 DTrace Aggregating Functions

Function Name Arguments Result

count none The number of times called.

sum scalar expression The total value of the specified expressions.

avg scalar expression The arithmetic average of the specified expressions.

min scalar expression The smallest value among the specified expressions.

max scalar expression The largest value among the specified expressions.

lquantize scalar expression,
lower bound,
upper bound, step
value

A linear frequency distribution, sized by the specified
range, of the values of the specified expressions.
Increments the value in the highest bucket that is less
than the specified expression.

quantize scalar expression A power-of-two frequency distribution of the values of
the specified expressions. Increments the value in the
highest power-of-two bucket that is less than the
specified expression.

For example, to count the number of write(2) system calls in the system, you could
use an informative string as a key and the count() aggregating function:

syscall::write:entry
{

@counts["write system calls"] = count();

}

The dtrace command prints aggregation results by default when the process
terminates, either as the result of an explicit END action or when the user presses
Control-C. The following example output shows the result of running this command,
waiting for a few seconds, and pressing Control-C:

# dtrace -s writes.d
dtrace: script ’./writes.d’ matched 1 probe
^C

write system calls 179

#
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You can count system calls per process nam using the execname variable as the key to
an aggregation:

syscall::write:entry
{

@counts[execname] = count();

}

The following example output shows the result of running this command, waiting for
a few seconds, and pressing Control-C:

# dtrace -s writesbycmd.d
dtrace: script ’./writesbycmd.d’ matched 1 probe
^C

dtrace 1
cat 4
sed 9
head 9
grep 14
find 15
tail 25
mountd 28
expr 72
sh 291
tee 814
def.dir.flp 1996
make.bin 2010

#

Alternatively, you might want to further examine writes organized by both executable
name and file descriptor. The file descriptor is the first argument to write(2), so the
following example uses a key consisting of both execname and arg0:

syscall::write:entry
{

@counts[execname, arg0] = count();

}

Running this command results in a table with both executable name and file
descriptor, as shown in the following example:

# dtrace -s writesbycmdfd.d
dtrace: script ’./writesbycmdfd.d’ matched 1 probe
^C

cat 1 58
sed 1 60
grep 1 89
tee 1 156
tee 3 156
make.bin 5 164
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acomp 1 263
macrogen 4 286
cg 1 397
acomp 3 736
make.bin 1 880
iropt 4 1731

#

The following example displays the average time spent in the write system call,
organized by process name. This example uses the avg() aggregating function,
specifying the expression to average as the argument. The example averages the wall
clock time spent in the system call:

syscall::write:entry
{

self->ts = timestamp;
}

syscall::write:return
/self->ts/
{

@time[execname] = avg(timestamp - self->ts);
self->ts = 0;

}

The following example output shows the result of running this command, waiting for
a few seconds, and pressing Control-C:

# dtrace -s writetime.d
dtrace: script ’./writetime.d’ matched 2 probes
^C

iropt 31315
acomp 37037
make.bin 63736
tee 68702
date 84020
sh 91632
dtrace 159200
ctfmerge 321560
install 343300
mcs 394400
get 413695
ctfconvert 594400
bringover 1332465
tail 1335260

#

The average can be useful, but often does not provide sufficient detail to understand
the distribution of data points. To understand the distribution in further detail, use the
quantize() aggregating function as shown in the following example:
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syscall::write:entry
{

self->ts = timestamp;
}

syscall::write:return
/self->ts/
{

@time[execname] = quantize(timestamp - self->ts);
self->ts = 0;

}

Because each line of output becomes a frequency distribution diagram, the output of
this script is substantially longer than previous ones. The following example shows a
selection of sample output:

lint
value ------------- Distribution ------------- count
8192 | 0
16384 | 2
32768 | 0
65536 |@@@@@@@@@@@@@@@@@@@ 74
131072 |@@@@@@@@@@@@@@@ 59
262144 |@@@ 14
524288 | 0

acomp
value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@ 840
16384 |@@@@@@@@@@@ 750
32768 |@@ 165
65536 |@@@@@@ 460
131072 |@@@@@@ 446
262144 | 16
524288 | 0
1048576 | 1
2097152 | 0

iropt
value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@@@@@@@@@@@@ 4149
16384 |@@@@@@@@@@ 1798
32768 |@ 332
65536 |@ 325
131072 |@@ 431
262144 | 3
524288 | 2
1048576 | 1

2097152 | 0
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Notice that the rows for the frequency distribution are always power-of-two values.
Each rows indicates the count of the number of elements greater than or equal to the
corresponding value, but less than the next larger row value. For example, the above
output shows that iropt had 4,149 writes taking between 8,192 nanoseconds and
16,383 nanoseconds, inclusive.

While quantize() is useful for getting quick insight into the data, you might want to
examine a distribution across linear values instead. To display a linear value
distribution, use the lquantize() aggregating function. The lquantize() function
takes three arguments in addition to a D expression: a lower bound, an upper bound,
and a step. For example, if you wanted to look at the distribution of writes by file
descriptor, a power-of-two quantization would not be effective. Instead, use a linear
quantization with a small range, as shown in the following example:

syscall::write:entry
{

@fds[execname] = lquantize(arg0, 0, 100, 1);

}

Running this script for several seconds yields a large amount of information. The
following example shows a selection of typical output:

mountd
value ------------- Distribution ------------- count

11 | 0
12 |@ 4
13 | 0
14 |@@@@@@@@@@@@@@@@@@@@@@@@@ 70
15 | 0
16 |@@@@@@@@@@@@ 34
17 | 0

xemacs-20.4
value ------------- Distribution ------------- count

6 | 0
7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 521
8 | 0
9 | 1
10 | 0

make.bin
value ------------- Distribution ------------- count

0 | 0
1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3596
2 | 0
3 | 0
4 | 42
5 | 50
6 | 0

acomp
value ------------- Distribution ------------- count

0 | 0
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1 |@@@@@ 1156
2 | 0
3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6635
4 |@ 297
5 | 0

iropt
value ------------- Distribution ------------- count

2 | 0
3 | 299
4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 20144

5 | 0

You can also use the lquantize() aggregating function to aggregate on time since
some point in the past. This technique allows you to observe a change in behavior
over time. The following example displays the change in system call behavior over the
lifetime of a process executing the date(1) command:

syscall::exec:return,
syscall::exece:return
/execname == "date"/
{

self->start = vtimestamp;
}

syscall:::entry
/self->start/
{

/*
* We linearly quantize on the current virtual time minus our
* process’s start time. We divide by 1000 to yield microseconds
* rather than nanoseconds. The range runs from 0 to 10 milliseconds
* in steps of 100 microseconds; we expect that no date(1) process
* will take longer than 10 milliseconds to complete.
*/
@a["system calls over time"] =

lquantize((vtimestamp - self->start) / 1000, 0, 10000, 100);
}

syscall::rexit:entry
/self->start/
{

self->start = 0;

}

The preceding script provides greater insight into system call behavior when many
date(1) processes are executed. To see this result, run sh -c ’while true; do
date >/dev/null; done’ in one window, while executing the D script in another.
The script produces a profile of the system call behavior of the date(1) command:

# dtrace -s dateprof.d
dtrace: script ’./dateprof.d’ matched 218 probes
^C
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system calls over time
value ------------- Distribution ------------- count
< 0 | 0
0 |@@ 20530

100 |@@@@@@ 48814
200 |@@@ 28119
300 |@ 14646
400 |@@@@@ 41237
500 | 1259
600 | 218
700 | 116
800 |@ 12783
900 |@@@ 28133
1000 | 7897
1100 |@ 14065
1200 |@@@ 27549
1300 |@@@ 25715
1400 |@@@@ 35011
1500 |@@ 16734
1600 | 498
1700 | 256
1800 | 369
1900 | 404
2000 | 320
2100 | 555
2200 | 54
2300 | 17
2400 | 5
2500 | 1
2600 | 7

2700 | 0

This output provides a rough idea of the different phases of the date(1) command
with respect to the services required of the kernel. To better understand these phases,
you might want to understand which system calls are being called when. If so, you
could change the D script to aggregate on the variable probefunc instead of a
constant string.

Printing Aggregations
By default, multiple aggregations are displayed in the order they are introduced in the
D program. You can override this behavior using the printa() function to print the
aggregations. The printa() function also enables you to precisely format the
aggregation data using a format string, as described in Chapter 12.

If an aggregation is not formatted with a printa() statement in your D program, the
dtrace command will snapshot the aggregation data and print the results once after
tracing has completed using the default aggregation format. If a given aggregation is
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formatted using a printa() statement, the default behavior is disabled. You can
achieve equivalent results by adding the statement printa(@aggregation-name) to a
dtrace:::END probe clause in your program. The default output format for the
avg(), count(), min(), max(), and sum() aggregating functions displays an
integer decimal value corresponding to the aggregated value for each tuple. The
default output format for the lquantize() and quantize() aggregating functions
displays an ASCII table of the results. Aggregation tuples are printed as if trace()
had been applied to each tuple element.

Data Normalization
When aggregating data over some period of time, you might want to normalize the
data with respect to some constant factor. This technique enables you to compare
disjoint data more easily. For example, when aggregating system calls, you might want
to output system calls as a per-second rate instead of as an absolute value over the
course of the run. The DTrace normalize() action enables you to normalize data in
this way. The parameters to normalize() are an aggregation and a normalization
factor. The output of the aggregation shows each value divided by the normalization
factor.

The following example shows how to aggregate data by system call:

#pragma D option quiet

BEGIN
{

/*
* Get the start time, in nanoseconds.
*/
start = timestamp;

}

syscall:::entry
{

@func[execname] = count();
}

END
{

/*
* Normalize the aggregation based on the number of seconds we have
* been running. (There are 1,000,000,000 nanoseconds in one second.)
*/
normalize(@func, (timestamp - start) / 1000000000);

}

Running the above script for a brief period of time results in the following output on a
desktop machine:
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# dtrace -s ./normalize.d
^C
syslogd 0
rpc.rusersd 0
utmpd 0
xbiff 0
in.routed 1
sendmail 2
echo 2
FvwmAuto 2
stty 2
cut 2
init 2
pt_chmod 3
picld 3
utmp_update 3
httpd 4
xclock 5
basename 6
tput 6
sh 7
tr 7
arch 9
expr 10
uname 11
mibiisa 15
dirname 18
dtrace 40
ksh 48
java 58
xterm 100
nscd 120
fvwm2 154
prstat 180
perfbar 188
Xsun 1309

.netscape.bin 3005

normalize() sets the normalization factor for the specified aggregation, but this
action does not modify the underlying data. This behavior the data to be denormalized
with the denormalize() function. denormalize() takes only an aggregation.
Adding the denormalize action to the preceding example returns both raw system call
counts and per-second rates:

#pragma D option quiet

BEGIN
{

start = timestamp;
}

syscall:::entry
{

@func[execname] = count();
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}

END
{

this->seconds = (timestamp - start) / 1000000000;
printf("Ran for %d seconds.\n", this->seconds);

printf("Per-second rate:\n");
normalize(@func, this->seconds);
printa(@func);

printf("\nRaw counts:\n");
denormalize(@func);
printa(@func);

}

Running the above script for a brief period of time produces output similar to the
following example:

# dtrace -s ./denorm.d
^C
Ran for 14 seconds.
Per-second rate:

syslogd 0
in.routed 0
xbiff 1
sendmail 2
elm 2
picld 3
httpd 4
xclock 6
FvwmAuto 7
mibiisa 22
dtrace 42
java 55
xterm 75
adeptedit 118
nscd 127
prstat 179
perfbar 184
fvwm2 296
Xsun 829

Raw counts:

syslogd 1
in.routed 4
xbiff 21
sendmail 30
elm 36
picld 43
httpd 56
xclock 91
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FvwmAuto 104
mibiisa 314
dtrace 592
java 774
xterm 1062
adeptedit 1665
nscd 1781
prstat 2506
perfbar 2581
fvwm2 4156

Xsun 11616

Aggregations can also be renormalized. If normalize() is called more than once for
the same aggregation, the normalization factor will be the factor specified in the most
recent call. The following example prints per-second rates over time:

EXAMPLE 9–1 renormalize.d: Renormalizing an Aggregation

#pragma D option quiet

BEGIN
{

start = timestamp;
}

syscall:::entry
{

@func[execname] = count();
}

tick-10sec
{

normalize(@func, (timestamp - start) / 1000000000);
printa(@func);

}

Clearing Aggregations
When using DTrace to build simple monitoring scripts, you can periodically clear the
values in an aggregation using the clear() function. This function takes an
aggregation as its only parameter. The clear() function clears only the aggregation’s
values; the aggregation’s keys are retained. Therefore, the presence of a key in an
aggregation that has an associated value of zero indicates that the key had a non-zero
value that was subsequently set to zero as part of a clear(). To discard both an
aggregation’s values and its keys, use the trunc(). See “Truncating aggregations”
on page 124 for details.

The following example adds clear() to Example 9–1:
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#pragma D option quiet

BEGIN
{

last = timestamp;
}

syscall:::entry
{

@func[execname] = count();
}

tick-10sec
{

normalize(@func, (timestamp - last) / 1000000000);
printa(@func);
clear(@func);
last = timestamp;

}

While Example 9–1 shows the system call rate over the lifetime of the dtrace
invocation, the preceding example shows the system call rate only for the most recent
ten-second period.

Truncating aggregations
When looking at aggregation results, you often care only about the top several results.
The keys and values associated with anything other than the highest values are not
interesting. You might also wish to discard an entire aggregation result, removing both
keys and values. The DTrace trunc() function is used for both of these situations.

The parameters to trunc() are an aggregation and an optional truncation value.
Without the truncation value, trunc() discards both aggregation values and
aggregation keys for the entire aggregation. When a truncation value n is present,
trunc() discards aggregation values and keys except for those values and keys
associated with the highest n values. That is, trunc(@foo, 10) truncates the
aggregation named foo after the top ten values, where trunc(@foo) discards the
entire aggregation. The entire aggregation is also discarded if 0 is specified as the
truncation value.

To see the bottom n values instead of the top n, specify a negative truncation value to
trunc(). For example, trunc(@foo, -10) truncates the aggregation named foo
after the bottom ten values.

The following example augments the system call example to only display the
per-second system call rates of the top ten system-calling applications in a ten-second
period:
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#pragma D option quiet

BEGIN
{

last = timestamp;
}

syscall:::entry
{

@func[execname] = count();
}

tick-10sec
{

trunc(@func, 10);
normalize(@func, (timestamp - last) / 1000000000);
printa(@func);
clear(@func);
last = timestamp;

}

The following example shows output from running the above script on a lightly
loaded laptop:

FvwmAuto 7
telnet 13
ping 14
dtrace 27
xclock 34
MozillaFirebird- 63
xterm 133
fvwm2 146
acroread 168
Xsun 616

telnet 4
FvwmAuto 5
ping 14
dtrace 27
xclock 35
fvwm2 69
xterm 70
acroread 164
MozillaFirebird- 491

Xsun 1287
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Minimizing Drops
Because DTrace buffers some aggregation data in the kernel, space might not be
available when a new key is added to an aggregation. In this case, the data will be
dropped, a counter will be incremented, and dtrace will generate a message
indicating an aggregation drop. This situation rarely occurs because DTrace keeps
long-running state (consisting of the aggregation’s key and intermediate result) at
user-level where space may grow dynamically. In the unlikely event that aggregation
drops occur, you can increase the aggregation buffer size with the aggsize option to
reduce the likelihood of drops. You can also use this option to minimize the memory
footprint of DTrace. As with any size option, aggsize may be specified with any size
suffix. The resizing policy of this buffer is dictated by the bufresize option. For more
details on buffering, see Chapter 11. For more details on options, see Chapter 16.

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at user-level. This rate defaults to once per second, and
may be explicitly tuned with the aggrate option. As with any rate option, aggrate
may be specified with any time suffix, but defaults to rate-per-second. For more details
on the aggsize option, see Chapter 16.
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CHAPTER 10

Actions and Subroutines

You can use D function calls such as trace() and printf() to invoke two different
kinds of services provided by DTrace: actions that trace data or modify state external to
DTrace, and subroutines that affect only internal DTrace state. This chapter defines the
actions and subroutines and describes their syntax and semantics.

Actions
Actions enable your DTrace programs to interact with the system outside of DTrace.
The most common actions record data to a DTrace buffer. Other actions are available,
such as stopping the current process, raising a specific signal on the current process, or
ceasing tracing altogether. Some of these actions are destructive in that they change the
system, albeit in a well-defined way. These actions may only be used if destructive
actions have been explicitly enabled. By default, data recording actions record data to
the principal buffer. For more details on the principal buffer and buffer policies, see
Chapter 11.

Default Action
A clause can contain any number of actions and variable manipulations. If a clause is
left empty, the default action is taken. The default action is to trace the enabled probe
identifier (EPID) to the principal buffer. The EPID identifies a particular enabling of a
particular probe with a particular predicate and actions. From the EPID, DTrace
consumers can determine the probe that induced the action. Indeed, whenever any
data is traced, it must be accompanied by the EPID to enable the consumer to make
sense of the data. Therefore, the default action is to trace the EPID and nothing else.
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Using the default action allows for simple use of dtrace(1M). For example, the
following example command enables all probes in the TS timeshare scheduling
module with the default action:

# dtrace -m TS

The preceding command might produce output similar to the following example:

# dtrace -m TS
dtrace: description ’TS’ matched 80 probes
CPU ID FUNCTION:NAME
0 12077 ts_trapret:entry
0 12078 ts_trapret:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12081 ts_wakeup:entry
0 12082 ts_wakeup:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12033 ts_setrun:entry
0 12034 ts_setrun:return
0 12069 ts_sleep:entry
0 12070 ts_sleep:return
0 12023 ts_update:entry
0 12079 ts_update_list:entry
0 12080 ts_update_list:return
0 12079 ts_update_list:entry

...

Data Recording Actions
The data recording actions comprise the core DTrace actions. Each of these actions
records data to the principal buffer by default, but each action may also be used to
record data to speculative buffers. See Chapter 11 for more details on the principal
buffer. See Chapter 13 for more details on speculative buffers. The descriptions in this
section refer only to the directed buffer, indicating that data is recorded either to the
principal buffer or to a speculative buffer if the action follows a speculate().

trace()
void trace(expression)
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The most basic action is the trace() action, which takes a D expression as its
argument and traces the result to the directed buffer. The following statements are
examples of trace() actions:

trace(execname);
trace(curlwpsinfo->pr_pri);
trace(timestamp / 1000);
trace(‘lbolt);

trace("somehow managed to get here");

tracemem()
void tracemem(address, size_t nbytes)

The tracemem() action takes a D expression as its first argument, address, and a
constant as its second argument, nbytes. tracemem() copies the memory from the
address specified by addr into the directed buffer for the length specified by nbytes.

printf()
void printf(string format, ...)

Like trace(), the printf() action traces D expressions. However, printf()
allows for elaborate printf(3C)-style formatting. Like printf(3C), the parameters
consists of a format string followed by a variable number of arguments. By default, the
arguments are traced to the directed buffer. The arguments are later formatted for
output by dtrace(1M) according to the specified format string. For example, the first
two examples of trace() from “trace()” on page 128 could be combined in a
single printf():

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

For more information on printf(), see Chapter 12.

printa()
void printa(aggregation)
void printa(string format, aggregation)

The printa() action enables you to display and format aggregations. See Chapter 9
for more detail on aggregations. If a format is not provided, printa() only traces a
directive to the DTrace consumer that the specified aggregation should be processed
and displayed using the default format. If a format is provided, the aggregation will be
formatted as specified. See Chapter 12 for a more detailed description of the
printa() format string.
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printa() only traces a directive that the aggregation should be processed by the
DTrace consumer. It does not process the aggregation in the kernel. Therefore, the time
between the tracing of the printa() directive and the actual processing of the
directive depends on the factors that affect buffer processing. These factors include the
aggregation rate, the buffering policy and, if the buffering policy is switching, the
rate at which buffers are switched. See Chapter 9 and Chapter 11 for detailed
descriptions of these factors.

stack()
void stack(int nframes)
void stack(void)

The stack() action records a kernel stack trace to the directed buffer. The kernel
stack will be nframes in depth. If nframes is not provided, the number of stack frames
recorded is the number specified by the stackframes option. For example:

# dtrace -n uiomove:entry’{stack()}’
CPU ID FUNCTION:NAME
0 9153 uiomove:entry

genunix‘fop_write+0x1b
namefs‘nm_write+0x1d
genunix‘fop_write+0x1b
genunix‘write+0x1f7

0 9153 uiomove:entry
genunix‘fop_read+0x1b
genunix‘read+0x1d4

0 9153 uiomove:entry
genunix‘strread+0x394
specfs‘spec_read+0x65
genunix‘fop_read+0x1b
genunix‘read+0x1d4

...

The stack() action is a little different from other actions in that it may also be used
as the key to an aggregation:

# dtrace -n kmem_alloc:entry’{@[stack()] = count()}’
dtrace: description ’kmem_alloc:entry’ matched 1 probe
^C

rpcmod‘endpnt_get+0x47c
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
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genunix‘fop_getattr+0x18
genunix‘cstat64+0x30
genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

genunix‘vfs_rlock_wait+0xc
genunix‘lookuppnvp+0x19d
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘lookupname+0x19
genunix‘chdir+0x18
1

rpcmod‘endpnt_get+0x6b1
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
genunix‘fop_getattr+0x18
genunix‘cstat64+0x30
genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

...

ustack()
void ustack(int nframes, int strsize)
void ustack(int nframes)
void ustack(void)

The ustack() action records a user stack trace to the directed buffer. The user stack
will be nframes in depth. If nframes is not provided, the number of stack frames
recorded is the number specified by the ustackframes option. While ustack() is
able to determine the address of the calling frames when the probe fires, the stack
frames will not be translated into symbols until the ustack() action is processed at
user-level by the DTrace consumer. If strsize is specified and non-zero, ustack() will
allocate the specified amount of string space, and use it to perform address-to-symbol
translation directly from the kernel. This direct user symbol translation is currently
available only for Java virtual machines, version 1.5 and higher. Java
address-to-symbol translation annotates user stacks that contain Java frames with the
Java class and method name. If such frames cannot be translated, the frames will
appear only as hexadecimal addresses.

The following example traces a stack with no string space, and therefore no Java
address-to-symbol translation:

# dtrace -n syscall::write:entry’/pid == $target/{ustack(50, 0);
exit(0)}’ -c "java -version"
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dtrace: description ’syscall::write:entry’ matched 1 probe
java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)
Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)
dtrace: pid 5312 has exited
CPU ID FUNCTION:NAME
0 35 write:entry

libc.so.1‘_write+0x15
libjvm.so‘__1cDhpiFwrite6FipkvI_I_+0xa8
libjvm.so‘JVM_Write+0x2f
d0c5c946
libjava.so‘Java_java_io_FileOutputStream_writeBytes+0x2c
cb007fcd
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb002a7b
cb000152
libjvm.so‘__1cJJavaCallsLcall_helper6FpnJJavaValue_

pnMmethodHandle_pnRJavaCallArguments_
pnGThread__v_+0x187

libjvm.so‘__1cCosUos_exception_wrapper6FpFpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_
pnGThread__v2468_v_+0x14

libjvm.so‘__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle_
pnRJavaCallArguments_pnGThread __v_+0x28

libjvm.so‘__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_
pnI_jobject_nLJNICallType_pnK_jmethodID_pnSJNI_
ArgumentPusher_pnGThread__v_+0x180

libjvm.so‘jni_CallStaticVoidMethod+0x10f

java‘main+0x53d

Notice that the C and C++ stack frames from the Java virtual machine are presented
symbolically using C++ “mangled” symbol names, and the Java stack frames are
presented only as hexadecimal addresses. The following example shows a call to
ustack() with a non-zero string space:

# dtrace -n syscall::write:entry’/pid == $target/{ustack(50, 500); exit(0)}’
-c "java -version"

dtrace: description ’syscall::write:entry’ matched 1 probe
java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)
Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)
dtrace: pid 5308 has exited
CPU ID FUNCTION:NAME
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0 35 write:entry
libc.so.1‘_write+0x15
libjvm.so‘__1cDhpiFwrite6FipkvI_I_+0xa8
libjvm.so‘JVM_Write+0x2f
d0c5c946
libjava.so‘Java_java_io_FileOutputStream_writeBytes+0x2c
java/io/FileOutputStream.writeBytes
java/io/FileOutputStream.write
java/io/BufferedOutputStream.flushBuffer
java/io/BufferedOutputStream.flush
java/io/PrintStream.write
sun/nio/cs/StreamEncoder$CharsetSE.writeBytes
sun/nio/cs/StreamEncoder$CharsetSE.implFlushBuffer
sun/nio/cs/StreamEncoder.flushBuffer
java/io/OutputStreamWriter.flushBuffer
java/io/PrintStream.write
java/io/PrintStream.print
java/io/PrintStream.println
sun/misc/Version.print
sun/misc/Version.print
StubRoutines (1)
libjvm.so‘__1cJJavaCallsLcall_helper6FpnJJavaValue_

pnMmethodHandle_pnRJavaCallArguments_pnGThread
__v_+0x187

libjvm.so‘__1cCosUos_exception_wrapper6FpFpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_pnGThread
__v2468_v_+0x14

libjvm.so‘__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle
_pnRJavaCallArguments_pnGThread__v_+0x28

libjvm.so‘__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_pnI
_jobject_nLJNICallType_pnK_jmethodID_pnSJNI
_ArgumentPusher_pnGThread__v_+0x180

libjvm.so‘jni_CallStaticVoidMethod+0x10f
java‘main+0x53d

8051b9a

The above example output demonstrates symbolic stack frame information for Java
stack frames. There are still some hexadecimal frames in this output because some
functions are static and do not have entries in the application symbol table. Translation
is not possible for these frames.

The ustack() symbol translation for non-Java frames occurs after the stack data is
recorded. Therefore, the corresponding user process might exit before symbol
translation can be performed, making stack frame translation impossible. If the user
process exits before symbol translation is performed, dtrace will emit a warning
message, followed by the hexadecimal stack frames, as shown in the following
example:

dtrace: failed to grab process 100941: no such process
c7b834d4
c7bca85d
c7bca1a4
c7bd4374
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c7bc2628

8047efc

Techniques for mitigating this problem are described in Chapter 33.

Finally, because the postmortem DTrace debugger commands cannot perform the
frame translation, using ustack() with a ring buffer policy always results in raw
ustack() data.

The following D program shows an example of ustack() that leaves strsize
unspecified:

syscall::brk:entry
/execname == $$1/
{

@[ustack(40)] = count();

}

To run this example for the Netscape web browser, .netscape.bin in default Solaris
installations, use the following command:

# dtrace -s brk.d .netscape.bin
dtrace: description ’syscall::brk:entry’ matched 1 probe
^C

libc.so.1‘_brk_unlocked+0xc
88143f6
88146cd
.netscape.bin‘unlocked_malloc+0x3e
.netscape.bin‘unlocked_calloc+0x22
.netscape.bin‘calloc+0x26
.netscape.bin‘_IMGCB_NewPixmap+0x149
.netscape.bin‘il_size+0x2f7
.netscape.bin‘il_jpeg_write+0xde
8440c19
.netscape.bin‘il_first_write+0x16b
8394670
83928e5
.netscape.bin‘NET_ProcessHTTP+0xa6
.netscape.bin‘NET_ProcessNet+0x49a
827b323
libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875

1

libc.so.1‘_brk_unlocked+0xc
libc.so.1‘sbrk+0x29
88143df
88146cd
.netscape.bin‘unlocked_malloc+0x3e
.netscape.bin‘unlocked_calloc+0x22
.netscape.bin‘calloc+0x26
.netscape.bin‘_IMGCB_NewPixmap+0x149
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.netscape.bin‘il_size+0x2f7

.netscape.bin‘il_jpeg_write+0xde
8440c19
.netscape.bin‘il_first_write+0x16b
8394670
83928e5
.netscape.bin‘NET_ProcessHTTP+0xa6
.netscape.bin‘NET_ProcessNet+0x49a
827b323
libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875
1

...

jstack()
void jstack(int nframes, int strsize)
void jstack(int nframes)
void jstack(void)

jstack() is an alias for ustack() that uses the jstackframes option for the
number of stack frames the value specified by , and for the string space size the value
specified by the jstackstrsize option. By default, jstacksize defaults to a
non-zero value. As a result, use of jstack() will result in a stack with in situ Java
frame translation.

Destructive Actions
Some DTrace actions are destructive in that they change the state of the system in
some well-defined way. Destructive actions may not be used unless they have been
explicitly enabled. When using dtrace(1M), you can enable destructive actions using
the -w option. If an attempt is made to enable destructive actions in dtrace(1M)
without explicitly enabling them, dtrace will fail with a message similar to the
following example:

dtrace: failed to enable ’syscall’: destructive actions not allowed

Process Destructive Actions
Some destructive actions are destructive only to a particular process. These actions are
available to users with the dtrace_proc or dtrace_user privileges. See Chapter 35
for details on DTrace security privileges.
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stop()
void stop(void)

The stop() action forces the process that fires the enabled probe to stop when it next
leaves the kernel, as if stopped by a proc(4) action. The prun(1) utility may be used
to resume a process that has been stopped by the stop() action. The stop() action
can be used to stop a process at any DTrace probe point. This action can be used to
capture a program in a particular state that would be difficult to achieve with a simple
breakpoint, and then attach a traditional debugger like mdb(1) to the process. You can
also use the gcore(1) utility to save the state of a stopped process in a core file for
later analysis.

raise()
void raise(int signal)

The raise() action sends the specified signal to the currently running process. This
action is similar to using the kill(1) command to send a process a signal. The
raise() action can be used to send a signal at a precise point in a process’s
execution.

copyout()
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout() action copies nbytes from the buffer specified by buf to the address
specified by addr in the address space of the process associated with the current
thread. If the user-space address does not correspond to a valid, faulted-in page in the
current address space, an error will be generated.

copyoutstr()
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr() action copies the string specified by str to the address specified
by addr in the address space of the process associated with the current thread. If the
user-space address does not correspond to a valid, faulted-in page in the current
address space, an error will be generated. The string length is limited to the value set
by the strsize option. See Chapter 16 for details.

system()

void system(string program, ...)

The system() action causes the program specified by program to be executed as if it
were given to the shell as input. The program string may contain any of the
printf()/printa() format conversions. Arguments must be specified that match
the format conversions. Refer to Chapter 12 for details on valid format conversions.
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The following example runs the date(1) command once per second:

# dtrace -wqn tick-1sec’{system("date")}’
Tue Jul 20 11:56:26 CDT 2004
Tue Jul 20 11:56:27 CDT 2004
Tue Jul 20 11:56:28 CDT 2004
Tue Jul 20 11:56:29 CDT 2004

Tue Jul 20 11:56:30 CDT 2004

The following example shows a more elaborate use of the action, using printf()
conversions in the program string along with traditional filtering tools like pipes:

#pragma D option destructive
#pragma D option quiet

proc:::signal-send
/args[2] == SIGINT/
{

printf("SIGINT sent to %s by ", args[1]->pr_fname);
system("getent passwd %d | cut -d: -f5", uid);

}

Running the above script results in output similar to the following example:

# ./whosend.d
SIGINT sent to MozillaFirebird- by Bryan Cantrill
SIGINT sent to run-mozilla.sh by Bryan Cantrill
^C

SIGINT sent to dtrace by Bryan Cantrill

The execution of the specified command does not occur in the context of the firing
probe – it occurs when the buffer containing the details of the system() action are
processed at user-level. How and when this processing occurs depends on the
buffering policy, described in Chapter 11. With the default buffering policy, the buffer
processing rate is specified by the switchrate option. You can see the delay inherent
in system() if you explicitly tune the switchrate higher than its one-second
default, as shown in the following example:

#pragma D option quiet
#pragma D option destructive
#pragma D option switchrate=5sec

tick-1sec
/n++ < 5/
{

printf("walltime : %Y\n", walltimestamp);
printf("date : ");
system("date");
printf("\n");

}

tick-1sec
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/n == 5/
{

exit(0);

}

Running the above script results in output similar to the following example:

# dtrace -s ./time.d
walltime : 2004 Jul 20 13:26:30
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:31
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:32
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:33
date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:34

date : Tue Jul 20 13:26:35 CDT 2004

Notice that the walltime values differ, but the date values are identical. This result
reflects the fact that the execution of the date(1) command occured only when the
buffer was processed, not when the system() action was recorded.

Kernel Destructive Actions
Some destructive actions are destructive to the entire system. These actions must
obviously be used extremely carefully, as they will affect every process on the system
and any other system implicitly or explicitly depending upon the affected system’s
network services.

breakpoint()

void breakpoint(void)

The breakpoint() action induces a kernel breakpoint, causing the system to stop
and transfer control to the kernel debugger. The kernel debugger will emit a string
denoting the DTrace probe that triggered the action. For example, if one were to do the
following:

# dtrace -w -n clock:entry’{breakpoint()}’
dtrace: allowing destructive actions

dtrace: description ’clock:entry’ matched 1 probe

On Solaris running on SPARC, the following message might appear on the console:
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dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb 30002765700)
Type ’go’ to resume

ok

On Solaris running on x86, the following message might appear on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb d2b97060)
stopped at int20+0xb: ret

kmdb[0]:

The address following the probe description is the address of the enabling control
block (ECB) within DTrace. You can use this address to determine more details about
the probe enabling that induced the breakpoint action.

A mistake with the breakpoint() action may cause it to be called far more often
than intended. This behavior might in turn prevent you from even terminating the
DTrace consumer that is triggering the breakpoint actions. In this situation, set the
kernel integer variable dtrace_destructive_disallow to 1. This setting will
disallow all destructive actions on the machine. Apply this setting only in this
particular situation.

The exact method for setting dtrace_destructive_disallow will depend on the
kernel debugger that you are using. If using the OpenBoot PROM on a SPARC system,
use w!:

ok 1 dtrace_destructive_disallow w!

ok

Confirm that the variable has been set using w?:

ok dtrace_destructive_disallow w?
1

ok

Continue by typing go:

ok go

If using kmdb(1) on x86 or SPARC systems, use the 4–byte write modifier (W) with the
/ formatting dcmd:

kmdb[0]: dtrace_destructive_disallow/W 1
dtrace_destructive_disallow: 0x0 = 0x1

kmdb[0]:

Continue using :c:

kadb[0]: :c
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To re-enable destructive actions after continuing, you will need to explicitly reset
dtrace_destructive_disallow back to 0 using mdb(1):

# echo "dtrace_destructive_disallow/W 0" | mdb -kw
dtrace_destructive_disallow: 0x1 = 0x0

#

panic()

void panic(void)

The panic() action causes a kernel panic when triggered. This action should be used
to force a system crash dump at a time of interest. You can use this action together
with ring buffering and postmortem analysis to understand a problem. For more
information, see Chapter 11 and Chapter 37 respectively. When the panic action is
used, a panic message appears that denotes the probe causing the panic. For example:

panic[cpu0]/thread=30001830b80: dtrace: panic action at probe
syscall::mmap:entry (ecb 300000acfc8)

000002a10050b840 dtrace:dtrace_probe+518 (fffe, 0, 1830f88, 1830f88,
30002fb8040, 300000acfc8)
%l0-3: 0000000000000000 00000300030e4d80 0000030003418000 00000300018c0800
%l4-7: 000002a10050b980 0000000000000500 0000000000000000 0000000000000502

000002a10050ba30 genunix:dtrace_systrace_syscall32+44 (0, 2000, 5,
80000002, 3, 1898400)
%l0-3: 00000300030de730 0000000002200008 00000000000000e0 000000000184d928
%l4-7: 00000300030de000 0000000000000730 0000000000000073 0000000000000010

syncing file systems... 2 done
dumping to /dev/dsk/c0t0d0s1, offset 214827008, content: kernel
100% done: 11837 pages dumped, compression ratio 4.66, dump
succeeded

rebooting...

syslogd(1M) will also emit a message upon reboot:

Jun 10 16:56:31 machine1 savecore: [ID 570001 auth.error] reboot after panic:

dtrace: panic action at probe syscall::mmap:entry (ecb 300000acfc8)

The message buffer of the crash dump also contains the probe and ECB responsible for
the panic() action.

chill()

void chill(int nanoseconds)

The chill() action causes DTrace to spin for the specified number of nanoseconds.
chill() is primarily useful for exploring problems that might be timing related. For
example, you can use this action to open race condition windows, or to bring periodic
events into or out of phase with one another. Because interrupts are disabled while in
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DTrace probe context, any use of chill() will induce interrupt latency, scheduling
latency, dispatch latency. Therefore, chill() can cause unexpected systemic effects
and it should not used indiscriminately. Because system activity relies on periodic
interrupt handling, DTrace will refuse to execute the chill() action for more than
500 milliseconds out of each one-second interval on any given CPU. If the maximum
chill() interval is exceeded, DTrace will report an illegal operation error, as shown
in the following example:

# dtrace -w -n syscall::open:entry’{chill(500000001)}’
dtrace: allowing destructive actions
dtrace: description ’syscall::open:entry’ matched 1 probe
dtrace: 57 errors
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 14: syscall::open:entry): \

illegal operation in action #1

This limit is enforced even if the time is spread across multiple calls to chill(), or
multiple DTrace consumers of a single probe. For example, the same error would be
generated by the following command:

# dtrace -w -n syscall::open:entry’{chill(250000000); chill(250000001);}’

Special Actions
This section describes actions that are neither data recording actions nor destructive
actions.

Speculative Actions
The actions associated with speculative tracing are speculate(), commit(), and
discard(). These actions are discussed in Chapter 13.

exit()
void exit(int status)

The exit() action is used to immediately stop tracing, and to inform the DTrace
consumer that it should cease tracing, perform any final processing, and call exit(3C)
with the status specified. Because exit() returns a status to user-level, it is a data
recording action, However, unlike other data storing actions, exit() cannot be
speculatively traced. exit() will cause the DTrace consumer to exit regardless of
buffer policy. Because exit() is a data recording action, it can be dropped.
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When exit() is called, only DTrace actions already in progress on other CPUs will be
completed. No new actions will occur on any CPU. The only exception to this rule is
the processing of the END probe, which will be called after the DTrace consumer has
processed the exit() action and indicated that tracing should stop.

Subroutines
Subroutines differ from actions because they generally only affect internal DTrace
state. Therefore, there are no destructive subroutines, and subroutines never trace data
into buffers. Many subroutines have analogs in the Section 9F or Section 3C interfaces.
See Intro(9F) and Intro(3) for more information on the corresponding subroutines.

alloca()
void *alloca(size_t size)

alloca() allocates size bytes out of scratch space, and returns a pointer to the
allocated memory. The returned pointer is guaranteed to have 8–byte alignment.
Scratch space is only valid for the duration of a clause. Memory allocated with
alloca() will be deallocated when the clause completes. If insufficient scratch space
is available, no memory is allocated and an error is generated.

basename()
string basename(char *str)

basename() is a D analogue for basename(1). This subroutine creates a string that
consists of a copy of the specified string, but without any prefix that ends in /. The
returned string is allocated out of scratch memory, and is therefore valid only for the
duration of the clause. If insufficient scratch space is available, basename does not
execute and an error is generated.

bcopy()
void bcopy(void *src, void *dest, size_t size)

bcopy() copies size bytes from the memory pointed to by src to the memory pointed
to by dest. All of the source memory must lie outside of scratch memory and all of the
destination memory must lie within it. If these conditions are not met, no copying
takes place and an error is generated.
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cleanpath()
string cleanpath(char *str)

cleanpath() creates a string that consists of a copy of the path indicated by str, but
with certain redundant elements eliminated. In particular “/./” elements in the path
are removed, and “/../” elements are collapsed. The collapsing of /../ elements in
the path occurs without regard to symbolic links. Therefore, it is possible that
cleanpath() could take a valid path and return a shorter, invalid one.

For example, if str were “/foo/../bar” and /foo were a symbolic link to
/net/foo/export, cleanpath() would return the string “/bar” even though bar
might only be in /net/foo not /. This limitation is due to the fact that cleanpath()
is called in the context of a firing probe, where full symbolic link resolution or
arbitrary names is not possible. The returned string is allocated out of scratch memory,
and is therefore valid only for the duration of the clause. If insufficient scratch space is
available, cleanpath does not execute and an error is generated.

copyin()
void *copyin(uintptr_t addr, size_t size)

copyin()copies the specified size in bytes from the specified user address into a
DTrace scratch buffer, and returns the address of this buffer. The user address is
interpreted as an address in the space of the process associated with the current
thread. The resulting buffer pointer is guaranteed to have 8-byte alignment. The
address in question must correspond to a faulted-in page in the current process. If the
address does not correspond to a faulted-in page, or if insufficient scratch space is
available, NULL is returned, and an error is generated. See Chapter 33 for techniques to
reduce the likelihood of copyin errors.

copyinstr()
string copyinstr(uintptr_t addr)

copyinstr() copies a null-terminated C string from the specified user address into a
DTrace scratch buffer, and returns the address of this buffer. The user address is
interpreted as an address in the space of the process associated with the current
thread. The string length is limited to the value set by the strsize option; see
Chapter 16 for details. As with copyin, the specified address must correspond to a
faulted-in page in the current process. If the address does not correspond to a
faulted-in page, or if insufficient scratch space is available, NULL is returned, and an
error is generated. See Chapter 33 for techniques to reduce the likelihood of
copyinstr errors.
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copyinto()
void copyinto(uintptr_t addr, size_t size, void *dest)

copyinto()copies the specified size in bytes from the specified user address into the
DTrace scratch buffer specified by dest. The user address is interpreted as an address in
the space of the process associated with the current thread. The address in question
must correspond to a faulted-in page in the current process. If the address does not
correspond to a faulted-in page, or if any of the destination memory lies outside
scratch space, no copying takes place, and an error is generated. See Chapter 33 for
techniques to reduce the likelihood of copyinto errors.

dirname()
string dirname(char *str)

dirname() is a D analogue for dirname(1). This subroutine creates a string that
consists of all but the last level of the pathname specified by str. The returned string is
allocated out of scratch memory, and is therefore valid only for the duration of the
clause. If insufficient scratch space is available, dirname does not execute and an error
is generated.

msgdsize()
size_t msgdsize(mblk_t *mp)

msgdsize() returns the number of bytes in the data message pointed to by mp. See
msgdsize(9F) for details. msgdsize() only includes data blocks of type M_DATA in
the count.

msgsize()
size_t msgsize(mblk_t *mp)

msgsize() returns the number of bytes in the message pointed to by mp. Unlike
msgdsize(), which returns only the number of data bytes, msgsize() returns the
total number of bytes in the message.

mutex_owned()
int mutex_owned(kmutex_t *mutex)

mutex_owned() is an implementation of mutex_owned(9F). mutex_owned()
returns non-zero if the calling thread currently holds the specified kernel mutex, or
zero if the specified adaptive mutex is currently unowned.
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mutex_owner()
kthread_t *mutex_owner(kmutex_t *mutex)

mutex_owner() returns the thread pointer of the current owner of the specified
adaptive kernel mutex. mutex_owner() returns NULL if the specified adaptive mutex
is currently unowned, or if the specified mutex is a spin mutex. See
mutex_owned(9F).

mutex_type_adaptive()
int mutex_type_adaptive(kmutex_t *mutex)

mutex_type_adaptive() returns non-zero if the specified kernel mutex is of type
MUTEX_ADAPTIVE, or zero if it is not. Mutexes are adaptive if they meet one or more
of the following conditions:

� The mutex is declared statically

� The mutex is created with an interrupt block cookie of NULL

� The mutex is created with an interrupt block cookie that does not correspond to a
high-level interrupt

See mutex_init(9F) for more details on mutexes. The majority of mutexes in the
Solaris kernel are adaptive.

progenyof()
int progenyof(pid_t pid)

progenyof() returns non-zero if the calling process (the process associated with the
thread that is currently triggering the matched probe) is among the progeny of the
specified process ID.

rand()
int rand(void)

rand() returns a pseudo-random integer. The number returned is a weak
pseudo-random number, and should not be used for any cryptographic application.

rw_iswriter()
int rw_iswriter(krwlock_t *rwlock)
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rw_iswriter() returns non-zero if the specified reader-writer lock is either held or
desired by a writer. If the lock is held only by readers and no writer is blocked, or if
the lock is not held at all, rw_iswriter() returns zero. See rw_init(9F).

rw_write_held()
int rw_write_held(krwlock_t *rwlock)

rw_write_held() returns non-zero if the specified reader-writer lock is currently
held by a writer. If the lock is held only by readers or not held at all,
rw_write_held() returns zero. See rw_init(9F).

speculation()
int speculation(void)

speculation() reserves a speculative trace buffer for use with speculate() and
returns an identifier for this buffer. See Chapter 13 for details.

strjoin()
string strjoin(char *str1, char *str2)

strjoin() creates a string that consists of str1 concatenated with str2. The returned
string is allocated out of scratch memory, and is therefore valid only for the duration
of the clause. If insufficient scratch space is available, strjoin does not execute and
an error is generated.

strlen()
size_t strlen(string str)

strlen() returns the length of the specified string in bytes, excluding the
terminating null byte.
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CHAPTER 11

Buffers and Buffering

Data buffering and management is an essential service provided by the DTrace
framework for its clients, such as dtrace(1M). This chapter explores data buffering in
detail and describes options you can use to change DTrace’s buffer management
policies.

Principal Buffers
The principal buffer is present in every DTrace invocation and is the buffer to which
tracing actions record their data by default. These actions include:

exit() printf() trace() ustack()

printa() stack() tracemem()

The principal buffers are always allocated on a per-CPU basis. This policy is not
tunable, but tracing and buffer allocation can be restricted to a single CPU by using
the cpu option.

Principal Buffer Policies
DTrace permits tracing in highly constrained contexts in the kernel. In particular,
DTrace permits tracing in contexts in which kernel software may not reliably allocate
memory. The consequence of this flexibility of context is that there always exists a
possibility that DTrace will attempt to trace data when there isn’t space available.
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DTrace must have a policy to deal with such situations when they arise, but you might
wish to tune the policy based on the needs of a given experiment. Sometimes the
appropriate policy might be to discard the new data. Other times it might be desirable
to reuse the space containing the oldest recorded data to trace new data. Most often,
the desired policy is to minimize the likelihood of running out of available space in the
first place. To accommodate these varying demands, DTrace supports several different
buffer policies. This support is implemented with the bufpolicy option, and can be
set on a per-consumer basis. See Chapter 16 for more details on setting options.

switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU
buffers are allocated in pairs: one buffer is active and the other buffer is inactive. When
a DTrace consumer attempts to read a buffer, the kernel firsts switches the inactive and
active buffers. Buffer switching is done in such a manner that there is no window in
which tracing data may be lost. Once the buffers are switched, the newly inactive
buffer is copied out to the DTrace consumer. This policy assures that the consumer
always sees a self-consistent buffer: a buffer is never simultaneously traced to and
copied out. This technique also avoids introducing a window in which tracing is
paused or otherwise prevented. The rate at which the buffer is switched and read out
is controlled by the consumer with the switchrate option. As with any rate option,
switchrate may be specified with any time suffix, but defaults to rate-per-second.
For more details on switchrate and other options, see Chapter 16.

Under the switch policy, if a given enabled probe would trace more data than there
is space available in the active principal buffer, the data is dropped and a per-CPU drop
count is incremented. In the event of one or more drops, dtrace(1M) displays a
message similar to the following example:

dtrace: 11 drops on CPU 0

If a given record is larger than the total buffer size, the record will be dropped
regardless of buffer policy. You can reduce or eliminate drops by either increasing the
size of the principal buffer with the bufsize option or by increasing the switching
rate with the switchrate option.

Under the switch policy, scratch space for copyin(), copyinstr(), and
alloca() is allocated out of the active buffer.

fill Policy
For some problems, you might wish to use a single in-kernel buffer. While this
approach can be implemented with the switch policy and appropriate D constructs
by incrementing a variable in D and predicating an exit() action appropriately, such
an implementation does not eliminate the possibility of drops. To request a single,
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large in-kernel buffer, and continue tracing until one or more of the per-CPU buffers
has filled, use the fill buffer policy. Under this policy, tracing continues until an
enabled probe attempts to trace more data than can fit in the remaining principal
buffer space. When insufficient space remains, the buffer is marked as filled and the
consumer is notified that at least one of its per-CPU buffers has filled. Once
dtrace(1M) detects a single filled buffer, tracing is stopped, all buffers are processed
and dtrace exits. No further data will be traced to a filled buffer even if the data
would fit in the buffer.

To use the fill policy, set the bufpolicy option to fill. For example, the following
command traces every system call entry into a per-CPU 2K buffer with the buffer
policy set to fill:

# dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

fill Policy and END Probes
END probes normally do not fire until tracing has been explicitly stopped by the
DTrace consumer. END probes are guaranteed to only fire on one CPU, but the CPU on
which the probe fires is undefined. With fill buffers, tracing is explicitly stopped
when at least one of the per-CPU principal buffers has been marked as filled. If the
fill policy is selected, the END probe may fire on a CPU that has a filled buffer. To
accommodate END tracing in fill buffers, DTrace calculates the amount of space
potentially consumed by END probes and subtracts this space from the size of the
principal buffer. If the net size is negative, DTrace will refuse to start, and dtrace(1M)
will output a corresponding error message:

dtrace: END enablings exceed size of principal buffer

The reservation mechanism ensures that a full buffer always has sufficient space for
any END probes.

ring Policy
The DTrace ring buffer policy helps you trace the events leading up to a failure. If
reproducing the failure takes hours or days, you might wish to keep only the most
recent data. Once a principal buffer has filled, tracing wraps around to the first entry,
thereby overwriting older tracing data. You establish the ring buffer by setting the
bufpolicy option to the string ring:

# dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace(1M) will not display any output until the
process is terminated. At that time, the ring buffer is consumed and processed.
dtrace processes each ring buffer in CPU order. Within a CPU’s buffer, trace records
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will be displayed in order from oldest to youngest. Just as with the switch buffering
policy, no ordering exists between records from different CPUs are made. If such an
ordering is required, you should trace the timestamp variable as part of your tracing
request.

The following example demonstrates the use of a #pragma option directive to
enable ring buffering:

#pragma D option bufpolicy=ring
#pragma D option bufsize=16k

syscall:::entry
/execname == $1/
{

trace(timestamp);
}

syscall::rexit:entry
{

exit(0);

}

Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some
DTrace consumers may have additional in-kernel data buffers: an aggregation buffer,
discussed in Chapter 9, and one or more speculative buffers, discussed in Chapter 13.

Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. Separate options are
provided to tune each buffer size, as shown in the following table:

Buffer Size Option

Principal bufsize

Speculative specsize

Aggregation aggsize
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Each of these options is set with a value that denotes the size. As with any size option,
the value may have an optional size suffix. See Chapter 16 for more details. For
example, to set the buffer size to one megabyte on the command line to dtrace, you
can use -x to set the option:

# dtrace -P syscall -x bufsize=1m

Alternatively, you can use the -b option to dtrace:

# dtrace -P syscall -b 1m

Finally, you could can set bufsize using #pragma D option:

#pragma D option bufsize=1m

The buffer size you select denotes the size of the buffer on each CPU. Moreover, for the
switch buffer policy, bufsize denotes the size of each buffer on each CPU. The
buffer size defaults to four megabytes.

Buffer Resizing Policy
Occasionally, the system might not have adequate free kernel memory to allocate a
buffer of desired size either because not enough memory is available or because the
DTrace consumer has exceeded one of the tunable limits described in Chapter 16. You
can configure the policy for buffer allocation failure using bufresize option, which
defaults to auto. Under the auto buffer resize policy, the size of a buffer is halved
until a successful allocation occurs. dtrace(1M) generates a message if a buffer as
allocated is smaller than the requested size:

# dtrace -P syscall -b 4g
dtrace: description ’syscall’ matched 430 probes
dtrace: buffer size lowered to 128m

...

or:

# dtrace -P syscall’{@a[probefunc] = count()}’ -x aggsize=1g
dtrace: description ’syscall’ matched 430 probes
dtrace: aggregation size lowered to 128m

...

Alternatively, you can require manual intervention after buffer allocation failure by
setting bufresize to manual. Under this policy, a failure to allocate will cause
DTrace to fail to start:
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# dtrace -P syscall -x bufsize=1g -x bufresize=manual
dtrace: description ’syscall’ matched 430 probes
dtrace: could not enable tracing: Not enough space

#

The buffer resizing policy of all buffers, principal, speculative and aggregation, is
dictated by the bufresize option.

152 Solaris Dynamic Tracing Guide • January 2005



CHAPTER 12

Output Formatting

DTrace provides built-in formatting functions printf() and printa() that you can
use from your D programs to format output. The D compiler provides features not
found in the printf(3C) library routine, so you should read this chapter even if you
are already familiar with printf(). This chapter also discusses the formatting
behavior of the trace() function and the default output format used by dtrace(1M)
to display aggregations.

printf()
The printf() function combines the ability to trace data, as if by the trace()
function, with the ability to output the data and other text in a specific format that you
describe. The printf() function tells DTrace to trace the data associated with each
argument after the first argument, and then to format the results using the rules
described by the first printf() argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second
printf() argument, the second conversion to the third argument, and so on. All of
the text between conversions is printed verbatim. The character following the %
conversion character describes the format to use for the corresponding argument.

Unlike printf(3C), DTrace printf() is a built-in function that is recognized by the
D compiler. The D compiler provides several useful services for DTrace printf()
that are not found in the C library printf():

� The D compiler compares the arguments to the conversions in the format string. If
an argument’s type is incompatible with the format conversion, the D compiler
provides an error message explaining the problem.
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� The D compiler does not require the use of size prefixes with printf() format
conversions. The C printf() routine requires that you indicate the size of
arguments by adding prefixes such as %ld for long or %lld for long long. The
D compiler knows the size and type of your arguments, so these prefixes are not
required in your D printf() statements.

� DTrace provides additional format characters that are useful for debugging and
observability. For example, the %a format conversion can be used to print a pointer
as a symbol name and offset.

In order to implement these features, the format string in the DTrace printf()
function must be specified as a string constant in your D program. Format strings may
not be dynamic variables of type string.

Conversion Specifications
Each conversion specification in the format string is introduced by the % character,
after which the following information appears in sequence:

� Zero or more flags (in any order), that modify the meaning of the conversion
specification as described in the next section.

� An optional minimum field width. If the converted value has fewer bytes than the
field width, the value will be padded with spaces on the left by default, or on the
right if the left-adjustment flag (-) is specified. The field width can also be specified
as an asterisk (*), in which case the field width is set dynamically based on the
value of an additional argument of type int.

� An optional precision that indicates the minimum number of digits to appear for
the d, i, o, u, x, and X conversions (the field is padded with leading zeroes); the
number of digits to appear after the radix character for the e, E, and f conversions,
the maximum number of significant digits for the g and G conversions; or the
maximum number of bytes to be printed from a string by the s conversion. The
precision takes the form of a period (.) followed by either an asterisk (*), described
below, or a decimal digit string.

� An optional sequence of size prefixes that indicate the size of the corresponding
argument, described in “Size Prefixes” on page 156. The size prefixes are not
necessary in D and are provided for compatibility with the C printf() function.

� A conversion specifier that indicates the type of conversion to be applied to the
argument.

The printf(3C) function also supports conversion specifications of the form %n$
where n is a decimal integer; DTrace printf() does not support this type of
conversion specification.

Flag Specifiers
The printf() conversion flags are enabled by specifying one or more of the
following characters, which may appear in any order:
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’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f,
%g, or %G) is formatted with thousands grouping characters using the
non-monetary grouping character. Some locales, including the POSIX C
locale, do not provide non-monetary grouping characters for use with this
flag.

- The result of the conversion is left-justified within the field. The conversion
is right-justified if this flag is not specified.

+ The result of signed conversion always begins with a sign (+ or -). If this
flag is not specified, the conversion begins with a sign only when a
negative value is converted.

space If the first character of a signed conversion is not a sign or if a signed
conversion results in no characters, a space is placed before the result. If the
space and + flags both appear, the space flag is ignored.

# The value is converted to an alternate form if an alternate form is defined
for the selected conversion. The alternate formats for conversions are
described along with the corresponding conversion.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeroes (following
any indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flags both appear, the 0 flag is
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0
flag is ignored. If the 0 and ’ flags both appear, the grouping characters are
inserted before the zero padding.

Width and Precision Specifiers
The minimum field width can be specified as a decimal digit string following any flag
specifier, in which case the field width is set to the specified number of columns. The
field width can also be specified as asterisk (*) in which case an additional argument
of type int is accessed to determine the field width. For example, to print an integer x
in a field width determined by the value of the int variable w, you would write the D
statement:

printf("%*d", w, x);

The field width can also be specified using a ? character to indicate that the field
width should be set based on the number of characters required to format an address
in hexadecimal in the data model of the operating system kernel. The width is set to 8
if the kernel is using the 32–bit data model, or to 16 if the kernel is using the 64–bit
data model.
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The precision for the conversion can be specified as a decimal digit string following a
period (.) or by an asterisk (*) following a period. If an asterisk is used to specify the
precision, an additional argument of type int prior to the conversion argument is
accessed to determine the precision. If both width and precision are specified as
asterisks, the order of arguments to printf() for the conversion should appear in the
following order: width, precision, value.

Size Prefixes
Size prefixes are required in ANSI-C programs that use printf(3C) in order to
indicate the size and type of the conversion argument. The D compiler performs this
processing for your printf() calls automatically, so size prefixes are not required.
Although size prefixes are provided for C compatibility, their use is explicitly
discouraged in D programs because they bind your code to a particular data model
when using derived types. For example, if a typedef is redefined to different integer
base types depending on the data model, it is not possible to use a single C conversion
that works in both data models without explicitly knowing the two underlying types
and including a cast expression, or defining multiple format strings. The D compiler
solves this problem automatically by allowing you to omit size prefixes and
automatically determining the argument size.

The size prefixes can be placed just prior to the format conversion name and after any
flags, widths, and precision specifiers. The size prefixes are as follows:

� An optional h specifies that a following d, i, o, u, x, or X conversion applies to a
short or unsigned short.

� An optional l specifies that a following d, i, o, u, x, or X conversion applies to a
long or unsigned long.

� An optional ll specifies that a following d, i, o, u, x, or X conversion applies to a
long long or unsigned long long.

� An optional L specifies that a following e, E, f, g, or G conversion applies to a
long double.

� An optional l specifies that a following c conversion applies to a wint_t
argument, and that a following s conversion character applies to a pointer to
awchar_t argument.
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Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If
insufficient arguments are provided for the format string, or if the format string is
exhausted and arguments remain, the D compiler issues an appropriate error message.
If an undefined conversion format is specified, the D compiler issues an appropriate
error message. The conversion character sequences are:

a The pointer or uintptr_t argument is printed as a kernel symbol name in
the form module‘symbol-name plus an optional hexadecimal byte offset. If the
value does not fall within the range defined by a known kernel symbol, the
value is printed as a hexadecimal integer.

c The char, short, or int argument is printed as an ASCII character.

C The char, short, or int argument is printed as an ASCII character if the
character is a printable ASCII character. If the character is not a printable
character, it is printed using the corresponding escape sequence as shown in
Table 2–5.

d The char, short, int, long, or long long argument is printed as a
decimal (base 10) integer. If the argument is signed, it will be printed as a
signed value. If the argument is unsigned, it will be printed as an unsigned
value. This conversion has the same meaning as i.

e, E The float, double, or long double argument is converted to the style
[-]d.ddde±dd, where there is one digit before the radix character and the
number of digits after it is equal to the precision. The radix character is
non-zero if the argument is non-zero. If the precision is not specified, the
default precision value is 6. If the precision is 0 and the # flag is not specified,
no radix character appears. The E conversion format produces a number
with E instead of e introducing the exponent. The exponent always contains
at least two digits. The value is rounded up to the appropriate number of
digits.

f The float, double, or long double argument is converted to the style
[-]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification. If the precision is not specified, the default
precision value is 6. If the precision is 0 and the # flag is not specified, no
radix character appears. If a radix character appears, at least one digit
appears before it. The value is rounded up to the appropriate number of
digits.

g, G The float, double, or long double argument is printed in the style f or
e (or in style E in the case of a G conversion character), with the precision
specifying the number of significant digits. If an explicit precision is 0, it is
taken as 1. The style used depends on the value converted: style e (or E) is
used only if the exponent resulting from the conversion is less than -4 or
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greater than or equal to the precision. Trailing zeroes are removed from the
fractional part of the result. A radix character appears only if it is followed by
a digit. If the # flag is specified, trailing zeroes are not removed from the
result.

i The char, short, int, long, or long long argument is printed as a
decimal (base 10) integer. If the argument is signed, it will be printed as a
signed value. If the argument is unsigned, it will be printed as an unsigned
value. This conversion has the same meaning as d.

o The char, short, int, long, or long long argument is printed as an
unsigned octal (base 8) integer. Arguments that are signed or unsigned
may be used with this conversion. If the # flag is specified, the precision of
the result will be increased if necessary to force the first digit of the result to
be a zero.

p The pointer or uintptr_t argument is printed as a hexadecimal (base 16)
integer. D accepts pointer arguments of any type. If the # flag is specified, a
non-zero result will have 0x prepended to it.

s The argument must be an array of char or a string. Bytes from the array
or string are read up to a terminating null character or the end of the data
and interpreted and printed as ASCII characters. If the precision is not
specified, it is taken to be infinite, so all characters up to the first null
character are printed. If the precision is specified, only that portion of the
character array that will display in the corresponding number of screen
columns is printed. If an argument of type char * is to be formatted, it
should be cast to string or prefixed with the D stringof operator to
indicate that DTrace should trace the bytes of the string and format them.

S The argument must be an array of char or a string. The argument is
processed as if by the %s conversion, but any ASCII characters that are not
printable are replaced by the corresponding escape sequence described in
Table 2–5.

u The char, short, int, long, or long long argument is printed as an
unsigned decimal (base 10) integer. Arguments that are signed or
unsigned may be used with this conversion, and the result is always
formatted as unsigned.

wc The int argument is converted to a wide character (wchar_t) and the
resulting wide character is printed.

ws The argument must be an array of wchar_t. Bytes from the array are read
up to a terminating null character or the end of the data and interpreted and
printed as wide characters. If the precision is not specified, it is taken to be
infinite, so all wide characters up to the first null character are printed. If the
precision is specified, only that portion of the wide character array that will
display in the corresponding number of screen columns is printed.
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x, X The char, short, int, long, or long long argument is printed as an
unsigned hexadecimal (base 16) integer. Arguments that are signed or
unsigned may be used with this conversion. If the x form of the conversion
is used, the letter digits abcdef are used. If the X form of the conversion is
used, the letter digits ABCDEF are used. If the # flag is specified, a non-zero
result will have 0x (for %x) or 0X (for %X) prepended to it.

Y The uint64_t argument is interpreted to be the number of nanoseconds
since 00:00 Universal Coordinated Time, January 1, 1970, and is printed in
the following cftime(3C) form: “%Y %a %b %e %T %Z.” The current
number of nanoseconds since 00:00 UTC, January 1, 1970 is available in the
walltimestamp variable.

% Print a literal % character. No argument is converted. The entire conversion
specification must be %%.

printa()
The printa() function is used to format the results of aggregations in a D program.
The function is invoked using one of two forms:

printa(@aggregation-name);
printa(format-string, @aggregation-name);

If the first form of the function is used, the dtrace(1M) command takes a consistent
snapshot of the aggregation data and produces output equivalent to the default output
format used for aggregations, described in Chapter 9.

If the second form of the function is used, the dtrace(1M) command takes a
consistent snapshot of the aggregation data and produces output according to the
conversions specified in the format string, according to the following rules:

� The format conversions must match the tuple signature used to create the
aggregation. Each tuple element may only appear once. For example, if you
aggregate a count using the following D statements:

@a["hello", 123] = count();

@a["goodbye", 456] = count();

and then add the D statement printa(format-string, @a) to a probe clause,
dtrace will snapshot the aggregation data and produce output as if you had
entered the statements:

printf(format-string, "hello", 123);

printf(format-string, "goodbye", 456);
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and so on for each tuple defined in the aggregation.

� Unlike printf(), the format string you use for printa() need not include all
elements of the tuple. That is, you can have a tuple of length 3 and only one format
conversion. Therefore, you can omit any tuple keys from your printa() output
by changing your aggregation declaration to move the keys you want to omit to
the end of the tuple and then omit corresponding conversion specifiers for them in
the printa() format string.

� The aggregation result can be included in the output by using the additional @
format flag character, which is only valid when used with printa(). The @ flag
can be combined with any appropriate format conversion specifier, and may
appear more than once in a format string so that your tuple result can appear
anywhere in the output and can appear more than once. The set of conversion
specifiers that can be used with each aggregating function are implied by the
aggregating function’s result type. The aggregation result types are:

avg() uint64_t

count() uint64_t

lquantize() int64_t

max() uint64_t

min() uint64_t

quantize() int64_t

sum() uint64_t

For example, to format the results of avg(), you can apply the %d, %i, %o, %u, or
%x format conversions. The quantize() and lquantize() functions format
their results as an ASCII table rather than as a single value.

The following D program shows a complete example of printa(), using the
profile provider to sample the value of caller and then formatting the results as a
simple table:

profile:::profile-997
{

@a[caller] = count();
}

END
{

printa("%@8u %a\n", @a);

}

If you use dtrace to execute this program, wait a few seconds, and press Control-C,
you will see output similar to the following example:
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# dtrace -s printa.d
^C
CPU ID FUNCTION:NAME
1 2 :END 1 0x1

1 ohci‘ohci_handle_root_hub_status_change+0x148
1 specfs‘spec_write+0xe0
1 0xff14f950
1 genunix‘cyclic_softint+0x588
1 0xfef2280c
1 genunix‘getf+0xdc
1 ufs‘ufs_icheck+0x50
1 genunix‘infpollinfo+0x80
1 genunix‘kmem_log_enter+0x1e8

...

trace() Default Format
If the trace() function is used to capture data rather than printf(), the dtrace
command formats the results using a default output format. If the data is 1, 2, 4, or 8
bytes in size, the result is formatted as a decimal integer value. If the data is any other
size and is a sequence of printable characters if interpreted as a sequence of bytes, it
will be printed as an ASCII string. If the data is any other size and is not a sequence of
printable characters, it will be printed as a series of byte values formatted as
hexadecimal integers.
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CHAPTER 13

Speculative Tracing

This chapter discusses the DTrace facility for speculative tracing, the ability to
tentatively trace data and then later decide whether to commit the data to a tracing
buffer or discard it. In DTrace, the primary mechanism for filtering out uninteresting
events is the predicate mechanism, discussed in Chapter 4. Predicates are useful when
you know at the time that a probe fires whether or not the probe event is of interest.
For example, if you are only interested in activity associated with a certain process or a
certain file descriptor, you know when the probe fires if it is associated with the
process or file descriptor of interest. However, in other situations, you might not know
whether a given probe event is of interest until some time after the probe fires.

For example, if a system call is occasionally failing with a common error code (for
example, EIO or EINVAL), you might want to examine the code path leading to the
error condition. To capture the code path, you could enable every probe — but only if
the failing call can be isolated in such a way that a meaningful predicate can be
constructed. If the failures are sporadic or nondeterministic, you would be forced to
trace all events that might be interesting, and later postprocess the data to filter out the
ones that were not associated with the failing code path. In this case, even though the
number of interesting events may be reasonably small, the number of events that must
be traced is very large, making postprocessing difficult.

You can use the speculative tracing facility in these situations to tentatively trace data
at one or more probe locations, and then decide to commit the data to the principal
buffer at another probe location. As a result, your trace data contains only the output
of interest, no postprocessing is required, and the DTrace overhead is minimized.

Speculation Interfaces
The following table describes the DTrace speculation functions:
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TABLE 13–1 DTrace Speculation Functions

Function Name Args Description

speculation None Returns an identifier for a new speculative buffer

speculate ID Denotes that the remainder of the clause should be traced to the
speculative buffer specified by ID

commit ID Commits the speculative buffer associated with ID

discard ID Discards the speculative buffer associated with ID

Creating a Speculation
The speculation() function allocates a speculative buffer, and returns a speculation
identifier. The speculation identifier should be used in subsequent calls to the
speculate() function. Speculative buffers are a finite resource: if no speculative
buffer is available when speculation() is called, an ID of zero is returned and a
corresponding DTrace error counter is incremented. An ID of zero is always invalid,
but may be passed to speculate(), commit() or discard(). If a call to
speculation() fails, a dtrace message similar to the following example is
generated:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one, but may be optionally tuned higher.
See “Speculation Options and Tuning” on page 170 for more information.

Using a Speculation
To use a speculation, an identifier returned from speculation() must be passed to
the speculate() function in a clause before any data-recording actions. All
subsequent data-recording actions in a clause containing a speculate() will be
speculatively traced. The D compiler will generate a compile-time error if a call to
speculate() follows data recording actions in a D probe clause. Therefore, clauses
may contain speculative tracing or non-speculative tracing requests, but not both.

Aggregating actions, destructive actions, and the exit action may never be
speculative. Any attempt to take one of these actions in a clause containing a
speculate() results in a compile-time error. A speculate() may not follow a
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speculate(): only one speculation is permitted per clause. A clause that contains
only a speculate() will speculatively trace the default action, which is defined to
trace only the enabled probe ID. See Chapter 10 for a description of the default action.

Typically, you assign the result of speculation() to a thread-local variable and then
use that variable as a subsequent predicate to other probes as well as an argument to
speculate(). For example:

syscall::open:entry
{

self->spec = speculation();
}

syscall:::
/self->spec/
{

speculate(self->spec);
printf("this is speculative");

}

Committing a Speculation
You commit speculations using the commit() function. When a speculative buffer is
committed, its data is copied into the principal buffer. If there is more data in the
specified speculative buffer than there is available space in the principal buffer, no data
is copied and the drop count for the buffer is incremented. If the buffer has been
speculatively traced to on more than one CPU, the speculative data on the committing
CPU is copied immediately, while speculative data on other CPUs is copied some time
after the commit(). Thus, some time might elapse between a commit() beginning on
one CPU and the data being copied from speculative buffers to principal buffers on all
CPUs. This time is guaranteed to be no longer than the time dictated by the cleaning
rate. See “Speculation Options and Tuning” on page 170 for more details.

A committing speculative buffer will not be made available to subsequent
speculation() calls until each per-CPU speculative buffer has been completely
copied into its corresponding per-CPU principal buffer. Similarly, subsequent calls to
speculate() to the committing buffer will be silently discarded, and subsequent
calls to commit() or discard() will silently fail. Finally, a clause containing a
commit() cannot contain a data recording action, but a clause may contain multiple
commit() calls to commit disjoint buffers.
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Discarding a Speculation
You discard speculations using the discard() function. When a speculative buffer is
discarded, its contents are thrown away. If the speculation has only been active on the
CPU calling discard(), the buffer is immediately available for subsequent calls to
speculation(). If the speculation has been active on more than one CPU, the
discarded buffer will be available for subsequent speculation() some time after the
call to discard(). The time between a discard() on one CPU and the buffer being
made available for subsequent speculations is guaranteed to be no longer than the
time dictated by the cleaning rate. If, at the time speculation() is called, no buffer
is available because all speculative buffers are currently being discarded or committed,
adtrace message similar to the following example is generated:

dtrace: 905 failed speculations (available buffer(s) still busy)

The likelihood of all buffers being unavailable can be reduced by tuning the number of
speculation buffers or the cleaning rate. See “Speculation Options and Tuning”
on page 170, for details.

Speculation Example
One potential use for speculations is to highlight a particular code path. The following
example shows the entire code path under the open(2) system call only when the
open() fails:

EXAMPLE 13–1 specopen.d: Code Flow for Failed open(2)

#!/usr/sbin/dtrace -Fs

syscall::open:entry,
syscall::open64:entry
{

/*
* The call to speculation() creates a new speculation. If this fails,
* dtrace(1M) will generate an error message indicating the reason for
* the failed speculation(), but subsequent speculative tracing will be
* silently discarded.
*/
self->spec = speculation();
speculate(self->spec);

/*
* Because this printf() follows the speculate(), it is being
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EXAMPLE 13–1 specopen.d: Code Flow for Failed open(2) (Continued)

* speculatively traced; it will only appear in the data buffer if the
* speculation is subsequently commited.
*/
printf("%s", stringof(copyinstr(arg0)));

}

fbt:::
/self->spec/
{

/*
* A speculate() with no other actions speculates the default action:
* tracing the EPID.
*/
speculate(self->spec);

}

syscall::open:return,
syscall::open64:return
/self->spec/
{

/*
* To balance the output with the -F option, we want to be sure that
* every entry has a matching return. Because we speculated the
* open entry above, we want to also speculate the open return.
* This is also a convenient time to trace the errno value.
*/
speculate(self->spec);
trace(errno);

}

syscall::open:return,
syscall::open64:return
/self->spec && errno != 0/
{

/*
* If errno is non-zero, we want to commit the speculation.
*/
commit(self->spec);
self->spec = 0;

}

syscall::open:return,
syscall::open64:return
/self->spec && errno == 0/
{

/*
* If errno is not set, we discard the speculation.
*/
discard(self->spec);
self->spec = 0;

}

Running the above script produces output similar to the following example:
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# ./specopen.d
dtrace: script ’./specopen.d’ matched 24282 probes
CPU FUNCTION
1 => open /var/ld/ld.config
1 -> open
1 -> copen
1 -> falloc
1 -> ufalloc
1 -> fd_find
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_find
1 -> fd_reserve
1 -> mutex_owned
1 <- mutex_owned
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_reserve
1 <- ufalloc
1 -> kmem_cache_alloc
1 -> kmem_cache_alloc_debug
1 -> verify_and_copy_pattern
1 <- verify_and_copy_pattern
1 -> file_cache_constructor
1 -> mutex_init
1 <- mutex_init
1 <- file_cache_constructor
1 -> tsc_gethrtime
1 <- tsc_gethrtime
1 -> getpcstack
1 <- getpcstack
1 -> kmem_log_enter
1 <- kmem_log_enter
1 <- kmem_cache_alloc_debug
1 <- kmem_cache_alloc
1 -> crhold
1 <- crhold
1 <- falloc
1 -> vn_openat
1 -> lookupnameat
1 -> copyinstr
1 <- copyinstr
1 -> lookuppnat
1 -> lookuppnvp
1 -> pn_fixslash
1 <- pn_fixslash
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid
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1 <- crgetuid
1 -> groupmember
1 -> supgroupmember
1 <- supgroupmember
1 <- groupmember
1 <- ufs_iaccess
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid
1 <- crgetuid
1 <- ufs_iaccess
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 -> pn_getcomponent
1 <- pn_getcomponent
1 -> ufs_lookup
1 -> dnlc_lookup
1 -> bcmp
1 <- bcmp
1 <- dnlc_lookup
1 -> ufs_iaccess
1 -> crgetuid
1 <- crgetuid
1 <- ufs_iaccess
1 -> vn_rele
1 <- vn_rele
1 <- ufs_lookup
1 -> vn_rele
1 <- vn_rele
1 <- lookuppnvp
1 <- lookuppnat
1 <- lookupnameat
1 <- vn_openat
1 -> setf
1 -> fd_reserve
1 -> mutex_owned
1 <- mutex_owned
1 -> mutex_owned
1 <- mutex_owned
1 <- fd_reserve
1 -> cv_broadcast
1 <- cv_broadcast
1 <- setf
1 -> unfalloc
1 -> mutex_owned
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1 <- mutex_owned
1 -> crfree
1 <- crfree
1 -> kmem_cache_free
1 -> kmem_cache_free_debug
1 -> kmem_log_enter
1 <- kmem_log_enter
1 -> tsc_gethrtime
1 <- tsc_gethrtime
1 -> getpcstack
1 <- getpcstack
1 -> kmem_log_enter
1 <- kmem_log_enter
1 -> file_cache_destructor
1 -> mutex_destroy
1 <- mutex_destroy
1 <- file_cache_destructor
1 -> copy_pattern
1 <- copy_pattern
1 <- kmem_cache_free_debug
1 <- kmem_cache_free
1 <- unfalloc
1 -> set_errno
1 <- set_errno
1 <- copen
1 <- open

1 <= open 2

Speculation Options and Tuning
If a speculative buffer is full when a speculative tracing action is attempted, no data is
stored in the buffer and a drop count is incremented. If this situation, a dtrace
message similar to the following example is generated:

dtrace: 38 speculative drops

Speculative drops will not prevent the full speculative buffer from being copied into
the principal buffer when the buffer is committed. Similarly, speculative drops can
occur even if drops were experienced on a speculative buffer that was ultimately
discarded. Speculative drops can be reduced by increasing the speculative buffer size,
which is tuned using the specsize option. The specsize option may be specified
with any size suffix. The resizing policy of this buffer is dictated by the bufresize
option.

Speculative buffers might be unavailable when speculation() is called. If buffers
exist that have not yet been committed or discarded, a dtrace message similar to the
following example is generated:
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dtrace: 1 failed speculation (no speculative buffer available)

You can reduce the likelihood of failed speculations of this nature by increasing the
number of speculative buffers with the nspec option. The value of nspec defaults to
one.

Alternatively, speculation() may fail because all speculative buffers are busy. In
this case, a dtrace message similar to the following example is generated:

dtrace: 1 failed speculation (available buffer(s) still busy)

This message indicates that speculation() was called after commit() was called
for a speculative buffer, but before that buffer was actually committed on all CPUs.
You can reduce the likelihood of failed speculations of this nature by increasing the
rate at which CPUs are cleaned with the cleanrate option. The value of cleanrate
defaults to 101.
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CHAPTER 14

dtrace(1M) Utility

The dtrace(1M) command is a generic front-end to the DTrace facility. The command
implements a simple interface to invoke the D language compiler, the ability to
retrieve buffered trace data from the DTrace kernel facility, and a set of basic routines
to format and print traced data. This chapter provides a complete reference for the
dtrace command.

Description
The dtrace command provides a generic interface to all of the essential services
provided by the DTrace facility, including:

� Options to list the set of probes and providers currently published by DTrace

� Options to enable probes directly using any of the probe description specifiers
(provider, module, function, name)

� Options to run the D compiler and compile one or more D program files or
programs written directly on the command-line

� Options to generate anonymous tracing programs (see Chapter 36)

� Options to generate program stability reports (see Chapter 39)

� Options to modify DTrace tracing and buffering behavior and enable additional D
compiler features (see Chapter 16)

dtrace can also be used to create D scripts by using it in a #! declaration to create an
interpreter file (see Chapter 15). Finally, you can use dtrace to attempt to compile D
programs and determine their properties without actually enabling any tracing using
the -e option, described below.
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Options
The dtrace command accepts the following options:

dtrace [-32 | -64] [-aACeFGHlqSvVwZ] [-b bufsz] [-c cmd] [-D name
[=def]] [-I path] [-L path] [-o output] [-p pid] [-s script] [-U name]
[-x arg [=val]] [-Xa | c | s | t] [-P provider [ [predicate]action]]
[-m [ [provider:]module [ [predicate]action]]] [-f [ [provider:]module:]func
[ [predicate]action]] [-n [ [ [provider:]module:]func:]name [ [predicate]action]]
[-i probe-id [ [predicate]action]]

where predicate is any D predicate enclosed in slashes / / and action is any D
statement list enclosed in braces { } according to the previously described D language
syntax. If D program code is provided as an argument to the -P, -m, -f, -n, or -i
options this text must be appropriately quoted to avoid interpretation by the shell. The
options are as follows:

-32, -64 The D compiler produces programs using the native data model of the
operating system kernel. You can use the isainfo(1) -b command to
determine the current operating system data model. If the -32 option is
specified, dtrace will force the D compiler to compile a D program using
the 32-bit data model. If the -64 option is specified, dtrace will force the
D compiler to compile a D program using the 64-bit data model. These
options are typically not required as dtrace selects the native data model
as the default. The data model affects the sizes of integer types and other
language properties. D programs compiled for either data model may be
executed on both 32-bit and 64-bit kernels. The -32 and -64 options also
determine the ELF file format (ELF32 or ELF64) produced by the -G option.

-a Claim anonymous tracing state and display the traced data. You can
combine the -a option with the -e option to force dtrace to exit
immediately after consuming the anonymous tracing state rather than
continuing to wait for new data. See Chapter 36 for more information
about anonymous tracing.

-A Generate driver.conf(4) directives for anonymous tracing. If the -A
option is specified, dtrace compiles any D programs specified using the
-s option or on the command-line and constructs a set of dtrace(7D)
configuration file directives to enable the specified probes for anonymous
tracing (see Chapter 36) and then exits. By default, dtrace attempts to
store the directives to the file /kernel/drv/dtrace.conf. This behavior
can be modified using the -o option to specify an alternate output file.

-b Set principal trace buffer size. The trace buffer size can include any of the
size suffixes k, m, g, or t as described in Chapter 36. If the buffer space
cannot be allocated, dtrace attempts to reduce the buffer size or exit
depending on the setting of the bufresize property.
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-c Run the specified command cmd and exit upon its completion. If more than
one -c option is present on the command line, dtrace exits when all
commands have exited, reporting the exit status for each child process as it
terminates. The process-ID of the first command is made available to any D
programs specified on the command line or using the -s option through
the $target macro variable. Refer to Chapter 15 for more information on
macro variables.

-C Run the C preprocessor cpp(1) over D programs before compiling them.
Options can be passed to the C preprocessor using the -D, -U, -I, and -H
options. The degree of C standard conformance can be selected using the
-X option. Refer to the description of the -X option for a description of the
set of tokens defined by the D compiler when invoking the C preprocessor.

-D Define the specified name when invoking cpp(1) (enabled using the -C
option). If an equals sign (=) and additional value are specified, the name is
assigned the corresponding value. This option passes the -D option to each
cpp invocation.

-e Exit after compiling any requests and consuming anonymous tracing state
(-a option) but prior to enabling any probes. This option can be combined
with the -a option to print anonymous tracing data and exit, or it can be
combined with D compiler options to verify that the programs compile
without actually executing them and enabling the corresponding
instrumentation.

-f Specify function name to trace or list (-l option). The corresponding
argument can include any of the probe description forms
provider:module:function, module:function, or function. Unspecified probe
description fields are left blank and match any probes regardless of the
values in those fields. If no qualifiers other than function are specified in the
description, all probes with the corresponding function are matched. The -f
argument can be suffixed with an optional D probe clause. More than one
-f option may be specified on the command-line at a time.

-F Coalesce trace output by identifying function entry and return. Function
entry probe reports are indented and their output is prefixed with ->.
Function return probe reports are unindented and their output is prefixed
with <-.

-G Generate an ELF file containing an embedded DTrace program. The DTrace
probes specified in the program are saved inside of a relocatable ELF object
that can be linked into another program. If the -o option is present, the
ELF file is saved using the pathname specified as the argument for this
operand. If the -o option is not present and the DTrace program is
contained with a file whose name is filename.s, then the ELF file is saved
using the name file.o; otherwise the ELF file is saved using the name
d.out.
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-H Print the pathnames of included files when invoking cpp(1) (enabled using
the -C option). This option passes the -H option to each cpp invocation,
causing it to display the list of pathnames, one per line, to stderr.

-i Specify probe identifier to trace or list (-l option). Probe IDs are specified
using decimal integers as shown by dtrace -l. The -i argument can be
suffixed with an optional D probe clause. More than one -i option may be
specified on the command-line at a time.

-I Add the specified directory path to the search path for #include files
when invoking cpp(1) (enabled using the -C option). This option passes
the -I option to each cpp invocation. The specified directory is inserted
into the search path ahead of the default directory list.

-l List probes instead of enabling them. If the -l option is specified, dtrace
produces a report of the probes matching the descriptions given using the
-P, -m, -f, -n, -i, and -s options. If none of these options are specified,
all probes are listed.

-L Add the specified directory path to the search path for DTrace libraries.
DTrace libraries are used to contain common definitions that may be used
when writing D programs. The specified path is added after the default
library search path.

-m Specify module name to trace or list (-l option). The corresponding
argument can include any of the probe description forms provider:module or
module. Unspecified probe description fields are left blank and match any
probes regardless of the values in those fields. If no qualifiers other than
module are specified in the description, all probes with a corresponding
module are matched. The -m argument can be suffixed with an optional D
probe clause. More than one -m option may be specified on the
command-line at a time.

-n Specify probe name to trace or list (-l option). The corresponding
argument can include any of the probe description forms
provider:module:function:name, module:function:name, function:name, or name.
Unspecified probe description fields are left blank and match any probes
regardless of the values in those fields. If no qualifiers other than name are
specified in the description, all probes with a corresponding name are
matched. The -n argument can be suffixed with an optional D probe clause.
More than one -n option may be specified on the command-line at a time.

-o Specify the output file for the -A , -G, and -l options, or for the traced data.
If the -A option is present and -o is not present, the default output file is
/kernel/drv/dtrace.conf. If the -G option is present and the -s
option’s argument is of the form filename.d and -o is not present, the
default output file is filename.o; otherwise the default output file is d.out.

-p Grab the specified process-ID pid, cache its symbol tables, and exit upon its
completion. If more than one -p option is present on the command line,
dtrace exits when all commands have exited, reporting the exit status for
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each process as it terminates. The first process-ID is made available to any
D programs specified on the command line or using the -s option through
the $target macro variable. Refer to Chapter 15 for more information on
macro variables.

-P Specify provider name to trace or list (-l option). The remaining probe
description fields module, function, and name are left blank and match any
probes regardless of the values in those fields. The -P argument can be
suffixed with an optional D probe clause. More than one -P option may be
specified on the command-line at a time.

-q Set quiet mode. dtrace will suppress messages such as the number of
probes matched by the specified options and D programs and will not print
column headers, the CPU ID, the probe ID, or insert newlines into the
output. Only data traced and formatted by D program statements such as
trace() and printf() will be displayed to stdout.

-s Compile the specified D program source file. If the -e option is present, the
program is compiled but no instrumentation is enabled. If the -l option is
present, the program is compiled and the set of probes matched by it is
listed, but no instrumentation will be enabled. If neither -e nor -l are
present, the instrumentation specified by the D program is enabled and
tracing begins.

-S Show D compiler intermediate code. The D compiler will produce a report
of the intermediate code generated for each D program to stderr.

-U Undefine the specified name when invoking cpp(1) (enabled using the -C
option). This option passes the -U option to each cpp invocation.

-v Set verbose mode. If the -v option is specified, dtrace produces a
program stability report showing the minimum interface stability and
dependency level for the specified D programs. DTrace stability levels are
explained in further detail in Chapter 39.

-V Report the highest D programming interface version supported by
dtrace. The version information is printed to stdout and the dtrace
command exits. See Chapter 41 for more information about DTrace
versioning features.

-w Permit destructive actions in D programs specified using the -s, -P, -m,
-f, -n, or -i options. If the -w option is not specified, dtrace will not
permit the compilation or enabling of a D program that contains
destructive actions. Destructive actions are described in further detail in
Chapter 10.

-x Enable or modify a DTrace runtime option or D compiler option. The
options are listed in Chapter 16. Boolean options are enabled by specifying
their name. Options with values are set by separating the option name and
value with an equals sign (=).

Chapter 14 • dtrace(1M) Utility 177



-X Specify the degree of conformance to the ISO C standard that should be
selected when invoking cpp(1) (enabled using the -C option). The -X
option argument affects the value and presence of the __STDC__ macro
depending upon the value of the argument letter:

a (default) ISO C plus K&R compatibility extensions, with
semantic changes required by ISO C. This mode is the
default mode if -X is not specified. The predefined
macro __STDC__ has a value of 0 when cpp is
invoked in conjunction with the -Xa option.

c (conformance) Strictly conformant ISO C, without K&R C
compatibility extensions. The predefined macro
__STDC__ has a value of 1 when cpp is invoked in
conjunction with the -Xc option.

s (K&R C) K&R C only. The macro __STDC__ is not defined
when cpp is invoked in conjunction with the -Xs
option.

t (transition) ISO C plus K&R C compatibility extensions, without
semantic changes required by ISO C. The predefined
macro __STDC__ has a value of 0 when cpp is
invoked in conjunction with the -Xt option.

Because the -X option affects only how the D compiler invokes the C
preprocessor, the -Xa and -Xt options are equivalent from the perspective
of D. Both options are provided to ease re-use of settings from a C build
environment.

Regardless of the -X mode, the following additional C preprocessor
definitions are always specified and valid in all modes:

� __sun
� __unix
� __SVR4
� __sparc (on SPARC® systems only)
� __sparcv9 (on SPARC® systems only when 64–bit programs are

compiled)
� __i386 (on x86 systems only when 32–bit programs are compiled)
� __amd64 (on x86 systems only when 64–bit programs are compiled)
� __‘uname -s‘_‘uname -r‘ (for example, __SunOS_5_10)
� __SUNW_D=1
� __SUNW_D_VERSION=0xMMmmmuuu (where MM is the Major release

value in hexadecimal, mmm is the Minor release value in hexadecimal,
and uuu is the Micro release value in hexadecimal; see Chapter 41 for
more information about DTrace versioning)
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-Z Permit probe descriptions that match zero probes. If the -Z option is not
specified, dtrace will report an error and exit if any probe descriptions
specified in D program files (-s option) or on the command-line (-P, -m,
-f, -n, or -i options) contain descriptions that do not match any known
probes.

Operands
Zero or more additional arguments may be specified on the dtrace command line to
define a set of macro variables ($1, $2, and so on) to be used in any D programs
specified using the -s option or on the command-line. The use of macro variables is
described further in Chapter 15.

Exit Status
The following exit values are returned by the dtrace utility:

0 The specified requests were completed successfully. For D program
requests, the 0 exit status indicates that programs were successfully
compiled, probes were successfully enabled, or anonymous state was
successfully retrieved. dtrace returns 0 even if the specified tracing
requests encounted errors or drops.

1 A fatal error occurred. For D program requests, the 1 exit status indicates
that program compilation failed or that the specified request could not be
satisfied.

2 Invalid command-line options or arguments were specified.
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CHAPTER 15

Scripting

You can use the dtrace(1M) utility to create interpreter files out of D programs
similar to shell scripts that you can install as reusable interactive DTrace tools. The D
compiler and dtrace command provide a set of macro variables that are expanded by
the D compiler that make it easy to create DTrace scripts. This chapter provides a
reference for the macro variable facility and tips for creating persistent scripts.

Interpreter Files
Similar to your shell and utilities such as awk(1) and perl(1), dtrace(1M) can be
used to create executable interpreter files. An interpreter file begins with a line of the
form:

#! pathname [arg]

where pathname is the path of the interpreter and arg is a single optional argument.
When an interpreter file is executed, the system invokes the specified interpreter. If arg
was specified in the interpreter file, it is passed as an argument to the interpreter. The
path to the interpreter file itself and any additional arguments specified when it was
executed are then appended to the interpreter argument list. Therefore, you will
always need to create DTrace interpreter files with at least these arguments:

#!/usr/sbin/dtrace -s

When your interpreter file is executed, the argument to the -s option will therefore be
the pathname of the interpreter file itself. dtrace will then read, compile, and execute
this file as if you had typed the following command in your shell:

# dtrace -s interpreter-file
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The following example shows how to create and execute a dtrace interpreter file.
Type the following D source code and save it in a file named interp.d:

#!/usr/sbin/dtrace -s
BEGIN
{

trace("hello");
exit(0);

}

Mark the interp.d file as executable and execute it as follows:

# chmod a+rx interp.d
# ./interp.d
dtrace: script ’./interp.d’ matched 1 probe
CPU ID FUNCTION:NAME
1 1 :BEGIN hello

#

Remember that the #! directive must comprise the first two characters of your file
with no intervening or preceding whitespace. The D compiler knows to automatically
ignore this line when it processes the interpreter file.

dtrace uses getopt(3) to process command-line options, so you can combine
multiple options in your single interpreter argument. For example, to add the -q
option to the preceding example you could change the interpreter directive to:

#!/usr/sbin/dtrace -qs

If you specify multiple option letters, the -s option must always end the list of
boolean options so that the next argument (the interpreter file name) is processed as
the argument corresponding to the -s option.

If you need to specify more than one option that requires an argument in your
interpreter file, you will not be able to fit all your options and arguments into the
single interpreter argument. Instead, use the #pragma D option directive syntax to
set your options. All of the dtrace command-line options have #pragma equivalents
that you can use, as shown in Chapter 16.

Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing
D programs or interpreter files. Macro variables are identifiers that are prefixed with a
dollar sign ($) and are expanded once by the D compiler when processing your input
file. The D compiler provides the following macro variables:
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TABLE 15–1 D Macro Variables

Name Description Reference

$[0-9]+ macro arguments See “Macro Arguments”
on page 184

$egid effective group-ID getegid(2)

$euid effective user-ID geteuid(2)

$gid real group-ID getgid(2)

$pid process ID getpid(2)

$pgid process group ID getpgid(2)

$ppid parent process ID getppid(2)

$projid project ID getprojid(2)

$sid session ID getsid(2)

$target target process ID See “Target Process ID”
on page 186

$taskid task ID gettaskid(2)

$uid real user-ID getuid(2)

Except for the $[0-9]+ macro arguments and the $target macro variable, the macro
variables all expand to integers corresponding to system attributes such as the process
ID and user ID. The variables expand to the attribute value associated with the current
dtrace process itself, or whatever process is running the D compiler.

Using macro variables in interpreter files enables you to create persistent D programs
that do not need to be edited each time you want to use them. For example, to count
all system calls except those executed by the dtrace command, you can use the
following D program clause containing $pid:

syscall:::entry
/pid != $pid/
{

@calls = count();

}

This clause always produces the desired result, even though each invocation of the
dtrace command will have a different process ID.

Macro variables can be used anywhere an integer, identifier, or string can be used in a
D program. Macro variables are expanded only once (that is, not recursively) when the
input file is parsed. Each macro variable is expanded to form a separate input token,
and cannot be concatenated with other text to yield a single token. For example, if
$pid expands to the value 456, the D code:
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123$pid

would expand to the two adjacent tokens 123 and 456, resulting in a syntax error,
rather than the single integer token 123456.

Macro variables are expanded and concatenated with adjacent text inside of D probe
descriptions at the start of your program clauses. For example, the following clause
uses the DTrace pid provider to instrument the dtrace command:

pid$pid:libc.so:printf:entry
{

...

}

Macro variables are only expanded once within each probe description field; they may
not contain probe description delimiters (:).

Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands specified as part of the dtrace command invocation. These macro
arguments are accessed using the built-in names $0 for name of the D program file or
dtrace command, $1 for the first additional operand, $2 for the second operand, and
so on. If you use the dtrace -s option, $0 expands to the value of the name of the
input file used with this option. For D programs specified on the command-line, $0
expands to the value of argv[0] used to exec dtrace itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the
form of the corresponding text. As with all macro variables, macro arguments can be
used anywhere integer, identifier, and string tokens can be used in a D program. All of
the following examples could form valid D expressions assuming appropriate macro
argument values:

execname == $1 /* with a string macro argument */
x += $1 /* with an integer macro argument */

trace(x->$1) /* with an identifier macro argument */

Macro arguments can be used to create dtrace interpreter files that act like real
Solaris commands and use information specified by a user or by another tool to
modify their behavior. For example, the following D interpreter file traces write(2)
system calls executed by a particular process ID:

#!/usr/sbin/dtrace -s

syscall::write:entry
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/pid == $1/
{

}

If you make this interpreter file executable, you can specify the value of $1 using an
additional command-line argument to your interpreter file:

# chmod a+rx ./tracewrite

# ./tracewrite 12345

The resulting command invocation counts each write(2) system call executed by
process ID 12345.

If your D program references a macro argument that is not provided on the
command-line, an appropriate error message will be printed and your program will
fail to compile:

# ./tracewrite
dtrace: failed to compile script ./tracewrite: line 4:

macro argument $1 is not defined

D programs can reference unspecified macro arguments if the defaultargs option is
set. If defaultargs is set, unspecified arguments will have the value 0. See
Chapter 16 for more information about D compiler options. The D compiler will also
produce an error message if additional arguments are specified on the command line
that are not referenced by your D program.

The macro argument values must match the form of an integer, identifier, or string. If
the argument does not match any of these forms, the D compiler will report an
appropriate error message. When specifying string macro arguments to a DTrace
interpreter file, surround the argument in an extra pair of single quotes to avoid
interpretation of the double quotes and string contents by your shell:

# ./foo ’"a string argument"’

If you want your D macro arguments to be interpreted as string tokens even if they
match the form of an integer or identifier, prefix the macro variable or argument name
with two leading dollar signs (for example, $$1) to force the D compiler to interpret
the argument value as if it were a string surrounded by double quotes. All the usual D
string escape sequences (see Table 2–5) are expanded inside of any string macro
arguments, regardless of whether they are referenced using the $arg or $$arg form of
the macro. If the defaultargs option is set, unspecified arguments that are
referenced with the $$arg form have the value of the empty string ("").
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Target Process ID
Use the $target macro variable to create scripts that can be applied to a particular
user process of interest that is selected on the dtrace command line using the -p
option or created using the -c option. The D programs specified on the command line
or using the -s option are compiled after processes are created or grabbed and the
$target variable expands to the integer process-ID of the first such process. For
example, the following D script could be used to determine the distribution of system
calls executed by a particular subject process:

syscall:::entry
/pid == $target/
{

@[probefunc] = count();

}

To determine the number of system calls executed by the date(1) command, save the
script in the file syscall.d and execute the following command:

# dtrace -s syscall.d -c date
dtrace: script ’syscall.d’ matched 227 probes
Fri Jul 30 13:46:06 PDT 2004
dtrace: pid 109058 has exited

gtime 1
getpid 1
getrlimit 1
rexit 1
ioctl 1
resolvepath 1
read 1
stat 1
write 1
munmap 1
close 2
fstat64 2
setcontext 2
mmap 2
open 2

brk 4
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CHAPTER 16

Options and Tunables

To allow for customization, DTrace affords its consumers several important degrees of
freedom. To minimize the likelihood of requiring specific tuning, DTrace is
implemented using reasonable default values and flexible default policies. However,
situations may arise that require tuning the behavior of DTrace on a
consumer-by-consumer basis. This chapter describes the DTrace options and tunables
and the interfaces you can use to modify them.

Consumer Options
DTrace is tuned by setting or enabling options. The available options are described in
the table below. For some options, dtrace(1M) provides a corresponding
command-line option.

TABLE 16–1 DTrace Consumer Options

Option Name Value dtrace(1M) Alias Description See Chapter

aggrate time Rate of
aggregation
reading

Chapter 9

aggsize size Aggregation
buffer size

Chapter 9

bufresize auto or manual Buffer resizing
policy

Chapter 11

bufsize size -b Principal buffer
size

Chapter 11
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TABLE 16–1 DTrace Consumer Options (Continued)
Option Name Value dtrace(1M) Alias Description See Chapter

cleanrate time Cleaning rate Chapter 13

cpu scalar -c CPU on which to
enable tracing

Chapter 11

defaultargs — Allow references
to unspecified
macro arguments

Chapter 15

destructive — -w Allow
destructive
actions

Chapter 10

dynvarsize size Dynamic variable
space size

Chapter 3

flowindent — -F Indent function
entry and prefix
with ->;
unindent
function return
and prefix with
<-

Chapter 14

grabanon — -a Claim
anonymous state

Chapter 36

jstackframes scalar Number of
default stack
frames
jstack()

Chapter 10

jstackstrsize scalar Default string
space size for
jstack()

Chapter 10

nspec scalar Number of
speculations

Chapter 13

quiet — -q Output only
explicitly traced
data

Chapter 14

specsize size Speculation
buffer size

Chapter 13

strsize size String size Chapter 6

stackframes scalar Number of stack
frames

Chapter 10
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TABLE 16–1 DTrace Consumer Options (Continued)
Option Name Value dtrace(1M) Alias Description See Chapter

stackindent scalar Number of
whitespace
characters to use
when indenting
stack() and
ustack()
output

Chapter 10

statusrate time Rate of status
checking

switchrate time Rate of buffer
switching

Chapter 11

ustackframes scalar Number of user
stack frames

Chapter 10

Values that denote sizes may be given an optional suffix of k, m, g, or t to denote
kilobytes, megabytes, gigabytes, and terabytes respectively. Values that denote times
may be given an optional suffix of ns, us, ms, s or hz to denote nanoseconds,
microseconds, milliseconds, seconds, and number-per-second, respectively.

Modifying Options
Options may be set in a D script by using #pragma D followed by the string option
and the option name. If the option takes a value, the option name should be followed
by an equals sign (=) and the option value. The following examples are all valid option
settings:

#pragma D option nspec=4
#pragma D option grabanon
#pragma D option bufsize=2g
#pragma D option switchrate=10hz
#pragma D option aggrate=100us

#pragma D option bufresize=manual

The dtrace(1M) command also accepts option settings on the command-line as an
argument to the -x option. For example:

# dtrace -x nspec=4 -x grabanon -x bufsize=2g \

-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace indicates that the option name is invalid and
exits:
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# dtrace -x wombats=25
dtrace: failed to set option -x wombats: Invalid option name

#

Similarly, if an option value is not valid for the given option, dtrace will indicate that
the value is invalid:

# dtrace -x bufsize=100wombats
dtrace: failed to set option -x bufsize: Invalid value for specified option

#

If an option is set more than once, subsequent settings overwrite earlier settings. Some
options, such as grabanon, may only be set. The presence of such an option sets it,
and you cannot subsequently unset it.

Options that are set for an anonymous enabling will be honored by the DTrace
consumer that claims the anonymous state. See Chapter 36 for information about
enabling anonymous tracing.
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CHAPTER 17

dtrace Provider

The dtrace provider provides several probes related to DTrace itself. You can use
these probes to initialize state before tracing begins, process state after tracing has
completed, and handle unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe. No other probe will fire until all BEGIN
clauses have completed. This probe can be used to initialize any state that is needed in
other probes. The following example shows how to use the BEGIN probe to initialize
an associative array to map between mmap(2) protection bits and a textual
representation:

BEGIN
{

prot[0] = "---";
prot[1] = "r--";
prot[2] = "-w-";
prot[3] = "rw-";
prot[4] = "--x";
prot[5] = "r-x";
prot[6] = "-wx";
prot[7] = "rwx";

}

syscall::mmap:entry
{

printf("mmap with prot = %s", prot[arg2 & 0x7]);

}
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The BEGIN probe fires in an unspecified context. This means that the output of
stack() or ustack(), and the value of context-specific variables (for example,
execname), are all arbitrary. These values should not be relied upon or interpreted to
infer any meaningful information. No arguments are defined for the BEGIN probe.

The END Probe
The END probe fires after all other probes. This probe will not fire until all other probe
clauses have completed. This probe can be used to process state that has been gathered
or to format the output. The printa() action is therefore often used in the END probe.
The BEGIN and END probes can be used together to measure the total time spent
tracing:

BEGIN
{

start = timestamp;
}

/*
* ... other tracing actions...
*/

END
{

printf("total time: %d secs", (timestamp - start) / 1000000000);

}

See “Data Normalization” on page 120 and “printa()” on page 159 for other
common uses of the END probe.

As with the BEGIN probe, no arguments are defined for the END probe. The context in
which the END probe fires is arbitrary and should not be depended upon.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accommodate any records traced in the END probe. See “fill Policy and END Probes”
on page 149 for details.

Note – The exit() action causes tracing to stop and the END probe to fire. However,
there is some delay between the invocation of the exit() action and the END probe
firing. During this delay, no probes will fire. After a probe invokes the exit() action,
the END probe is not fired until the DTrace consumer determines that exit() has
been called and stops tracing. The rate at which the exit status is checked can be set
using statusrate option. For more information, see Chapter 16.
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ERROR Probe
The ERROR probe fires when a run-time error occurs in executing a clause for a DTrace
probe. For example, if a clause attempts to dereference a NULL pointer, the ERROR
probe will fire, as shown in the following example.

EXAMPLE 17–1 error.d: Record Errors

BEGIN
{

*(char *)NULL;
}

ERROR
{

printf("Hit an error!");

}

When you run this program, you will see output like the following example:

# dtrace -s ./error.d
dtrace: script ’./error.d’ matched 2 probes
CPU ID FUNCTION:NAME
2 3 :ERROR Hit an error!

dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address
(0x0) in action #1 at DIF offset 12

dtrace: 1 error on CPU 2

The output shows that the ERROR probe fired, and also illustrates dtrace(1M)
reporting the error. dtrace has its own enabling of the ERROR probe to allow it to
report errors. Using the ERROR probe, you can create your own custom error handling.

The arguments to the ERROR probe are as follows:

arg1 The enabled probe identifier (EPID) of the
probe that caused the error

arg2 The index of the action that caused the fault

arg3 The DIF offset into that action or -1 if not
applicable

arg4 The fault type

arg5 Value particular to the fault type

The table below describes the various fault types and the value that arg5 will have for
each:

Chapter 17 • dtrace Provider 193



arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or
invalid address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch space to
satisfy scratch allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
stack overflow

None

If the actions taken in the ERROR probe itself cause an error, that error is silently
dropped — the ERROR probe will not be recursively invoked.

Stability
The dtrace provider uses DTrace’s stability mechanism to describe its stabilities as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common
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CHAPTER 18

lockstat Provider

The lockstat provider makes available probes that can be used to discern lock
contention statistics, or to understand virtually any aspect of locking behavior. The
lockstat(1M) command is actually a DTrace consumer that uses the lockstat
provider to gather its raw data.

Overview
The lockstat provider makes available two kinds of probes: content-event probes
and hold-event probes.

Contention-event probes correspond to contention on a synchronization primitive, and
fire when a thread is forced to wait for a resource to become available. Solaris is
generally optimized for the non-contention case, so prolonged contention is not
expected. These probes should be used to understand those cases where contention
does arise. Because contention is relatively rare, enabling contention-event probes
generally doesn’t substantially affect performance.

Hold-event probes correspond to acquiring, releasing, or otherwise manipulating a
synchronization primitive. These probes can be used to answer arbitrary questions
about the way synchronization primitives are manipulated. Because Solaris acquires
and releases synchronization primitives very often (on the order of millions of times
per second per CPU on a busy system), enabling hold-event probes has a much higher
probe effect than does enabling contention-event probes. While the probe effect
induced by enabling them can be substantial, it is not pathological; they may still be
enabled with confidence on production systems.

The lockstat provider makes available probes that correspond to the different
synchronization primitives in Solaris; these primitives and the probes that correspond
to them are discussed in the remainder of this chapter.
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Adaptive Lock Probes
Adaptive locks enforce mutual exclusion to a critical section, and may be acquired in
most contexts in the kernel. Because adaptive locks have few context restrictions, they
comprise the vast majority of synchronization primitives in the Solaris kernel. These
locks are adaptive in their behavior with respect to contention: when a thread attempts
to acquire a held adaptive lock, it will determine if the owning thread is currently
running on a CPU. If the owner is running on another CPU, the acquiring thread will
spin. If the owner is not running, the acquiring thread will block.

The four lockstat probes pertaining to adaptive locks are in Table 18–1. For each probe,
arg0 contains a pointer to the kmutex_t structure that represents the adaptive lock.

TABLE 18–1 Adaptive Lock Probes

adaptive-acquire Hold-event probe that fires immediately after an adaptive lock is
acquired.

adaptive-block Contention-event probe that fires after a thread that has blocked on a
held adaptive mutex has reawakened and has acquired the mutex. If
both probes are enabled, adaptive-block fires before
adaptive-acquire. At most one of adaptive-block and
adaptive-spin will fire for a single lock acquisition. arg1 for
adaptive-block contains the sleep time in nanoseconds.

adaptive-spin Contention-event probe that fires after a thread that has spun on a held
adaptive mutex has successfully acquired the mutex. If both are
enabled, adaptive-spin fires before adaptive-acquire. At most
one of adaptive-spin and adaptive-block will fire for a single
lock acquisition. arg1 for adaptive-spin contains the spin count: the
number of iterations that were taken through the spin loop before the
lock was acquired. The spin count has little meaning on its own, but can
be used to compare spin times.

adaptive-release Hold-event probe that fires immediately after an adaptive lock is
released.

Spin Lock Probes
Threads cannot block in some contexts in the kernel, such as high-level interrupt
context and any context manipulating dispatcher state. In these contexts, this
restriction prevents the use of adaptive locks. Spin locks are instead used to effect
mutual exclusion to critical sections in these contexts. As the name implies, the
behavior of these locks in the presence of contention is to spin until the lock is released
by the owning thread. The three probes pertaining to spin locks are in Table 18–2.
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TABLE 18–2 Spin Lock Probes

spin-acquire Hold-event probe that fires immediately after a spin lock is acquired.

spin-spin Contention-event probe that fires after a thread that has spun on a held spin
lock has successfully acquired the spin lock. If both are enabled,
spin-spin fires before spin-acquire. arg1 for spin-spin contains the
spin count: the number of iterations that were taken through the spin loop
before the lock was acquired. The spin count has little meaning on its own,
but can be used to compare spin times.

spin-release Hold-event probe that fires immediately after a spin lock is released.

Adaptive locks are much more common than spin locks. The following script displays
totals for both lock types to provide data to support this observation.

lockstat:::adaptive-acquire
/execname == "date"/
{

@locks["adaptive"] = count();
}

lockstat:::spin-acquire
/execname == "date"/
{

@locks["spin"] = count();

}

Run this script in one window, and a date(1) command in another. When you
terminate the DTrace script, you will see output similar to the following example:

# dtrace -s ./whatlock.d
dtrace: script ’./whatlock.d’ matched 5 probes
^C
spin 26

adaptive 2981

As this output indicates, over 99 percent of the locks acquired in running the date
command are adaptive locks. It may be surprising that so many locks are acquired in
doing something as simple as a date. The large number of locks is a natural artifact of
the fine-grained locking required of an extremely scalable system like the Solaris
kernel.
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Thread Locks
Thread locks are a special kind of spin lock that are used to lock a thread for purposes
of changing thread state. Thread lock hold events are available as spin lock hold-event
probes (that is, spin-acquire and spin-release), but contention events have
their own probe specific to thread locks. The thread lock hold-event probe is in Table
18–3.

TABLE 18–3 Thread Lock Probe

thread-spin Contention-event probe that fires after a thread has spun on a thread lock.
Like other contention-event probes, if both the contention-event probe and
the hold-event probe are enabled, thread-spin will fire before
spin-acquire. Unlike other contention-event probes, however,
thread-spin fires before the lock is actually acquired. As a result, multiple
thread-spin probe firings may correspond to a single spin-acquire
probe firing.

Readers/Writer Lock Probes
Readers/writer locks enforce a policy of allowing multiple readers or a single writer —
but not both — to be in a critical section. These locks are typically used for structures
that are searched more frequently than they are modified and for which there is
substantial time in the critical section. If critical section times are short, readers/writer
locks will implicitly serialize over the shared memory used to implement the lock,
giving them no advantage over adaptive locks. See rwlock(9F) for more details on
readers/writer locks.

The probes pertaining to readers/writer locks are in Table 18–4. For each probe, arg0
contains a pointer to the krwlock_t structure that represents the adaptive lock.

TABLE 18–4 Readers/Writer Lock Probes

rw-acquire Hold-event probe that fires immediately after a readers/writer lock is
acquired. arg1 contains the constant RW_READER if the lock was acquired
as a reader, and RW_WRITER if the lock was acquired as a writer.
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TABLE 18–4 Readers/Writer Lock Probes (Continued)
rw-block Contention-event probe that fires after a thread that has blocked on a held

readers/writer lock has reawakened and has acquired the lock. arg1
contains the length of time (in nanoseconds) that the current thread had to
sleep to acquire the lock. arg2 contains the constant RW_READER if the lock
was acquired as a reader, and RW_WRITER if the lock was acquired as a
writer. arg3 and arg4 contain more information on the reason for
blocking. arg3 is non-zero if and only if the lock was held as a writer when
the current thread blocked. arg4 contains the readers count when the
current thread blocked. If both the rw-block and rw-acquire probes are
enabled, rw-block fires before rw-acquire.

rw-upgrade Hold-event probe that fires after a thread has successfully upgraded a
readers/writer lock from a reader to a writer. Upgrades do not have an
associated contention event because they are only possible through a
non-blocking interface, rw_tryupgrade(TRYUPGRADE.9F).

rw-downgrade Hold-event probe that fires after a thread had downgraded its ownership of
a readers/writer lock from writer to reader. Downgrades do not have an
associated contention event because they always succeed without
contention.

rw-release Hold-event probe that fires immediately after a readers/writer lock is
released. arg1 contains the constant RW_READER if the released lock was
held as a reader, and RW_WRITER if the released lock was held as a writer.
Due to upgrades and downgrades, the lock may not have been released as it
was acquired.

Stability
The lockstat provider uses DTrace’s stability mechanism* to describe its stabilities
as shown in the following table. For more information about the stability mechanism,
see Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common
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CHAPTER 19

profile Provider

The profile provider provides probes associated with a time-based interrupt firing
every fixed, specified time interval. These unanchored probes that are not associated
with any particular point of execution, but rather with the asynchronous interrupt
event. These probes can be used to sample some aspect of system state every unit time
and the samples can then be used to infer system behavior. If the sampling rate is
high, or the sampling time is long, an accurate inference is possible. Using DTrace
actions, the profile provider can be used to sample practically anything in the
system. For example, you could sample the state of the current thread, the state of the
CPU, or the current machine instruction.

profile-n probes
A profile-n probe fires every fixed interval on every CPU at high interrupt level.
The probe’s firing interval is denoted by the value of n: the interrupt source will fire n
times per second. n may also have an optional time suffix, in which case n is
interpreted to be in the units denoted by the suffix. Valid suffixes and the units they
denote are listed in Table 19–1.

TABLE 19–1 Valid time suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds
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TABLE 19–1 Valid time suffixes (Continued)
Suffix Time Units

min or m minutes

hour or h hours

day or d days

hz hertz (frequency per second)

The following example creates a probe to fire at 97 hertz to sample the currently
running process:

#pragma D option quiet

profile-97
/pid != 0/
{

@proc[pid, execname] = count();
}

END
{

printf("%-8s %-40s %s\n", "PID", "CMD", "COUNT");
printa("%-8d %-40s %@d\n", @proc);

}

Running the above example for a brief period of time results in output similar to the
following example:

# dtrace -s ./prof.d
^C
PID CMD COUNT
223887 sh 1
100360 httpd 1
100409 mibiisa 1
223887 uname 1
218848 sh 2
218984 adeptedit 2
100224 nscd 3
3 fsflush 4
2 pageout 6
100372 java 7
115279 xterm 7
100460 Xsun 7
100475 perfbar 9

223888 prstat 15

You can also use the profile-n provider to sample information about the running
process. The following example D script uses a 1,001 hertz profile probe to sample the
current priority of a specified process:
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profile-1001
/pid == $1/
{

@proc[execname] = lquantize(curlwpsinfo->pr_pri, 0, 100, 10);

}

To see this example script in action, type the following commands in one window:

$ echo $$
494621

$ while true ; do let i=0 ; done

In another window, run the D script for a brief period of time:

# dtrace -s ./profpri.d 494621
dtrace: script ’./profpri.d’ matched 1 probe
^C
ksh

value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@@@@@@@@@@@@@@@ 7443
10 |@@@@@@ 2235
20 |@@@@ 1679
30 |@@@ 1119
40 |@ 560
50 |@ 554

60 | 0

This output shows the bias of the timesharing scheduling class. Because the shell
process is spinning on the CPU, its priority is constantly being lowered by the system.
If the shell process were running less frequently, its priority would be higher. To see
this result, type Control-C in the spinning shell and run the script again:

# dtrace -s ./profpri.d 494621

dtrace: script ’./profpri.d’ matched 1 probe

Now in the shell, type a few characters. When you terminate the DTrace script, output
like the following example will appear:

ksh
value ------------- Distribution ------------- count

40 | 0
50 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 14

60 | 0

Because the shell process was sleeping awaiting user input instead of spinning on the
CPU, when it did run it was run at a much higher priority.

Chapter 19 • profile Provider 203



tick-n probes
Like profile-n probes, tick-n probes fire every fixed interval at high interrupt
level. However, unlike profile-n probes, which fire on every CPU, tick-n probes
fire on only one CPU per interval. The actual CPU may change over time. As with
profile-n probes, n defaults to rate-per-second but may also have an optional time
suffix. tick-n probes have several uses, such as provideing some periodic output or
taking a periodic action.

Arguments
The arguments to profile probes are as follows:

arg0 The program counter (PC) in the kernel at the time that the probe fired, or 0
if the current process was not executing in the kernel at the time that the
probe fired

arg1 The PC in the user-level process at the time that the probe fired, or 0 if the
current process was executing at the kernel at the time that the probe fired

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then
arg1 is non-zero. Thus, you can use arg0 and arg1 to differentiate user-level from
kernel level, as in this simple example:

profile-1ms
{

@ticks[arg0 ? "kernel" : "user"] = count();

}

Timer Resolution
The profile provider uses arbitrary resolution interval timers in the operating
system. On architectures that do not support truly arbitrary resolution time-based
interrupts, the frequency is limited by the system clock frequency, which is specified
by the hz kernel variable. Probes of higher frequency than hz on such architectures
will fire some number of times every 1/hz seconds. For example, a 1000 hertz
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profile probe on such an architecture with hz set to 100 will fire ten times in rapid
succession every ten milliseconds. On platforms that support arbitrary resolution, a
1000 hertz profile probe would fire exactly every one millisecond.

The following example tests a given architecture’s resolution:

profile-5000
{

/*
* We divide by 1,000,000 to convert nanoseconds to milliseconds, and
* then we take the value mod 10 to get the current millisecond within
* a 10 millisecond window. On platforms that do not support truly
* arbitrary resolution profile probes, all of the profile-5000 probes
* will fire on roughly the same millisecond. On platforms that
* support a truly arbitrary resolution, the probe firings will be
* evenly distributed across the milliseconds.
*/
@ms = lquantize((timestamp / 1000000) % 10, 0, 10, 1);

}

tick-1sec
/i++ >= 10/
{

exit(0);

}

On an architecture that supports arbitrary resolution profile probes, running the
example script will yield an even distribution:

# dtrace -s ./restest.d
dtrace: script ’./restest.d’ matched 2 probes
CPU ID FUNCTION:NAME
0 33631 :tick-1sec

value ------------- Distribution ------------- count
< 0 | 0
0 |@@@ 10760
1 |@@@@ 10842
2 |@@@@ 10861
3 |@@@ 10820
4 |@@@ 10819
5 |@@@ 10817
6 |@@@@ 10826
7 |@@@@ 10847
8 |@@@@ 10830

9 |@@@@ 10830

On an architecture that does not support arbitrary resolution profile probes,
running the example script will yield an uneven distribution:

# dtrace -s ./restest.d
dtrace: script ’./restest.d’ matched 2 probes
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CPU ID FUNCTION:NAME
0 28321 :tick-1sec

value ------------- Distribution ------------- count
4 | 0
5 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 107864
6 | 424
7 | 255
8 | 496

9 | 0

On these architectures, hz may be manually tuned in /etc/system to improve the
effective profile resolution.

Currently, all variants of UltraSPARC (sun4u) support arbitrary resolution profile
probes. Many variants of the x86 architecture (i86pc) also support arbitrary
resolution profile probes, although some older variants do not.

Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an
as-needed basis. Thus, the desired profile probe might not appear in a listing of all
probes (for example, by using dtrace -l -P profile) but the probe will be created
when it is explicitly enabled.

On architectures that support arbitrary resolution profile probes, a time interval
that is too short would cause the machine to continuously field time-based interrupts,
thereby denying service on the machine. To prevent this situation, the profile
provider will silently refuse to create any probe that would result in an interval of less
than two hundred microseconds.

Stability
The profile provider uses DTrace’s stability mechanism to describe its stabilities as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.
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Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common
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CHAPTER 20

fbt Provider

This chapter describes the Function Boundary Tracing (FBT) provider, which provides
probes associated with the entry to and return from most functions in the Solaris
kernel. The function is the fundamental unit of program text. In a well-designed
system, each function performs a discrete and well-defined operation on a specified
object or series of like objects. Therefore, even on the smallest Solaris systems, FBT will
provide on the order of 20,000 probes.

Similar to other DTrace providers, FBT has no probe effect when it is not explicitly
enabled. When enabled, FBT only induces a probe effect in probed functions. While
the FBT implementation is highly specific to the instruction set architecture, FBT has
been implemented on both SPARC and x86 platforms. For each instruction set, there
are a small number of functions that do not call other functions and are highly
optimized by the compiler (so-called leaf functions) that cannot be instrumented by
FBT. Probes for these functions are not present in DTrace.

Effective use of FBT probes requires knowledge of the operating system
implementation. Therefore, it is recommended that you use FBT only when
developing kernel software or when other providers are not sufficient. Other DTrace
providers, including syscall, sched, proc, and io, can be used to answer most
system analysis questions without requiring operating system implementation
knowledge.

Probes
FBT provides a probe at the boundary of most functions in the kernel. The boundary of
a function is crossed by entering the function and by returning from the function. FBT
thus provides two functions for every function in the kernel: one upon entry to the
function, and one upon return from the function. These probes are named entry and
return, respectively. The function name, and module name are specified as part of
the probe. All FBT probes specify a function name and module name.
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Probe arguments

entry probes
The arguments to entry probes are the same as the arguments to the corresponding
operating system kernel function. These arguments may be accessed in a typed
fashion by using the args[] array. These arguments may be accessed as int64_t’s
by using the arg0 .. argn variables.

return probes
While a given function only has a single point of entry, it may have many different
points where it returns to its caller. You are usually interested in either the value that a
function returned or the fact that the function returned at all rather than the specific
return path taken. FBT therefore collects a function’s multiple return sites into a single
return probe. If the exact return path is of interest, you can examine the return
probe args[0] value, which indicates the offset (in bytes) of the returning instruction
in the function text.

If the function has a return value, the return value is stored in args[1]. If a function
does not have a return value, args[1] is not defined.

Examples
You can use FBT to easily explore the kernel’s implementation. The following example
script records the first ioctl(2) from any xclock process and then follows the
subsequent code path through the kernel:

/*
* To make the output more readable, we want to indent every function entry
* (and unindent every function return). This is done by setting the
* "flowindent" option.
*/
#pragma D option flowindent

syscall::ioctl:entry
/execname == "xclock" && guard++ == 0/
{
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self->traceme = 1;
printf("fd: %d", arg0);

}

fbt:::
/self->traceme/
{}

syscall::ioctl:return
/self->traceme/
{

self->traceme = 0;
exit(0);

}

Running this script results in output similar to the following example:

# dtrace -s ./xioctl.d
dtrace: script ’./xioctl.d’ matched 26254 probes
CPU FUNCTION
0 => ioctl fd: 3
0 -> ioctl
0 -> getf
0 -> set_active_fd
0 <- set_active_fd
0 <- getf
0 -> fop_ioctl
0 -> sock_ioctl
0 -> strioctl
0 -> job_control_type
0 <- job_control_type
0 -> strcopyout
0 -> copyout
0 <- copyout
0 <- strcopyout
0 <- strioctl
0 <- sock_ioctl
0 <- fop_ioctl
0 -> releasef
0 -> clear_active_fd
0 <- clear_active_fd
0 -> cv_broadcast
0 <- cv_broadcast
0 <- releasef
0 <- ioctl

0 <= ioctl

The output shows that an xclock process called ioctl() on a file descriptor that
appears to be associated with a socket.

You can also use FBT when trying to understand kernel drivers. For example, the
ssd(7D) driver has many code paths by which EIO may be returned. FBT can be
easily used to determine the precise code path that resulted in an error condition, as
shown in the following example:
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fbt:ssd::return
/arg1 == EIO/
{

printf("%s+%x returned EIO.", probefunc, arg0);

}

For more information on any one return of EIO, one may wish to speculatively trace
all fbt probes, and then commit()(or discard()) based on the return value of a
specific function. See Chapter 13 for details on speculative tracing.

Alternatively, you can use FBT to understand the functions called within a specified
module. The following example lists all of the functions called in UFS:

# dtrace -n fbt:ufs::entry’{@a[probefunc] = count()}’
dtrace: description ’fbt:ufs::entry’ matched 353 probes
^C
ufs_ioctl 1
ufs_statvfs 1
ufs_readlink 1
ufs_trans_touch 1
wrip 1
ufs_dirlook 1
bmap_write 1
ufs_fsync 1
ufs_iget 1
ufs_trans_push_inode 1
ufs_putpages 1
ufs_putpage 1
ufs_syncip 1
ufs_write 1
ufs_trans_write_resv 1
ufs_log_amt 1
ufs_getpage_miss 1
ufs_trans_syncip 1
getinoquota 1
ufs_inode_cache_constructor 1
ufs_alloc_inode 1
ufs_iget_alloced 1
ufs_iget_internal 2
ufs_reset_vnode 2
ufs_notclean 2
ufs_iupdat 2
blkatoff 3
ufs_close 5
ufs_open 5
ufs_access 6
ufs_map 8
ufs_seek 11
ufs_addmap 15
rdip 15
ufs_read 15
ufs_rwunlock 16
ufs_rwlock 16
ufs_delmap 18
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ufs_getattr 19
ufs_getpage_ra 24
bmap_read 25
findextent 25
ufs_lockfs_begin 27
ufs_lookup 46
ufs_iaccess 51
ufs_imark 92
ufs_lockfs_begin_getpage 102
bmap_has_holes 102
ufs_getpage 102
ufs_itimes_nolock 107
ufs_lockfs_end 125
dirmangled 498

dirbadname 498

If you know the purpose or arguments of a kernel function, you can use FBT to
understand how or why the function is being called. For example, putnext(9F) takes
a pointer to a queue(9S) structure as its first member. The q_qinfo member of the
queue structure is a pointer to a qinit(9S) structure. The qi_minfo member of the
qinit structure has a pointer to a module_info(9S) structure, which contains the
module name in its mi_idname member. The following example puts this information
together by using the FBT probe in putnext to track putnext(9F) calls by module
name:

fbt::putnext:entry
{

@calls[stringof(args[0]->q_qinfo->qi_minfo->mi_idname)] = count();

}

Running the above script results in output similar to the following example:

# dtrace -s ./putnext.d
^C

iprb 1
rpcmod 1
pfmod 1
timod 2
vpnmod 2
pts 40
conskbd 42
kb8042 42
tl 58
arp 108
tcp 126
ptm 249
ip 313
ptem 340
vuid2ps2 361
ttcompat 412
ldterm 413
udp 569
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strwhead 624

mouse8042 726

You can also use FBT to determine the time spent in a particular function. The
following example shows how to determine the callers of the DDI delaying routines
drv_usecwait(9F) and delay(9F).

fbt::delay:entry,
fbt::drv_usecwait:entry
{

self->in = timestamp
}

fbt::delay:return,
fbt::drv_usecwait:return
/self->in/
{

@snoozers[stack()] = quantize(timestamp - self->in);
self->in = 0;

}

This example script is particularly interesting to run during boot. Chapter 36 describes
the procedure for performing anonymous tracing during system boot. Upon reboot,
you might see output similar to the following example:

# dtrace -ae

ata‘ata_wait+0x34
ata‘ata_id_common+0xf5
ata‘ata_disk_id+0x20
ata‘ata_drive_type+0x9a
ata‘ata_init_drive+0xa2
ata‘ata_attach+0x50
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
devfs‘dv_find+0x125
devfs‘devfs_lookup+0x40
genunix‘fop_lookup+0x21
genunix‘lookuppnvp+0x236
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘cstatat_getvp+0x134

value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@@@@ 4105
8192 |@@@@ 783
16384 |@@@@@@@@@@@@@@ 2793
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32768 | 16
65536 | 0

kb8042‘kb8042_wait_poweron+0x29
kb8042‘kb8042_init+0x22
kb8042‘kb8042_attach+0xd6
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
genunix‘resolve_pathname+0xa5
genunix‘ddi_pathname_to_dev_t+0x16
consconfig_dacf‘consconfig_load_drivers+0x14
consconfig_dacf‘dynamic_console_config+0x6c
consconfig‘consconfig+0x8
unix‘stubs_common_code+0x3b

value ------------- Distribution ------------- count
262144 | 0
524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 221
1048576 |@@@@ 29
2097152 | 0

usba‘hubd_enable_all_port_power+0xed
usba‘hubd_check_ports+0x8e
usba‘usba_hubdi_attach+0x275
usba‘usba_hubdi_bind_root_hub+0x168
uhci‘uhci_attach+0x191
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘i_ddi_attach_node_hierarchy+0x49
genunix‘attach_driver_nodes+0x49
genunix‘ddi_hold_installed_driver+0xe3
genunix‘attach_drivers+0x28

value ------------- Distribution ------------- count
33554432 | 0
67108864 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3

134217728 | 0
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Tail-call Optimization
When one function ends by calling another function, the compiler can engage in
tail-call optimization, in which the function being called reuses the caller’s stack frame.
This procedure is most commonly used in the SPARC architecture, where the compiler
reuses the caller’s register window in the function being called in order to minimize
register window pressure.

The presence of this optimization causes the return probe of the calling function to
fire before the entry probe of the called function. This ordering can lead to quite a bit
of confusion. For example, if you wanted to record all functions called from a
particular function and any functions that this function calls, you might use the
following script:

fbt::foo:entry
{

self->traceme = 1;
}

fbt:::entry
/self->traceme/
{

printf("called %s", probefunc);
}

fbt::foo:return
/self->traceme/
{

self->traceme = 0;

}

However, if foo() ends in an optimized tail-call, the tail-called function, and
therefore any functions that it calls, will not be captured. The kernel cannot be
dynamically deoptimized on the fly, and DTrace does not wish to engage in a lie about
how code is structured. Therefore, you should be aware of when tail-call optimization
might be used.

Tail-call optimization is likely to be used in source code similar to the following
example:

return (bar());

Or in source code similar to the following example:

(void) bar();

return;
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Conversely, function source code that ends like the following example cannot have its
call to bar() optimized, because the call to bar() is not a tail-call:

bar();

return (rval);

You can determine whether a call has been tail-call optimized using the following
technique:

� While running DTrace, trace arg0 of the return probe in question. arg0 contains
the offset of the returning instruction in the function.

� After DTrace has stopped, use mdb(1) to look at the function. If the traced offset
contains a call to another function instead of an instruction to return from the
function, the call has been tail-call optimized.

Due to the instruction set architecture, tail-call optimization is far more common on
SPARC systems than on x86 systems. The following example uses mdb to discover
tail-call optimization in the kernel’s dup() function:

# dtrace -q -n fbt::dup:return’{printf("%s+0x%x", probefunc, arg0);}’

While this command is running, run a program that performs a dup(2), such as a bash
process. The above command should provide output similar to the following example:

dup+0x10

^C

Now examine the function with mdb:

# echo "dup::dis" | mdb -k
dup: sra %o0, 0, %o0
dup+4: mov %o7, %g1
dup+8: clr %o2
dup+0xc: clr %o1
dup+0x10: call -0x1278 <fcntl>

dup+0x14: mov %g1, %o7

The output shows that dup+0x10 is a call to the fcntl() function and not a ret
instruction. Therefore, the call to fcntl() is an example of tail-call optimization.

Assembly Functions
You might observe functions that seem to enter but never return or vice versa. Such
rare functions are generally hand-coded assembly routines that branch to the middle
of other hand-coded assembly functions. These functions should not impede analysis:
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the branched-to function must still return to the caller of the branched-from function.
That is, if you enable all FBT probes, you should see the entry to one function and the
return from another function at the same stack depth.

Instruction Set Limitations
Some functions cannot be instrumented by FBT. The exact nature of uninstrumentable
functions is specific to the instruction set architecture.

x86 Limitations
Functions that do not create a stack frame on x86 systems cannot be instrumented by
FBT. Because the register set for x86 is extraordinarily small, most functions must put
data on the stack and therefore create a stack frame. However, some x86 functions do
not create a stack frame and therefore cannot be instrumented. Actual numbers vary,
but typically fewer than five percent of functions cannot be instrumented on the x86
platform.

SPARC Limitations
Leaf routines hand-coded in assembly language on SPARC systems cannot be
instrumented by FBT. The majority of the kernel is written in C, and all functions
written in C can be instrumented by FBT. Actual numbers vary, but typically fewer
cannot be instrumented on the SPARC platform.

Breakpoint Interaction
FBT works by dynamically modifying kernel text. Because kernel breakpoints also
work by modifying kernel text, if a kernel breakpoint is placed at an entry or return
site before loading DTrace, FBT will refuse to provide a probe for the function, even if
the kernel breakpoint is subsequently removed. If the kernel breakpoint is placed after
loading DTrace, both the kernel breakpoint and the DTrace probe will correspond to
the same point in text. In this situation, the breakpoint will trigger first, and then the
probe will fire when the debugger resumes the kernel. It is recommended that kernel
breakpoints not be used concurrently with DTrace. If breakpoints are required, use the
DTrace breakpoint() action instead.
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Module Loading
The Solaris kernel can dynamic load and unload kernel modules. When FBT is loaded
and a module is dynamically loaded, FBT automatically provides new probes
associated with the new module. If a loaded module has unenabled FBT probes, the
module may be unloaded; the corresponding probes will be destroyed as the module
is unloaded. If a loaded module has enabled FBT probes, the module is considered
busy, and cannot be unloaded.

Stability
The FBT provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

As FBT exposes the kernel implementation, nothing about it is Stable — and the
Module and Function name and data stability are explicitly Private. The data stability
for Provider and Name are Evolving, but all other data stabilities are Private: they are
artifacts of the current implementation. The dependency class for FBT is ISA: while
FBT is available on all current instruction set architectures, there is no guarantee that
FBT will be available on arbitrary future instruction set architectures.
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CHAPTER 21

syscall Provider

The syscall provider makes available a probe at the entry to and return from every
system call in the system. Because system calls are the primary interface between
user-level applications and the operating system kernel, the syscall provider can
offer tremendous insight into application behavior with respect to the system.

Probes
syscall provides a pair of probes for each system call: an entry probe that fires
before the system call is entered, and a return probe that fires after the system call
has completed but before control has transferred back to user-level. For all syscall
probes, the function name is set to be the name of the instrumented system call and
the module name is undefined.

The names of the system calls as provided by the syscall provider may be found in
the /etc/name_to_sysnum file. Often, the system call names provided by syscall
correspond to names in Section 2 of the man pages. However, some probes provided
by the syscall provider do not directly correspond to any documented system call.
There common reasons for this discrepancy are described in this section.

System Call Anachronisms
In some cases, the name of the system call as provided by the syscall provider is
actually a reflection of an ancient implementation detail. For example, for reasons
dating back to UNIX™ antiquity, the name of exit(2) in /etc/name_to_sysnum is
rexit. Similarly, the name of time(2) is gtime, and the name of both execle(2) and
execve(2) is exece.
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Subcoded System Calls
Some system calls as presented in Section 2 are implemented as suboperations of an
undocumented system call. For example, the system calls related to System V
semaphores (semctl(2), semget(2), semids(2), semop(2), and semtimedop(2)) are
implemented as suboperations of a single system call, semsys. The semsys system
call takes as its first argument an implementation-specific subcode denoting the specific
system call required: SEMCTL, SEMGET, SEMIDS, SEMOP or SEMTIMEDOP, respectively.
As a result of overloading a single system call to implement multiple system calls,
there is only a single pair of syscall probes for System V semaphores:
syscall::semsys:entry and syscall::semsys:return.

Large File System Calls
A 32-bit program that supports large files that exceed four gigabytes in size must be
able to process 64–bit file offsets. Because large files require use of large offsets, large
files are manipulated through a parallel set of system interfaces, as described in
lf64(5). These interfaces are documented in lf64, but they do not have individual
man pages. Each of these large file system call interfaces appears as its own syscall
probe as shown in Table 21–1.

TABLE 21–1 sycall Large File Probes

Large File syscall Probe System Call

creat64 creat(2)

fstat64 fstat(2)

fstatvfs64 fstatvfs(2)

getdents64 getdents(2)

getrlimit64 getrlimit(2)

lstat64 lstat(2)

mmap64 mmap(2)

open64 open(2)

pread64 pread(2)

pwrite64 pwrite(2)

setrlimit64 setrlimit(2)

stat64 stat(2)

statvfs64 statvfs(2)
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Private System Calls
Some system calls are private implementation details of Solaris subsystems that span
the user-kernel boundary. As such, these system calls do not have man pages in
Section 2. Examples of system calls in this category include the signotify system
call, which is used as part of the implementation of POSIX.4 message queues, and the
utssys system call, which is used to implement fuser(1M).

Arguments
For entry probes, the arguments (arg0 .. argn) are the arguments to the system call.
For return probes, both arg0 and arg1 contain the return value. A non-zero value
in the D variable errno indicates system call failure.

Stability
The syscall provider uses DTrace’s stability mechanism to describe its stabilities as
shown in the following table. For more information about the stability mechanism,
refer to Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Unstable Unstable ISA

Name Evolving Evolving Common

Arguments Unstable Unstable ISA
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CHAPTER 22

sdt Provider

The Statically Defined Tracing (SDT) provider creates probes at sites that a software
programmer has formally designated. The SDT mechanism allows programmers to
consciously choose locations of interest to users of DTrace and to convey some
semantic knowledge about each location through the probe name. The Solaris kernel
has defined a handful of SDT probes, and will likely add more over time. DTrace also
provides a mechanism for user application developers to define static probes,
described in Chapter 34.

Probes
The SDT probes defined by the Solaris kernel are listed in Table 22–1. The name
stability and data stability of these probes are both Private because their description
here thus reflects the kernel’s implementation and should not be inferred to be an
interface commitment. For more information about the DTrace stability mechanism,
see “Stability” on page 231.

TABLE 22–1 SDT Probes

Probe name Description arg0

callout-start Probe that fires immediately before
executing a callout (see
<sys/callo.h>). Callouts are
executed by periodic system clock,
and represent the implementation
for timeout(9F).

Pointer to the callout_t (see
<sys/callo.h>) corresponding
to the callout to be executed.
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TABLE 22–1 SDT Probes (Continued)
Probe name Description arg0

callout-end Probe that fires immediately after
executing a callout (see
<sys/callo.h>).

Pointer to the callout_t (see
<sys/callo.h>) corresponding
to the callout just executed.

interrupt-start Probe that fires immediately before
calling into a device’s interrupt
handler.

Pointer to the dev_info structure
(see <sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

interrupt-complete Probe that fires immediately after
returning from a device’s interrupt
handler.

Pointer to dev_info structure (see
<sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

Examples
The following example is a script to observe callout behavior on a per-second basis:

#pragma D option quiet

sdt:::callout-start
{

@callouts[((callout_t *)arg0)->c_func] = count();
}

tick-1sec
{

printa("%40a %10@d\n", @callouts);
clear(@callouts);

}

Running this example reveals the frequent users of timeout(9F) in the system, as
shown in the following output:

# dtrace -s ./callout.d
FUNC COUNT

TS‘ts_update 1
uhci‘uhci_cmd_timeout_hdlr 3

genunix‘setrun 5
genunix‘schedpaging 5

ata‘ghd_timeout 10
uhci‘uhci_handle_root_hub_status_change 309

FUNC COUNT
ip‘tcp_time_wait_collector 1

TS‘ts_update 1
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uhci‘uhci_cmd_timeout_hdlr 3
genunix‘schedpaging 4

genunix‘setrun 8
ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 300

FUNC COUNT
ip‘tcp_time_wait_collector 0

iprb‘mii_portmon 1
TS‘ts_update 1

uhci‘uhci_cmd_timeout_hdlr 3
genunix‘schedpaging 4

genunix‘setrun 7
ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 300

The timeout(9F) interface only produces a single timer expiration. Consumers of
timeout() requiring interval timer functionality typically reinstall their timeout from
their timeout() handler. The following example shows this behavior:

#pragma D option quiet

sdt:::callout-start
{

self->callout = ((callout_t *)arg0)->c_func;
}

fbt::timeout:entry
/self->callout && arg2 <= 100/
{

/*
* In this case, we are most interested in interval timeout(9F)s that
* are short. We therefore do a linear quantization from 0 ticks to
* 100 ticks. The system clock’s frequency — set by the variable
* "hz" — defaults to 100, so 100 system clock ticks is one second.
*/
@callout[self->callout] = lquantize(arg2, 0, 100);

}

sdt:::callout-end
{

self->callout = NULL;
}

END
{

printa("%a\n%@d\n\n", @callout);

}

Running this script and waiting several seconds before typing Control-C results in
output similar to the following example:

# dtrace -s ./interval.d
^C
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genunix‘schedpaging

value ------------- Distribution ------------- count
24 | 0
25 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 20
26 | 0

ata‘ghd_timeout

value ------------- Distribution ------------- count
9 | 0
10 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 51
11 | 0

uhci‘uhci_handle_root_hub_status_change

value ------------- Distribution ------------- count
0 | 0
1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1515

2 | 0

The output shows that uhci_handle_root_hub_status_change() in the
uhci(7D) driver represents the shortest interval timer on the system: it is called every
system clock tick.

The interrupt-start probe can be used to understand interrupt activity. The
following example shows how to quantize the time spent executing an interrupt
handler by driver name:

interrupt-start
{

self->ts = vtimestamp;
}

interrupt-complete
/self->ts/
{

this->devi = (struct dev_info *)arg0;
@[stringof(‘devnamesp[this->devi->devi_major].dn_name),

this->devi->devi_instance] = quantize(vtimestamp - self->ts);

}

Running this script results in output similar to the following example:

# dtrace -s ./intr.d
dtrace: script ’./intr.d’ matched 2 probes
^C
isp 0

value ------------- Distribution ------------- count
8192 | 0
16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
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32768 | 0

pcf8584 0
value ------------- Distribution ------------- count

64 | 0
128 | 2
256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 157
512 |@@@@@@ 31
1024 | 3
2048 | 0

pcf8584 1
value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 154
8192 |@@@@@@@ 37
16384 | 2
32768 | 0

qlc 0
value ------------- Distribution ------------- count
16384 | 0
32768 |@@ 9
65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 126
131072 |@ 5
262144 | 2
524288 | 0

hme 0
value ------------- Distribution ------------- count
1024 | 0
2048 | 6
4096 | 2
8192 |@@@@ 89
16384 |@@@@@@@@@@@@@ 262
32768 |@ 37
65536 |@@@@@@@ 139
131072 |@@@@@@@@ 161
262144 |@@@ 73
524288 | 4
1048576 | 0
2097152 | 1
4194304 | 0

ohci 0
value ------------- Distribution ------------- count
8192 | 0
16384 | 3
32768 | 1
65536 |@@@ 143
131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1368

262144 | 0
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Creating SDT Probes
If you are a device driver developer, you might be interested in creating your own
SDT probes in your Solaris driver. The disabled probe effect of SDT is essentially the
cost of several no-operation machine instructions. You are therefore encouraged to add
SDT probes to your device drivers as needed. Unless these probes negatively affect
performance, you can leave them in your shipping code.

Declaring Probes
SDT probes are declared using the DTRACE_PROBE, DTRACE_PROBE1,
DTRACE_PROBE2, DTRACE_PROBE3 and DTRACE_PROBE4 macros from
<sys/sdt.h>. The module name and function name of an SDT-based probe
corresponds to the kernel module and function of the probe. The name of the probe
depends on the name given in the DTRACE_PROBEn macro. If the name contains no
two consecutive underbars (__), the name of the probe is as written in the macro. If
the name contains any two consecutive underbars, the probe name converts the
consecutive underbars to a single dash (-). For example, if a DTRACE_PROBE macro
specifies transaction__start, the SDT probe will be named
transaction-start. This substitution allows C code to provide macro names that
are not valid C identifiers without specifying a string.

DTrace includes the kernel module name and function name as part of the tuple
identifying a probe, so you do not need to include this information in the probe name
to prevent name space collisions. You can use the command dtrace -l -P sdt -m
module on your driver module to list the probes you have installed and the full names
that will be seen by users of DTrace.

Probe Arguments
The arguments for each SDT probe are the arguments specified in the corresponding
DTRACE_PROBEn macro reference. The number of arguments depends on which
macro was used to create the probe: DTRACE_PROBE1 specifies one argument,
DTRACE_PROBE2 specifies two arguments, and so on. When declaring your SDT
probes, you can minimize their disabled probe effect by not dereferencing pointers
and not loading from global variables in the probe arguments. Both pointer
dereferencing and global variable loading may be done safely in D actions that enable
probes, so DTrace users can request these actions only when they are needed.
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Stability
The SDT provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA
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CHAPTER 23

sysinfo Provider

The sysinfo provider makes available probes that correspond to kernel statistics
classified by the name sys. Because these statistics provide the input for system
monitoring utilities like mpstat(1M), the sysinfo provider enables quick
exploration of observed aberrant behavior.

Probes
The sysinfo provider makes available probes that correspond to the fields in the sys
named kernel statistic: a probe provided by sysinfo fires immediately before the
corresponding sys value is incremented. The following example shows how to
display both the names and the current values of the sys named kernel statistic using
the kstat(1M) command.

$ kstat -n sys
module: cpu instance: 0
name: sys class: misc

bawrite 123
bread 2899
bwrite 17995
cpu_ticks_idle 73743866
cpu_ticks_kernel 2096277
cpu_ticks_user 1010122
cpu_ticks_wait 46413

...

The sysinfo probes are described in Table 23–1.
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TABLE 23–1 sysinfo Probes

bawrite Probe that fires whenever a buffer is about to be asynchronously written out
to a device.

bread Probe that fires whenever a buffer is physically read from a device. bread
fires after the buffer has been requested from the device, but before blocking
pending its completion.

bwrite Probe that fires whenever a buffer is about to be written out to a device,
whether synchronously or asynchronously.

cpu_ticks_idle Probe that fires when the periodic system clock has made the determination
that a CPU is idle. Note that this probe fires in the context of the system
clock and therefore fires on the CPU running the system clock. The cpu_t
argument (arg2) indicates the CPU that has been deemed idle. See
“Arguments” on page 236 for details.

cpu_ticks_kernel Probe that fires when the periodic system clock has made the determination
that a CPU is executing in the kernel. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
executing in the kernel. See “Arguments” on page 236 for details.

cpu_ticks_user Probe that fires when the periodic system clock has made the determination
that a CPU is executing in user mode. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
running in user-mode. See “Arguments” on page 236 for details.

cpu_ticks_wait Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle, but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2)
indicates the CPU that has been deemed waiting on I/O. See “Arguments”
on page 236 for details.

idlethread Probe that fires whenever a CPU enters the idle loop.

intrblk Probe that fires whenever an interrupt thread blocks.

inv_swtch Probe that fires whenever a running thread is forced to involuntarily give
up the CPU.

lread Probe that fires whenever a buffer is logically read from a device.

lwrite Probe that fires whenever a buffer is logically written to a device

modload Probe that fires whenever a kernel module is loaded.

modunload Probe that fires whenever a kernel module is unloaded.

msg Probe that fires whenever a msgsnd(2) or msgrcv(2) system call is made,
but before the message queue operations have been performed.
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TABLE 23–1 sysinfo Probes (Continued)
mutex_adenters Probe that fires whenever an attempt is made to acquire an owned adaptive

lock. If this probe fires, one of the lockstat provider’s adaptive-block
or adaptive-spin probes will also fire. See Chapter 18 for details.

namei Probe that fires whenever a name lookup is attempted in the filesystem.

nthreads Probe that fires whenever a thread is created.

phread Probe that fires whenever a raw I/O read is about to be performed.

phwrite Probe that fires whenever a raw I/O write is about to be performed.

procovf Probe that fires whenever a new process cannot be created because the
system is out of process table entries.

pswitch Probe that fires whenever a CPU switches from executing one thread to
executing another.

readch Probe that fires after each successful read, but before control is returned to
the thread performing the read. A read may occur through the read(2),
readv(2) or pread(2) system calls. arg0 contains the number of bytes that
were successfully read.

rw_rdfails Probe that fires whenever an attempt is made to read-lock a readers/writer
when the lock is either held by a writer, or desired by a writer. If this probe
fires, the lockstat provider’s rw-block probe will also fire. See
Chapter 18 for details.

rw_wrfails Probe that fires whenever an attempt is made to write-lock a readers/writer
lock when the lock is held either by some number of readers or by another
writer. If this probe fires, the lockstat provider’s rw-block probe will
also fire. See Chapter 18 for details.

sema Probe that fires whenever a semop(2) system call is made, but before any
semaphore operations have been performed.

sysexec Probe that fires whenever an exec(2) system call is made.

sysfork Probe that fires whenever a fork(2) system call is made.

sysread Probe that fires whenever a read(2), readv(2), or pread(2) system call is
made.

sysvfork Probe that fires whenever a vfork(2) system call is made.

syswrite Probe that fires whenever a write(2), writev(2), or pwrite(2) system call
is made.

trap Probe that fires whenever a processor trap occurs. Note that some
processors, in particular UltraSPARC variants, handle some light-weight
traps through a mechanism that does not cause this probe to fire.

ufsdirblk Probe that fires whenever a directory block is read from the UFS file system.
See ufs(7FS) for details on UFS.
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TABLE 23–1 sysinfo Probes (Continued)
ufsiget Probe that fires whenever an inode is retrieved. See ufs(7FS) for details on

UFS.

ufsinopage Probe that fires after an in-core inode without any associated data pages has
been made available for reuse. See ufs(7FS) for details on UFS.

ufsipage Probe that fires after an in-core inode with associated data pages has been
made available for reuse. This probe fires after the associated data pages
have been flushed to disk. See ufs(7FS) for details on UFS.

wait_ticks_io Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2)
indicates the CPU that is described as waiting for I/O. See “Arguments”
on page 236 for details on arg2. No semantic difference between
wait_ticks_io and cpu_ticks_wait; wait_ticks_io exists solely for
historical reasons.

writech Probe that fires after each successful write, but before control is returned to
the thread performing the write. A write may occur through the write(2),
writev(2) or pwrite(2) system calls. arg0 contains the number of bytes
that were successfully written.

xcalls Probe that fires whenever a cross-call is about to be made. A cross-call is the
operating system’s mechanism for one CPU to request immediate work of
another CPU.

Arguments
The arguments to sysinfo probes are as follows:

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some probes this argument may take other
values.

arg1 A pointer to the current value of the statistic to be incremented. This value
is a 64–bit quantity that will be incremented by the value in arg0.
Dereferencing this pointer enables consumers to determine the current
count of the statistic corresponding to the probe.

arg2 A pointer to the cpu_t structure that corresponds to the CPU on which the
statistic is to be incremented. This structure is defined in
<sys/cpuvar.h>, but it is part of the kernel implementation and should
be considered Private.
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The value of arg0 is 1 for most sysinfo probes. However, the readch and writech
probes set arg0 to the number of bytes read or written, respectively. This features
permits you to determine the size of reads by executable name, as shown in the
following example:

# dtrace -n readch’{@[execname] = quantize(arg0)}’
dtrace: description ’readch’ matched 4 probes
^C
xclock

value ------------- Distribution ------------- count
16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
64 | 0

acroread
value ------------- Distribution ------------- count

16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3
64 | 0

FvwmAuto
value ------------- Distribution ------------- count

2 | 0
4 |@@@@@@@@@@@@@ 13
8 |@@@@@@@@@@@@@@@@@@@@@ 21
16 |@@@@@ 5
32 | 0

xterm
value ------------- Distribution ------------- count

16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@ 19
64 |@@@@@@@@@ 7
128 |@@@@@@ 5
256 | 0

fvwm2
value ------------- Distribution ------------- count

-1 | 0
0 |@@@@@@@@@ 186
1 | 0
2 | 0
4 |@@ 51
8 | 17
16 | 0
32 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 503
64 | 9
128 | 0

Xsun
value ------------- Distribution ------------- count

-1 | 0
0 |@@@@@@@@@@@ 269
1 | 0
2 | 0
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4 | 2
8 |@ 31
16 |@@@@@ 128
32 |@@@@@@@ 171
64 |@ 33
128 |@@@ 85
256 |@ 24
512 | 8
1024 | 21
2048 |@ 26
4096 | 21
8192 |@@@@ 94

16384 | 0

The sysinfo provider sets arg2 to be a pointer to a cpu_t, a structure internal to the
kernel implementation. Most sysinfo probes fire on the CPU on which the statistic is
being incremented, but some probes do not. The exceptional probes include
cpu_ticks_idle, cpu_ticks_kernel, cpu_ticks_user and cpu_ticks_wait,
which always fire on the CPU executing the system clock. Use the cpu_id member of
the cpu_t structure to determine the CPU of interest. The following D script runs for
about ten seconds and gives a quick snapshot of relative CPU behavior on a
statistic-by-statistic basis:

cpu_ticks_*
{

@[probename] = lquantize(((cpu_t *)arg2)->cpu_id, 0, 1024, 1);
}

tick-1sec
/x++ >= 10/
{

exit(0);

}

Running the above script results in output similar to the following example:

# dtrace -s ./tick.d
dtrace: script ’./tick.d’ matched 5 probes
CPU ID FUNCTION:NAME
22 37588 :tick-1sec

cpu_ticks_user
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@ 14
13 |@@@@ 7
14 |@ 3
15 |@ 2
16 |@@ 4
17 |@@@@@@ 10
18 | 0
19 |@ 2
20 |@@@ 6
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21 |@@@ 5
22 | 1
23 |@@@@@@ 10
24 | 0

cpu_ticks_wait
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@@@@@@ 241
13 |@@@@@@@@@@@@@ 236
14 | 16
15 |@@@@@@@ 132
16 | 11
17 | 10
18 | 7
19 |@ 18
20 | 4
21 | 16
22 | 13
23 | 10
24 | 0

cpu_ticks_kernel
value ------------- Distribution ------------- count

11 | 0
12 |@@@@@@@@ 234
13 |@@@@@ 159
14 |@@@ 104
15 |@@@@ 131
16 |@@ 66
17 |@ 40
18 |@ 51
19 |@ 36
20 |@@ 56
21 |@ 42
22 |@@@ 96
23 |@@ 57
24 | 0

cpu_ticks_idle
value ------------- Distribution ------------- count

11 | 0
12 |@@ 534
13 |@@ 621
14 |@@@ 900
15 |@@ 758
16 |@@@ 942
17 |@@@ 963
18 |@@@ 965
19 |@@@ 967
20 |@@@ 957
21 |@@@ 960
22 |@@@ 913
23 |@@@ 946

24 | 0

Chapter 23 • sysinfo Provider 239



Example
Examine the following output from mpstat(1M):

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
12 90 22 5760 422 299 435 26 71 116 11 1372 5 19 17 60
13 46 18 4585 193 162 431 25 69 117 12 1039 3 17 14 66
14 33 13 3186 405 381 397 21 58 105 10 770 2 17 11 70
15 34 19 4769 109 78 417 23 57 115 13 962 3 14 14 69
16 74 16 4421 437 406 448 29 77 111 8 1020 4 23 14 59
17 51 15 4493 139 110 378 23 62 109 9 928 4 18 14 65
18 41 14 4204 494 468 360 23 56 102 9 849 4 17 12 68
19 37 14 4229 115 87 363 22 50 106 10 845 3 15 14 67
20 78 17 5170 200 169 456 26 69 108 9 1119 5 21 25 49
21 53 16 4817 78 51 394 22 56 106 9 978 4 17 22 57
22 32 13 3474 486 463 347 22 48 106 9 769 3 17 17 63

23 43 15 4572 59 34 361 21 46 102 10 947 4 15 22 59

From the above output, you might conclude that the xcal field seems too high,
especially given the relative idleness of the system. mpstat determines the value in
the xcal field by examining the xcalls field of the sys kernel statistic. This
aberration can therefore be explored easily by enabling the xcalls sysinfo probe,
as shown in the following example:

# dtrace -n xcalls’{@[execname] = count()}’
dtrace: description ’xcalls’ matched 4 probes
^C
dtterm 1
nsrd 1
in.mpathd 2
top 3
lockd 4
java_vm 10
ksh 19
iCald.pl6+RPATH 28
nwadmin 30
fsflush 34
nsrindexd 45
in.rlogind 56
in.routed 100
dtrace 153
rpc.rstatd 246
imapd 377
sched 431
nfsd 1227

find 3767

The output shows where to look for the source of the cross-calls. Some number of
find(1) processes are causing the majority of the cross-calls. The following D script
can be used to understand the problem in further detail:
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syscall:::entry
/execname == "find"/
{

self->syscall = probefunc;
self->insys = 1;

}

sysinfo:::xcalls
/execname == "find"/
{

@[self->insys ? self->syscall : "<none>"] = count();
}

syscall:::return
/self->insys/
{

self->insys = 0;
self->syscall = NULL;

}

This script uses the syscall provider to attribute cross-calls from find to a
particular system call. Some cross-calls, such as those resulting from page faults, might
not emanate from system calls. The script prints “<none>” in these cases. Running the
script results in output similar to the following example:

# dtrace -s ./find.d
dtrace: script ’./find.d’ matched 444 probes
^C
<none> 2
lstat64 2433

getdents64 14873

This output indicates that the majority of cross-calls induced by find are in turn
induced by getdents(2) system calls. Further exploration would depend on the
direction you want to explore. If you want to understand why find processes are
making calls to getdents, you could write a D script to aggregate on ustack()
when find induces a cross-call. If you want to understand why calls to getdents are
inducing cross-calls, you could write a D script to aggregate on stack() when find
induces a cross-call. Whatever your next step, the presence of the xcalls probe has
enabled you to quickly discover the root cause of the unusual monitoring output.

Stability
The sysinfo provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.
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Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA
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CHAPTER 24

vminfo Provider

The vminfo provider makes available probes that correspond to the vm kernel
statistics. Because these statistics provide the input for system monitoring utilities like
vmstat(1M), the vminfo provider enables quick exploration of observed aberrant
behavior.

Probes
The vminfo provider makes available probes that correspond to the fields in the vm
named kernel statistic: a probe provided by vminfo fires immediately before the
corresponding vm value is incremented. To display both the names and the current
values of the vm named kernel statistic, use the kstat(1M) command, as shown in the
following example:

$ kstat -n vm
module: cpu instance: 0
name: vm class: misc

anonfree 13
anonpgin 2620
anonpgout 13
as_fault 12528831
cow_fault 2278711
crtime 202.10625712
dfree 1328740
execfree 0
execpgin 5541

...

The vminfo probes are described in Table 24–1.
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TABLE 24–1 vminfo Probes

anonfree Probe that fires whenever an unmodified anonymous page is freed as part
of paging activity. Anonymous pages are those that are not associated with
a file. Memory containing such pages includes heap memory, stack memory,
or memory obtained by explicitly mapping zero(7D).

anonpgin Probe that fires whenever an anonymous page is paged in from a swap
device.

anonpgout Probe that fires whenever a modified anonymous page is paged out to a
swap device.

as_fault Probe that fires whenever a fault is taken on a page and the fault is neither a
protection fault nor a copy-on-write fault.

cow_fault Probe that fires whenever a copy-on-write fault is taken on a page. arg0
contains the number of pages that are created as a result of the
copy-on-write.

dfree Probe that fires whenever a page is freed as a result of paging activity.
Whenever dfree fires, exactly one of anonfree, execfree or fsfree
will also subsequently fire.

execfree Probe that fires whenever an unmodified executable page is freed as a result
of paging activity.

execpgin Probe that fires whenever an executable page is paged in from the backing
store.

execpgout Probe that fires whenever a modified executable page is paged out to the
backing store. Most paging of executable pages occurs in terms of
execfree. execpgout can only fire if an executable page is modified in
memory, an uncommon occurrence in most systems.

fsfree Probe that fires whenever an unmodified file system data page is freed as
part of paging activity.

fspgin Probe that fires whenever a file system page is paged in from the backing
store.

fspgout Probe that fires whenever a modified file system page is paged out to the
backing store.

kernel_asflt Probe that fires whenever a page fault is taken by the kernel on a page in its
own address space. Whenever kernel_asflt fires, it will be immediately
preceded by a firing of the as_fault probe.

maj_fault Probe that fires whenever a page fault is taken that results in I/O from a
backing store or swap device. Whenever maj_fault fires, it will be
immediately preceded by a firing of the pgin probe.

pgfrec Probe that fires whenever a page is reclaimed off of the free page list.
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TABLE 24–1 vminfo Probes (Continued)
pgin Probe that fires whenever a page is paged in from the backing store or from

a swap device. This probe differs from maj_fault in that maj_fault only
fires when a page is paged in as a result of a page fault. pgin fires every
time a page is paged in, regardless of the reason.

pgout Probe that fires whenever a page is paged out to the backing store or to a
swap device.

pgpgin Probe that fires whenever a page is paged in from the backing store or from
a swap device. The only difference between pgpgin and pgin is that
pgpgin contains the number of pages paged in as arg0. pgin always
contains 1 in arg0.

pgpgout Probe that fires whenever a page is paged out to the backing store or to a
swap device. The only difference between pgpgout and pgout is that
pgpgout contains the number of pages paged out as arg0. (pgout always
contains 1 in arg0.)

pgrec Probe that fires whenever a page is reclaimed.

pgrrun Probe that fires whenever the pager is scheduled.

pgswapin Probe that fires whenever pages from a swapped-out process are swapped
in. The number of pages swapped in is contained in arg0.

pgswapout Probe that fires whenever pages are swapped out as part of swapping out a
process. The number of pages swapped out is contained in arg0.

prot_fault Probe that fires whenever a page fault is taken due to a protection violation.

rev Probe that fires whenever the page daemon begins a new revolution
through all pages.

scan Probe that fires whenever the page daemon examines a page.

softlock Probe that fires whenever a page is faulted as a part of placing a software
lock on the page.

swapin Probe that fires whenever a swapped-out process is swapped back in.

swapout Probe that fires whenever a process is swapped out.

zfod Probe that fires whenever a zero-filled page is created on demand.
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Arguments

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some it may take other values; these probes
are noted in Table 24–1.

arg1 A pointer to the current value of the statistic to be incremented. This value
is a 64–bit quantity that will be incremented by the value in arg0.
Dereferencing this pointer allows consumers to determine the current count
of the statistic corresponding to the probe.

Example
Examine the following output from vmstat(1M):

kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr cd s0 — — in sy cs us sy id
0 1 0 1341844 836720 26 311 1644 0 0 0 0 216 0 0 0 797 817 697 9 10 81
0 1 0 1341344 835300 238 934 1576 0 0 0 0 194 0 0 0 750 2795 791 7 14 79
0 1 0 1340764 833668 24 165 1149 0 0 0 0 133 0 0 0 637 813 547 5 4 91
0 1 0 1340420 833024 24 394 1002 0 0 0 0 130 0 0 0 621 2284 653 14 7 79
0 1 0 1340068 831520 14 202 380 0 0 0 0 59 0 0 0 482 5688 1434 25 7 68

The pi column in the above output denotes the number of pages paged in. The
vminfo provider enables you to learn more about the source of these page-ins, as
shown in the following example:

dtrace -n pgin’{@[execname] = count()}’
dtrace: description ’pgin’ matched 1 probe
^C
xterm 1
ksh 1
ls 2
lpstat 7
sh 17
soffice 39
javaldx 103
soffice.bin 3065

The output shows that a process associated with the StarOffice™ software,
soffice.bin, is responsible for most of the page-ins. To get a better picture of
soffice.bin in terms of virtual memory behavior, you could enable all vminfo
probes. The following example runs dtrace(1M) while launching the StarOffice
software:
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dtrace -P vminfo’/execname == "soffice.bin"/{@[probename] = count()}’
dtrace: description ’vminfo’ matched 42 probes
^C

kernel_asflt 1
fspgin 10
pgout 16
execfree 16
execpgout 16
fsfree 16
fspgout 16
anonfree 16
anonpgout 16
pgpgout 16
dfree 16
execpgin 80
prot_fault 85
maj_fault 88
pgin 90
pgpgin 90
cow_fault 859
zfod 1619
pgfrec 8811
pgrec 8827

as_fault 9495

The following example script provides more information about the virtual memory
behavior of the StarOffice software during its startup:

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin" && start == 0/
{

/*
* This is the first time that a vminfo probe has been hit; record
* our initial timestamp.
*/
start = timestamp;

}

vminfo:::maj_fault,
vminfo:::zfod,
vminfo:::as_fault
/execname == "soffice.bin"/
{

/*
* Aggregate on the probename, and lquantize() the number of seconds
* since our initial timestamp. (There are 1,000,000,000 nanoseconds
* in a second.) We assume that the script will be terminated before
* 60 seconds elapses.
*/
@[probename] =

lquantize((timestamp - start) / 1000000000, 0, 60);
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}

Run the script while again starting the StarOffice software. Then, create a new
drawing, create a new presentation, and then close all files and quit the application.
Press Control-C in the shell running the D script. The results provide a view of some
virtual memory behavior over time:

# dtrace -s ./soffice.d
dtrace: script ’./soffice.d’ matched 10 probes
^C

maj_fault
value ------------- Distribution ------------- count

7 | 0
8 |@@@@@@@@@ 88
9 |@@@@@@@@@@@@@@@@@@@@ 194
10 |@ 18
11 | 0
12 | 0
13 | 2
14 | 0
15 | 1
16 |@@@@@@@@ 82
17 | 0
18 | 0
19 | 2
20 | 0

zfod
value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@ 525
1 |@@@@@@@@ 605
2 |@@ 208
3 |@@@ 280
4 | 4
5 | 0
6 | 0
7 | 0
8 | 44
9 |@@ 161
10 | 2
11 | 0
12 | 0
13 | 4
14 | 0
15 | 29
16 |@@@@@@@@@@@@@@ 1048
17 | 24
18 | 0
19 | 0
20 | 1
21 | 0
22 | 3
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23 | 0

as_fault
value ------------- Distribution ------------- count
< 0 | 0
0 |@@@@@@@@@@@@@ 4139
1 |@@@@@@@ 2249
2 |@@@@@@@ 2402
3 |@ 594
4 | 56
5 | 0
6 | 0
7 | 0
8 | 189
9 |@@ 929
10 | 39
11 | 0
12 | 0
13 | 6
14 | 0
15 | 297
16 |@@@@ 1349
17 | 24
18 | 0
19 | 21
20 | 1
21 | 0
22 | 92

23 | 0

The output shows some StarOffice behavior with respect to the virtual memory
system. For example, the maj_fault probe didn’t fire until a new instance of the
application was started. As you would hope, a “warm start” of StarOffice did not
result in new major faults. The as_fault output shows an initial burst of activity,
latency while the user located the menu to create a new drawing, another period of
idleness, and a final burst of activity when the user clicked on a new presentation. The
zfod output shows that creating the new presentation induced significant pressure for
zero-filled pages, but only for a short period of time.

The next iteration of DTrace investigation in this example would depend on the
direction you want to explore. If you want to understand the source of the demand for
zero-filled pages, you could aggregate on ustack() in a zfod enabling. You might
want to establish a threshold for zero-filled pages and use the stop() destructive
action to stop the offending process when the threshold is exceeded. This approach
would enable you to use more traditional debugging tools like truss(1) or mdb(1).
The vminfo provider enables you to associate statistics seen in the output of
conventional tools like vmstat(1M) with the applications that are inducing the
systemic behavior.
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Stability
The vminfo provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA
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CHAPTER 25

proc Provider

The proc provider makes available probes pertaining to the following activities:
process creation and termination, LWP creation and termination, executing new
program images, and sending and handling signals.

Probes
The proc probes are described in Table 25–1.

TABLE 25–1 proc Probes

Probe Description

create Probe that fires when a process is created using fork(2), forkall(2),
fork1(2), or vfork(2). The psinfo_t corresponding to the new
child process is pointed to by args[0]. You can distinguish vfork
from the other fork variants by checking for PR_VFORKP in the
pr_flag member of the forking thread’s lwpsinfo_t. You can
distinguish fork1 from forkall by examining the pr_nlwp
members of both the parent process’s psinfo_t (curpsinfo) and
the child process’s psinfo_t (args[0]). Because the create probe
only fires after the process has been successfully created, and because
LWP creation is part of creating a process, lwp-create will fire for
any LWPs created at process creation time before the create probe
fires for the new process.
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TABLE 25–1 proc Probes (Continued)
Probe Description

exec Probe that fires whenever a process loads a new process image with a
variant of the exec(2) system call: exec(2), execle(2), execlp(2),
execv(2), execve(2), execvp(2). The exec probe fires before the
process image is loaded. Process variables like execname and
curpsinfo therefore contain the process state before the image is
loaded. Some time after the exec probe fires, either the
exec-failure probe or the exec-success probe will
subsequently fire in the same thread. The path of the new process
image is pointed to by args[0].

exec-failure Probe that fires when an exec(2) variant has failed. The
exec-failure probe fires only after the exec probe has fired in the
same thread. The errno(3C) value is provided in args[0].

exec-success Probe that fires when an exec(2) variant has succeeded. Like the
exec-failure probe, the exec-success probe fires only after the
exec probe has fired in the same thread. By the time the
exec-success probe fires, process variables like execname and
curpsinfo contain the process state after the new process image has
been loaded.

exit Probe that fires when the current process is exiting. The reason for
exit, which is expressed as one of the SIGCHLD siginfo(3HEAD)
codes, is contained in args[0].

fault Probe that fires when a thread experiences a machine fault. The fault
code (as defined in proc(4)) is in args[0]. The siginfo structure
corresponding to the fault is pointed to by args[1]. Only those
faults that induce a signal can trigger the fault probe.

lwp-create Probe that fires when an LWP is created, typically as a result of
thr_create(3C). The lwpsinfo_t corresponding to the new
thread is pointed to by args[0]. The psinfo_t of the process
containing the thread is pointed to by args[1].

lwp-start Probe that fires within the context of a newly created LWP. The
lwp-start probe will fire before any user-level instructions are
executed. If the LWP is the first LWP in the process, the start probe
will fire, followed by lwp-start.

lwp-exit Probe that fires when an LWP is exiting, due either to a signal or to an
explicit call to thr_exit(3C).

signal-discard Probe that fires when a signal is sent to a single-threaded process, and
the signal is both unblocked and ignored by the process. Under these
conditions, the signal is discarded on generation. The lwpsinfo_t
and psinfo_t of the target process and thread are in args[0] and
args[1], respectively. The signal number is in args[2].
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TABLE 25–1 proc Probes (Continued)
Probe Description

signal-send Probe that fires when a signal is sent to a thread or process. The
signal-send probe fires in the context of the sending process and
thread. The lwpsinfo_t and psinfo_t of the receiving process and
thread are in args[0] and args[1], respectively. The signal
number is in args[2]. signal-send is always followed by
signal-handle or signal-clear in the receiving process and
thread.

signal-handle Probe that fires immediately before a thread handles a signal. The
signal-handle probe fires in the context of the thread that will
handle the signal. The signal number is in args[0]. A pointer to the
siginfo_t structure that corresponds to the signal is in args[1].
The address of the signal handler in the process is in args[2].

signal-clear Probes that fires when a pending signal is cleared because the target
thread was waiting for the signal in sigwait(2),
sigwaitinfo(3RT), or sigtimedwait(3RT). Under these
conditions, the pending signal is cleared and the signal number is
returned to the caller. The signal number is in args[0].
signal-clear fires in the context of the formerly waiting thread.

start Probe that fires in the context of a newly created process. The start
probe will fire before any user-level instructions are executed in the
process.

Arguments
The argument types for the proc probes are listed in Table 25–2. The arguments are
described in Table 25–1.

TABLE 25–2 proc Probe Arguments

Probe args[0] args[1] args[2]

create psinfo_t * — —

exec char * — —

exec-failure int — —

exit int — —

fault int siginfo_t * —

lwp-create lwpsinfo_t * psinfo_t * —
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TABLE 25–2 proc Probe Arguments (Continued)
Probe args[0] args[1] args[2]

lwp-start — — —

lwp-exit — — —

signal-discard lwpsinfo_t * psinfo_t * int

signal-discard lwpsinfo_t * psinfo_t * int

signal-send lwpsinfo_t * psinfo_t * int

signal-handle int siginfo_t * void (*)(void)

signal-clear int — —

start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t, a structure that is
documented in proc(4). The definition of the lwpsinfo_t structure as available to
DTrace consumers is as follows:

typedef struct lwpsinfo {
int pr_flag; /* flags; see below */
id_t pr_lwpid; /* LWP id */
uintptr_t pr_addr; /* internal address of thread */
uintptr_t pr_wchan; /* wait addr for sleeping thread */
char pr_stype; /* synchronization event type */
char pr_state; /* numeric thread state */
char pr_sname; /* printable character for pr_state */
char pr_nice; /* nice for cpu usage */
short pr_syscall; /* system call number (if in syscall) */
int pr_pri; /* priority, high value = high priority */
char pr_clname[PRCLSZ]; /* scheduling class name */
processorid_t pr_onpro; /* processor which last ran this thread */
processorid_t pr_bindpro; /* processor to which thread is bound */
psetid_t pr_bindpset; /* processor set to which thread is bound */

} lwpsinfo_t;

The pr_flag field is a bit-mask holding flags describing the process. These flags and
their meanings are described in Table 25–3.

TABLE 25–3 pr_flag Values

PR_ISSYS The process is a system process.

PR_VFORKP The process is the parent of a vfork(2)’d child.
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TABLE 25–3 pr_flag Values (Continued)
PR_FORK The process has its inherit-on-fork mode set.

PR_RLC The process has its run-on-last-close mode set.

PR_KLC The process has its kill-on-last-close mode set.

PR_ASYNC The process has its asynchronous-stop mode set.

PR_MSACCT The process has microstate accounting enabled.

PR_MSFORK The process microstate accounting is inherited on fork.

PR_BPTADJ The process has its breakpoint adjustment mode set.

PR_PTRACE The process has its ptrace(3)-compatibility mode set.

PR_STOPPED The thread is an LWP that is stopped.

PR_ISTOP The thread is an LWP stopped on an event of interest.

PR_DSTOP The thread is an LWP that has a stop directive in effect.

PR_STEP The thread is an LWP that has a single-step directive in effect.

PR_ASLEEP The thread is an LWP in an interruptible sleep within a system call.

PR_DETACH The thread is a detached LWP. See pthread_create(3) and
pthread_join(3).

PR_DAEMON The thread is a daemon LWP. See pthread_create(3).

PR_AGENT The thread is the agent LWP for the process.

PR_IDLE The thread is the idle thread for a CPU. Idle threads only run on a
CPU when the run queues for the CPU are empty.

The pr_addr field is the address of a private, in-kernel data structure representing the
thread. While the data structure is private, the pr_addr field may be used as a token
unique to a thread for the thread’s lifetime.

The pr_wchan field is set when the thread is sleeping on a synchronization object.
The meaning of the pr_wchan field is private to the kernel implementation, but the
field may be used as a token unique to the synchronization object.

The pr_stype field is set when the thread is sleeping on a synchronization object.
The possible values for the pr_stype field are in Table 25–4.

TABLE 25–4 pr_stype Values

SOBJ_MUTEX Kernel mutex synchronization object. Used to serialize access to
shared data regions in the kernel. See Chapter 18 and
mutex_init(9F) for details on kernel mutex synchronization objects.
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TABLE 25–4 pr_stype Values (Continued)
SOBJ_RWLOCK Kernel readers/writer synchronization object. Used to synchronize

access to shared objects in the kernel that can allow multiple
concurrent readers or a single writer. See Chapter 18 and rwlock(9F)
for details on kernel readers/writer synchronization objects.

SOBJ_CV Condition variable synchronization object. A condition variable is
designed to wait indefinitely until some condition becomes true.
Condition variables are typically used to synchronize for reasons
other than access to a shared data region, and are the mechanism
generally used when a process performs a program-directed
indefinite wait. For example, blocking in poll(2), pause(2),
wait(3C), and the like.

SOBJ_SEMA Semaphore synchronization object. A general-purpose
synchronization object that – like condition variable objects – does not
track a notion of ownership. Because ownership is required to
implement priority inheritance in the Solaris kernel, the lack of
ownership inherent in semaphore objects inhibits their widespread
use. See semaphore(9F) for details.

SOBJ_USER A user-level synchronization object. All blocking on user-level
synchronization objects is handled with SOBJ_USER synchronization
objects. User-level synchronization objects include those created with
mutex_init(3), sema_init(3C), rwlock_init(3C),
cond_init(3C) and their POSIX equivalents.

SOBJ_USER_PI A user-level synchronization object that implements priority
inheritance. Some user-level synchronization objects that track
ownership additionally allow for priority inheritance. For example,
mutex objects created with pthread_mutex_init(3) may be made
to inherit priority using pthread_mutexattr_setprotocol(3).

SOBJ_SHUTTLE A shuttle synchronization object. Shuttle objects are used to
implement doors. See door_create(3DOOR) for more information.

The pr_state field is set to one of the values in Table 25–5. The pr_sname field is set
to a corresponding character shown in parentheses in the same table.

TABLE 25–5 pr_state Values

SSLEEP (S) The thread is sleeping. The sched:::sleep probe will fire
immediately before a thread’s state is transitioned to SSLEEP.

SRUN (R) The thread is runnable, but is not currently running. The
sched:::enqueue probe will fire immediately before a thread’s
state is transitioned to SRUN.

SZOMB (Z) The thread is a zombie LWP.

SSTOP (T) The thread is stopped, either due to an explicit proc(4) directive or
some other stopping mechanism.
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TABLE 25–5 pr_state Values (Continued)
SIDL (I) The thread is an intermediate state during process creation.

SONPROC (O) The thread is running on a CPU. The sched:::on-cpu probe will
fire in the context of the SONPROC thread a short time after the
thread’s state is transitioned to SONPROC.

psinfo_t
Several proc probes have an argument of type psinfo_t, a structure that is
documented in proc(4). The definition of the psinfo_t structure as available to
DTrace consumers is as follows:

typedef struct psinfo {
int pr_nlwp; /* number of active lwps in the process */
pid_t pr_pid; /* unique process id */
pid_t pr_ppid; /* process id of parent */
pid_t pr_pgid; /* pid of process group leader */
pid_t pr_sid; /* session id */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uintptr_t pr_addr; /* address of process */
dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
timestruc_t pr_start; /* process start time, from the epoch */
char pr_fname[PRFNSZ]; /* name of execed file */
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
int pr_argc; /* initial argument count */
uintptr_t pr_argv; /* address of initial argument vector */
uintptr_t pr_envp; /* address of initial environment vector */
char pr_dmodel; /* data model of the process */
taskid_t pr_taskid; /* task id */
projid_t pr_projid; /* project id */
poolid_t pr_poolid; /* pool id */
zoneid_t pr_zoneid; /* zone id */

} psinfo_t;

The pr_dmodel field is set to either PR_MODEL_ILP32, denoting a 32–bit process, or
PR_MODEL_LP64, denoting a 64–bit process.
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Examples

exec
You can use the exec probe to easily determine which programs are being executed,
and by whom, as shown in the following example:

#pragma D option quiet

proc:::exec
{

self->parent = execname;
}

proc:::exec-success
/self->parent != NULL/
{

@[self->parent, execname] = count();
self->parent = NULL;

}

proc:::exec-failure
/self->parent != NULL/
{

self->parent = NULL;
}

END
{

printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
printa("%-20s %-20s %@d\n", @);

}

Running the example script for a short period of time on a build machine results in
output similar to the following example:

# dtrace -s ./whoexec.d
^C
WHO WHAT COUNT
make.bin yacc 1
tcsh make 1
make.bin spec2map 1
sh grep 1
lint lint2 1
sh lint 1
sh ln 1
cc ld 1
make.bin cc 1
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lint lint1 1
sh lex 1
make.bin mv 2
sh sh 3
sh make 3
sh sed 4
sh tr 4
make make.bin 4
sh install.bin 5
sh rm 6
cc ir2hf 33
cc ube 33
sh date 34
sh mcs 34
cc acomp 34
sh cc 34
sh basename 34
basename expr 34

make.bin sh 87

start and exit
If you want to know how long programs are running from creation to termination,
you can enable the start and exit probes, as shown in the following example:

proc:::start
{

self->start = timestamp;
}

proc:::exit
/self->start/
{

@[execname] = quantize(timestamp - self->start);
self->start = 0;

}

Running the example script on the build server for several seconds results in output
similar to the following example:

# dtrace -s ./progtime.d
dtrace: script ’./progtime.d’ matched 2 probes
^C

ir2hf
value ------------- Distribution ------------- count

4194304 | 0
8388608 |@ 1
16777216 |@@@@@@@@@@@@@@@@ 14
33554432 |@@@@@@@@@@ 9
67108864 |@@@ 3
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134217728 |@ 1
268435456 |@@@@ 4
536870912 |@ 1
1073741824 | 0

ube
value ------------- Distribution ------------- count

16777216 | 0
33554432 |@@@@@@@ 6
67108864 |@@@ 3
134217728 |@@ 2
268435456 |@@@@ 4
536870912 |@@@@@@@@@@@@ 10
1073741824 |@@@@@@@ 6
2147483648 |@@ 2
4294967296 | 0

acomp
value ------------- Distribution ------------- count

8388608 | 0
16777216 |@@ 2
33554432 | 0
67108864 |@ 1
134217728 |@@@ 3
268435456 | 0
536870912 |@@@@@ 5
1073741824 |@@@@@@@@@@@@@@@@@@@@@@@@@ 22
2147483648 |@ 1
4294967296 | 0

cc
value ------------- Distribution ------------- count

33554432 | 0
67108864 |@@@ 3
134217728 |@ 1
268435456 | 0
536870912 |@@@@ 4
1073741824 |@@@@@@@@@@@@@@ 13
2147483648 |@@@@@@@@@@@@ 11
4294967296 |@@@ 3
8589934592 | 0

sh
value ------------- Distribution ------------- count
262144 | 0
524288 |@ 5
1048576 |@@@@@@@ 29
2097152 | 0
4194304 | 0
8388608 |@@@ 12
16777216 |@@ 9
33554432 |@@ 9
67108864 |@@ 8
134217728 |@ 7
268435456 |@@@@@ 20
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536870912 |@@@@@@ 26
1073741824 |@@@ 14
2147483648 |@@ 11
4294967296 | 3
8589934592 | 1
17179869184 | 0

make.bin
value ------------- Distribution ------------- count

16777216 | 0
33554432 |@ 1
67108864 |@ 1
134217728 |@@ 2
268435456 | 0
536870912 |@@ 2
1073741824 |@@@@@@@@@ 9
2147483648 |@@@@@@@@@@@@@@@ 14
4294967296 |@@@@@@ 6
8589934592 |@@ 2

17179869184 | 0

lwp-start and lwp-exit
Instead of knowing the amount of time that a particular process takes to run, you
might want to know how long individual threads take to run. The following example
shows how to use the lwp-start and lwp-exit probes for this purpose:

proc:::lwp-start
/tid != 1/
{

self->start = timestamp;
}

proc:::lwp-exit
/self->start/
{

@[execname] = quantize(timestamp - self->start);
self->start = 0;

}

Running the example script on an NFS and calendar server results in output similar to
the following example:

# dtrace -s ./lwptime.d
dtrace: script ’./lwptime.d’ matched 3 probes
^C

nscd
value ------------- Distribution ------------- count
131072 | 0
262144 |@ 18
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524288 |@@ 24
1048576 |@@@@@@@ 75
2097152 |@@@@@@@@@@@@@@@@@@@@@@@ 245
4194304 |@@ 22
8388608 |@@ 24
16777216 | 6
33554432 | 3
67108864 | 1
134217728 | 1
268435456 | 0

mountd
value ------------- Distribution ------------- count
524288 | 0
1048576 |@ 15
2097152 |@ 24
4194304 |@@@ 51
8388608 |@ 17
16777216 |@ 24
33554432 |@ 15
67108864 |@@@@ 57
134217728 |@ 28
268435456 |@ 26
536870912 |@@ 39
1073741824 |@@@ 45
2147483648 |@@@@@ 72
4294967296 |@@@@@ 77
8589934592 |@@@ 55
17179869184 | 14
34359738368 | 2
68719476736 | 0

automountd
value ------------- Distribution ------------- count

1048576 | 0
2097152 | 3
4194304 |@@@@ 146
8388608 | 6
16777216 | 6
33554432 | 9
67108864 |@@@@@ 203
134217728 |@@ 87
268435456 |@@@@@@@@@@@@@@@ 534
536870912 |@@@@@@ 223
1073741824 |@ 45
2147483648 | 20
4294967296 | 26
8589934592 | 20
17179869184 | 19
34359738368 | 7
68719476736 | 2
137438953472 | 0

iCald
value ------------- Distribution ------------- count
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8388608 | 0
16777216 |@@@@@@@ 20
33554432 |@@@ 9
67108864 |@@ 8
134217728 |@@@@@ 16
268435456 |@@@@ 11
536870912 |@@@@ 11
1073741824 |@ 4
2147483648 | 2
4294967296 | 0
8589934592 |@@ 8
17179869184 |@ 5
34359738368 |@ 4
68719476736 |@@ 6
137438953472 |@ 4
274877906944 | 2

549755813888 | 0

signal-send
You can use the signal-send probe to determine the sending and receiving process
associated with any signal, as shown in the following example:

#pragma D option quiet

proc:::signal-send
{

@[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{

printf("%20s %20s %12s %s\n",
"SENDER", "RECIPIENT", "SIG", "COUNT");

printa("%20s %20s %12d %@d\n", @);

}

Running this script results in output similar to the following example:

# dtrace -s ./sig.d
^C

SENDER RECIPIENT SIG COUNT
xterm dtrace 2 1
xterm soffice.bin 2 1

tr init 18 1
sched test 18 1
sched fvwm2 18 1
bash bash 20 1
sed init 18 2

sched ksh 18 15

sched Xsun 22 471
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Stability
The proc provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 26

sched Provider

The sched provider makes available probes related to CPU scheduling. Because CPUs
are the one resource that all threads must consume, the sched provider is very useful
for understanding systemic behavior. For example, using the sched provider, you can
understand when and why threads sleep, run, change priority, or wake other threads.

Probes
The sched probes are described in Table 26–1.

TABLE 26–1 sched Probes

Probe Description

change-pri Probe that fires whenever a thread’s priority is about to be changed.
The lwpsinfo_t of the thread is pointed to by args[0]. The
thread’s current priority is in the pr_pri field of this structure. The
psinfo_t of the process containing the thread is pointed to by
args[1]. The thread’s new priority is contained in args[2].

dequeue Probe that fires immediately before a runnable thread is dequeued
from a run queue. The lwpsinfo_t of the thread being dequeued is
pointed to by args[0]. The psinfo_t of the process containing the
thread is pointed to by args[1]. The cpuinfo_t of the CPU from
which the thread is being dequeued is pointed to by args[2]. If the
thread is being dequeued from a run queue that is not associated
with a particular CPU, the cpu_id member of this structure will be
-1.
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TABLE 26–1 sched Probes (Continued)
Probe Description

enqueue Probe that fires immediately before a runnable thread is enqueued to
a run queue. The lwpsinfo_t of the thread being enqueued is
pointed to by args[0]. The psinfo_t of the process containing the
thread is pointed to by args[1]. The cpuinfo_t of the CPU to
which the thread is being enqueued is pointed to by args[2]. If the
thread is being enqueued from a run queue that is not associated with
a particular CPU, the cpu_id member of this structure will be -1.
The value in args[3] is a boolean indicating whether the thread will
be enqueued to the front of the run queue. The value is non-zero if
the thread will be enqueued at the front of the run queue, and zero if
the thread will be enqueued at the back of the run queue.

off-cpu Probe that fires when the current CPU is about to end execution of a
thread. The curcpu variable indicates the current CPU. The
curlwpsinfo variable indicates the thread that is ending execution.
The curpsinfo variable describes the process containing the current
thread. The lwpsinfo_t structure of the thread that the current CPU
will next execute is pointed to by args[0]. The psinfo_t of the
process containing the next thread is pointed to by args[1].

on-cpu Probe that fires when a CPU has just begun execution of a thread. The
curcpu variable indicates the current CPU. The curlwpsinfo
variable indicates the thread that is beginning execution. The
curpsinfo variable describes the process containing the current
thread.

preempt Probe that fires immediately before the current thread is preempted.
After this probe fires, the current thread will select a thread to run
and the off-cpu probe will fire for the current thread. In some cases,
a thread on one CPU will be preempted, but the preempting thread
will run on another CPU in the meantime. In this situation, the
preempt probe will fire, but the dispatcher will be unable to find a
higher priority thread to run and the remain-cpu probe will fire
instead of the off-cpu probe.

remain-cpu Probe that fires when a scheduling decision has been made, but the
dispatcher has elected to continue to run the current thread. The
curcpu variable indicates the current CPU. The curlwpsinfo
variable indicates the thread that is beginning execution. The
curpsinfo variable describes the process containing the current
thread.
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TABLE 26–1 sched Probes (Continued)
Probe Description

schedctl-nopreempt Probe that fires when a thread is preempted and then re-enqueued at
the front of the run queue due to a preemption control request. See
schedctl_init(3C) for details on preemption control. As with
preempt, either off-cpu or remain-cpu will fire after
schedctl-nopreempt. Because schedctl-nopreempt denotes a
re-enqueuing of the current thread at the front of the run queue,
remain-cpu is more likely to fire after schedctl-nopreempt than
off-cpu. The lwpsinfo_t of the thread being preempted is
pointed to by args[0]. The psinfo_t of the process containing the
thread is pointed to by args[1].

schedctl-preempt Probe that fires when a thread that is using preemption control is
nonetheless preempted and re-enqueued at the back of the run queue.
See schedctl_init(3C) for details on preemption control. As with
preempt, either off-cpu or remain-cpu will fire after
schedctl-preempt. Like preempt (and unlike
schedctl-nopreempt), schedctl-preempt denotes a
re-enqueuing of the current thread at the back of the run queue. As a
result, off-cpu is more likely to fire after schedctl-preempt than
remain-cpu. The lwpsinfo_t of the thread being preempted is
pointed to by args[0]. The psinfo_t of the process containing the
thread is pointed to by args[1].

schedctl-yield Probe that fires when a thread that had preemption control enabled
and its time slice artificially extended executed code to yield the CPU
to other threads.

sleep Probe that fires immediately before the current thread sleeps on a
synchronization object. The type of the synchronization object is
contained in the pr_stype member of the lwpsinfo_t pointed to
by curlwpsinfo. The address of the synchronization object is
contained in the pr_wchan member of the lwpsinfo_t pointed to
by curlwpsinfo. The meaning of this address is a private
implementation detail, but the address value may be treated as a
token unique to the synchronization object.

surrender Probe that fires when a CPU has been instructed by another CPU to
make a scheduling decision – often because a higher-priority thread
has become runnable.

tick Probe that fires as a part of clock tick-based accounting. In clock
tick-based accounting, CPU accounting is performed by examining
which threads and processes are running when a fixed-interval
interrupt fires. The lwpsinfo_t that corresponds to the thread that
is being assigned CPU time is pointed to by args[0]. The
psinfo_t that corresponds to the process that contains the thread is
pointed to by args[1].
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TABLE 26–1 sched Probes (Continued)
Probe Description

wakeup Probe that fires immediately before the current thread wakes a thread
sleeping on a synchronization object. The lwpsinfo_t of the
sleeping thread is pointed to by args[0]. The psinfo_t of the
process containing the sleeping thread is pointed to by args[1]. The
type of the synchronization object is contained in the pr_stype
member of the lwpsinfo_t of the sleeping thread. The address of
the synchronization object is contained in the pr_wchan member of
the lwpsinfo_t of the sleeping thread. The meaning of this address
is a private implementation detail, but the address value may be
treated as a token unique to the synchronization object.

Arguments
The argument types for the sched probes are listed in Table 26–2; the arguments are
described in Table 26–1.

TABLE 26–2 sched Probe Arguments

Probe args[0] args[1] args[2] args[3]

change-pri lwpsinfo_t * psinfo_t * pri_t —

dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * —

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int

off-cpu lwpsinfo_t * psinfo_t * — —

on-cpu — — — —

preempt — — — —

remain-cpu — — — —

schedctl-nopreempt lwpsinfo_t * psinfo_t * — —

schedctl-preempt lwpsinfo_t * psinfo_t * — —

schedctl-yield lwpsinfo_t * psinfo_t * — —

sleep — — — —

surrender lwpsinfo_t * psinfo_t * — —

tick lwpsinfo_t * psinfo_t * — —

wakeup lwpsinfo_t * psinfo_t * — —
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As Table 26–2 indicates, many sched probes have arguments consisting of a pointer to
an lwpsinfo_t and a pointer to a psinfo_t, indicating a thread and the process
containing the thread, respectively. These structures are described in detail in
“lwpsinfo_t” on page 254 and “psinfo_t” on page 257, respectively.

cpuinfo_t
The cpuinfo_t structure defines a CPU. As Table 26–2 indicates, arguments to both
the enqueue and dequeue probes include a pointer to a cpuinfo_t. Additionally,
the cpuinfo_t corresponding to the current CPU is pointed to by the curcpu
variable. The definition of the cpuinfo_t structure is as follows:

typedef struct cpuinfo {
processorid_t cpu_id; /* CPU identifier */
psetid_t cpu_pset; /* processor set identifier */
chipid_t cpu_chip; /* chip identifier */
lgrp_id_t cpu_lgrp; /* locality group identifer */
processor_info_t cpu_info; /* CPU information */

} cpuinfo_t;

The cpu_id member is the processor identifier, as returned by psrinfo(1M) and
p_online(2).

The cpu_pset member is the processor set that contains the CPU, if any. See
psrset(1M) for more details on processor sets.

The cpu_chip member is the identifier of the physical chip. Physical chips may
contain several CPUs. See psrinfo(1M) for more information.

The cpu_lgrp member is the identifier of the latency group associated with the CPU.
See liblgrp(3LIB) for details on latency groups.

The cpu_info member is the processor_info_t structure associated with the
CPU, as returned by processor_info(2).

Examples

on-cpu and off-cpu
One common question you might want answered is which CPUs are running threads
and for how long. You can use the on-cpu and off-cpu probes to easily answer this
question on a system-wide basis as shown in the following example:
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sched:::on-cpu
{

self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{

@[cpu] = quantize(timestamp - self->ts);
self->ts = 0;

}

Running the above script results in output similar to the following example:

# dtrace -s ./where.d
dtrace: script ’./where.d’ matched 5 probes
^C

0
value ------------- Distribution ------------- count
2048 | 0
4096 |@@ 37
8192 |@@@@@@@@@@@@@ 212
16384 |@ 30
32768 | 10
65536 |@ 17
131072 | 12
262144 | 9
524288 | 6
1048576 | 5
2097152 | 1
4194304 | 3
8388608 |@@@@ 75
16777216 |@@@@@@@@@@@@ 201
33554432 | 6
67108864 | 0

1
value ------------- Distribution ------------- count
2048 | 0
4096 |@ 6
8192 |@@@@ 23
16384 |@@@ 18
32768 |@@@@ 22
65536 |@@@@ 22
131072 |@ 7
262144 | 5
524288 | 2
1048576 | 3
2097152 |@ 9
4194304 | 4
8388608 |@@@ 18
16777216 |@@@ 19
33554432 |@@@ 16
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67108864 |@@@@ 21
134217728 |@@ 14

268435456 | 0

The above output shows that on CPU 1 threads tend to run for less than 100
microseconds at a stretch, or for approximately 10 milliseconds. A noticable gap
between the two clusters of data shown in the histogram. You also might be interested
in knowing which CPUs are running a particular process. You can use the on-cpu
and off-cpu probes for answering this question as well. The following script
displays which CPUs run a specified application over a period of ten seconds:

#pragma D option quiet

dtrace:::BEGIN
{

start = timestamp;
}

sched:::on-cpu
/execname == $$1/
{

self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{

@[cpu] = sum(timestamp - self->ts);
self->ts = 0;

}

profile:::tick-1sec
/++x == 10/
{

exit(0);
}

dtrace:::END
{

printf("CPU distribution over %d seconds:\n\n",
(timestamp - start) / 1000000000);

printf("CPU microseconds\n--- ------------\n");
normalize(@, 1000);
printa("%3d %@d\n", @);

}

Running the above script on a large mail server and specifying the IMAP daemon
results in output similar to the following example:

# dtrace -s ./whererun.d imapd
CPU distribution of imapd over 10 seconds:

CPU microseconds
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--- ------------
15 10102
12 16377
21 25317
19 25504
17 35653
13 41539
14 46669
20 57753
22 70088
16 115860
23 127775

18 160517

Solaris takes into account the amount of time that a thread has been sleeping when
selecting a CPU on which to run the thread: a thread that has been sleeping for less
time tends not to migrate. You can use the off-cpu and on-cpu probes to observe
this behavior:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{

self->cpu = cpu;
self->ts = timestamp;

}

sched:::on-cpu
/self->ts/
{

@[self->cpu == cpu ?
"sleep time, no CPU migration" : "sleep time, CPU migration"] =
lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);

self->ts = 0;
self->cpu = 0;

}

Running the above script for approximately 30 seconds results in output similar to the
following example:

# dtrace -s ./howlong.d
dtrace: script ’./howlong.d’ matched 5 probes
^C
sleep time, CPU migration

value -------------- Distribution ------------ count
< 0 | 0
0 |@@@@@@@ 6838
25 |@@@@@ 4714
50 |@@@ 3108
75 |@ 1304
100 |@ 1557
125 |@ 1425
150 | 894
175 |@ 1526
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200 |@@ 2010
225 |@@ 1933
250 |@@ 1982
275 |@@ 2051
300 |@@ 2021
325 |@ 1708
350 |@ 1113
375 | 502
400 | 220
425 | 106
450 | 54
475 | 40

>= 500 |@ 1716

sleep time, no CPU migration
value -------------- Distribution ------------ count
< 0 | 0
0 |@@@@@@@@@@@@ 58413
25 |@@@ 14793
50 |@@ 10050
75 | 3858
100 |@ 6242
125 |@ 6555
150 | 3980
175 |@ 5987
200 |@ 9024
225 |@ 9070
250 |@@ 10745
275 |@@ 11898
300 |@@ 11704
325 |@@ 10846
350 |@ 6962
375 | 3292
400 | 1713
425 | 585
450 | 201
475 | 96

>= 500 | 3946

The example output shows that there are many more occurences of non-migration
than migration. Also, when sleep times are longer, migrations are more likely. The
distributions are noticeably different in the sub-100 millisecond range, but look very
similar as the sleep times get longer. This result would seem to indicate that sleep time
is not factored into the scheduling decision once a certain threshold is exceeded.

The final example using off-cpu and on-cpu shows how to use these probes along
with the pr_stype field to determine why threads sleep and for how long:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{

/*
* We’re sleeping. Track our sobj type.
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*/
self->sobj = curlwpsinfo->pr_stype;
self->bedtime = timestamp;

}

sched:::off-cpu
/curlwpsinfo->pr_state == SRUN/
{

self->bedtime = timestamp;
}

sched:::on-cpu
/self->bedtime && !self->sobj/
{

@["preempted"] = quantize(timestamp - self->bedtime);
self->bedtime = 0;

}

sched:::on-cpu
/self->sobj/
{

@[self->sobj == SOBJ_MUTEX ? "kernel-level lock" :
self->sobj == SOBJ_RWLOCK ? "rwlock" :
self->sobj == SOBJ_CV ? "condition variable" :
self->sobj == SOBJ_SEMA ? "semaphore" :
self->sobj == SOBJ_USER ? "user-level lock" :
self->sobj == SOBJ_USER_PI ? "user-level prio-inheriting lock" :
self->sobj == SOBJ_SHUTTLE ? "shuttle" : "unknown"] =
quantize(timestamp - self->bedtime);

self->sobj = 0;
self->bedtime = 0;

}

Running the above script for several seconds results in output similar to the following
example:

# dtrace -s ./whatfor.d
dtrace: script ’./whatfor.d’ matched 12 probes
^C
kernel-level lock

value -------------- Distribution ------------ count
16384 | 0
32768 |@@@@@@@@ 3
65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11
131072 |@@ 1
262144 | 0

preempted
value -------------- Distribution ------------ count
16384 | 0
32768 | 4
65536 |@@@@@@@@ 408
131072 |@@@@@@@@@@@@@@@@@@@@@@ 1031
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262144 |@@@ 156
524288 |@@ 116
1048576 |@ 51
2097152 | 42
4194304 | 16
8388608 | 15
16777216 | 4
33554432 | 8
67108864 | 0

semaphore
value -------------- Distribution ------------ count
32768 | 0
65536 |@@ 61
131072 |@@@@@@@@@@@@@@@@@@@@@@@@ 553
262144 |@@ 63
524288 |@ 36
1048576 | 7
2097152 | 22
4194304 |@ 44
8388608 |@@@ 84
16777216 |@ 36
33554432 | 3
67108864 | 6
134217728 | 0
268435456 | 0
536870912 | 0
1073741824 | 0
2147483648 | 0
4294967296 | 0
8589934592 | 0
17179869184 | 1
34359738368 | 0

shuttle
value -------------- Distribution ------------ count
32768 | 0
65536 |@@@@@ 2
131072 |@@@@@@@@@@@@@@@@ 6
262144 |@@@@@ 2
524288 | 0
1048576 | 0
2097152 | 0
4194304 |@@@@@ 2
8388608 | 0
16777216 | 0
33554432 | 0
67108864 | 0
134217728 | 0
268435456 | 0
536870912 | 0
1073741824 | 0
2147483648 | 0
4294967296 |@@@@@ 2
8589934592 | 0
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17179869184 |@@ 1
34359738368 | 0

condition variable
value -------------- Distribution ------------ count
32768 | 0
65536 | 122
131072 |@@@@@ 1579
262144 |@ 340
524288 | 268
1048576 |@@@ 1028
2097152 |@@@ 1007
4194304 |@@@ 1176
8388608 |@@@@ 1257
16777216 |@@@@@@@@@@@@@@ 4385
33554432 | 295
67108864 | 157
134217728 | 96
268435456 | 48
536870912 | 144
1073741824 | 10
2147483648 | 22
4294967296 | 18
8589934592 | 5
17179869184 | 6
34359738368 | 4

68719476736 | 0

enqueue and dequeue
When a CPU becomes idle, the dispatcher looks for work enqueued on other
(non-idle) CPUs. The following example uses the dequeue probe to understand how
often applications are transferred and by which CPU:

#pragma D option quiet

sched:::dequeue
/args[2]->cpu_id != -1 && cpu != args[2]->cpu_id &&

(curlwpsinfo->pr_flag & PR_IDLE)/
{

@[stringof(args[1]->pr_fname), args[2]->cpu_id] =
lquantize(cpu, 0, 100);

}

END
{

printa("%s stolen from CPU %d by:\n%@d\n", @);

}

The tail of the output from running the above script on a 4 CPU system results in
output similar to the following example:
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# dtrace -s ./whosteal.d
^C
...
nscd stolen from CPU 1 by:

value -------------- Distribution ------------ count
1 | 0
2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 28
3 | 0

snmpd stolen from CPU 1 by:

value -------------- Distribution ------------ count
< 0 | 0
0 |@ 1
1 | 0
2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31
3 |@@ 2
4 | 0

sched stolen from CPU 1 by:

value -------------- Distribution ------------ count
< 0 | 0
0 |@@ 3
1 | 0
2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36
3 |@@@@ 5

4 | 0

Instead of knowing which CPUs took which work, you might want to know the CPUs
on which processes and threads are waiting to run. You can use the enqueue and
dequeue probes together to answer this question:

sched:::enqueue
{

self->ts = timestamp;
}

sched:::dequeue
/self->ts/
{

@[args[2]->cpu_id] = quantize(timestamp - self->ts);
self->ts = 0;

}

Running the above script for several seconds results in output similar to the following
example:

# dtrace -s ./qtime.d
dtrace: script ’./qtime.d’ matched 5 probes
^C

-1
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value -------------- Distribution ------------ count
4096 | 0
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2
16384 | 0

0
value -------------- Distribution ------------ count
1024 | 0
2048 |@@@@@@@@@@@@@@@ 262
4096 |@@@@@@@@@@@@@ 227
8192 |@@@@@ 87
16384 |@@@ 54
32768 | 7
65536 | 9
131072 | 1
262144 | 5
524288 | 4
1048576 | 2
2097152 | 0
4194304 | 0
8388608 | 0
16777216 | 1
33554432 | 2
67108864 | 2
134217728 | 0
268435456 | 0
536870912 | 0
1073741824 | 1
2147483648 | 1
4294967296 | 0

1
value -------------- Distribution ------------ count
1024 | 0
2048 |@@@@ 49
4096 |@@@@@@@@@@@@@@@@@@@@ 241
8192 |@@@@@@@ 91
16384 |@@@@ 55
32768 | 7
65536 | 3
131072 | 2
262144 | 1
524288 | 0
1048576 | 0
2097152 | 0
4194304 | 0
8388608 | 0
16777216 | 0
33554432 | 3
67108864 | 1
134217728 | 4
268435456 | 2
536870912 | 0
1073741824 | 3
2147483648 | 2
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4294967296 | 0

Notice the non-zero values at the bottom of the example output. These data points
reveal several instances on both CPUs where a thread was enqueued to run for several
seconds.

Instead of looking at wait times, you might want to examine the length of the run
queue over time. Using the enqueue and dequeue probes, you can set up an
associative array to track the queue length:

sched:::enqueue
{

this->len = qlen[args[2]->cpu_id]++;
@[args[2]->cpu_id] = lquantize(this->len, 0, 100);

}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{

qlen[args[2]->cpu_id]—;

}

Running the above script for approximately 30 seconds on a largely idle uniprocessor
laptop system results in output similar to the following example:

# dtrace -s ./qlen.d
dtrace: script ’./qlen.d’ matched 5 probes
^C

0
value -------------- Distribution ------------ count
< 0 | 0
0 |@@@@@@@@@@@@@@@@@@@@@@@@@ 110626
1 |@@@@@@@@@ 41142
2 |@@ 12655
3 |@ 5074
4 | 1722
5 | 701
6 | 302
7 | 63
8 | 23
9 | 12
10 | 24
11 | 58
12 | 14
13 | 3

14 | 0

The output is roughly what you would expect for an idle system: the majority of the
time that a runnable thread is enqueued, the run queue was very short (three or fewer
threads in length). However, given that the system was largely idle, the exceptional
data points at the bottom of the table might be unexpected. For example, why was the
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run queue as long as 13 runnable threads? To explore this question, you could write a
D script that displays the contents of the run queue when the length of the run queue
is long. This problem is complicated because D enablings cannot iterate over data
structures, and therefore cannot simply iterate over the entire run queue. Even if D
enablings could do so, you should avoid dependencies on the kernel’s internal data
structures.

For this type of script, you would enable the enqueue and dequeue probes and use
both speculations and associative arrays. Whenever a thread is enqueued, the script
increments the length of the queue and records the timestamp in an associative array
keyed by the thread. You cannot use a thread-local variable in this case because a
thread might be enqueued by another thread. The script then checks to see if the
queue length exceeds the maximum. If it does, the script starts a new speculation, and
records the timestamp and the new maximum. Then, when a thread is dequeued, the
script compares the enqueue timestamp to the timestamp of the longest length: if the
thread was enqueued before the timestamp of the longest length, the thread was in the
queue when the longest length was recorded. In this case, the script speculatively
traces the thread’s information. Once the kernel dequeues the last thread that was
enqueued at the timestamp of the longest length, the script commits the speculation
data. This script is shown below:

#pragma D option quiet
#pragma D option nspec=4
#pragma D option specsize=100k

int maxlen;
int spec[int];

sched:::enqueue
{

this->len = ++qlen[this->cpu = args[2]->cpu_id];
in[args[0]->pr_addr] = timestamp;

}

sched:::enqueue
/this->len > maxlen && spec[this->cpu]/
{

/*
* There is already a speculation for this CPU. We just set a new
* record, so we’ll discard the old one.
*/
discard(spec[this->cpu]);

}

sched:::enqueue
/this->len > maxlen/
{

/*
* We have a winner. Set the new maximum length and set the timestamp
* of the longest length.
*/
maxlen = this->len;
longtime[this->cpu] = timestamp;
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/*
* Now start a new speculation, and speculatively trace the length.
*/
this->spec = spec[this->cpu] = speculation();
speculate(this->spec);
printf("Run queue of length %d:\n", this->len);

}

sched:::dequeue
/(this->in = in[args[0]->pr_addr]) &&

this->in <= longtime[this->cpu = args[2]->cpu_id]/
{

speculate(spec[this->cpu]);
printf(" %d/%d (%s)\n",

args[1]->pr_pid, args[0]->pr_lwpid,
stringof(args[1]->pr_fname));

}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{

in[args[0]->pr_addr] = 0;
this->len = --qlen[args[2]->cpu_id];

}

sched:::dequeue
/this->len == 0 && spec[this->cpu]/
{

/*
* We just processed the last thread that was enqueued at the time
* of longest length; commit the speculation, which by now contains
* each thread that was enqueued when the queue was longest.
*/
commit(spec[this->cpu]);
spec[this->cpu] = 0;

}

Running the above script on the same uniprocessor laptop results in output similar to
the following example:

# dtrace -s ./whoqueue.d
Run queue of length 3:
0/0 (sched)
0/0 (sched)
101170/1 (dtrace)

Run queue of length 4:
0/0 (sched)
100356/1 (Xsun)
100420/1 (xterm)
101170/1 (dtrace)

Run queue of length 5:
0/0 (sched)
0/0 (sched)
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100356/1 (Xsun)
100420/1 (xterm)
101170/1 (dtrace)

Run queue of length 7:
0/0 (sched)
100221/18 (nscd)
100221/17 (nscd)
100221/16 (nscd)
100221/13 (nscd)
100221/14 (nscd)
100221/15 (nscd)

Run queue of length 16:
100821/1 (xterm)
100768/1 (xterm)
100365/1 (fvwm2)
101118/1 (xterm)
100577/1 (xterm)
101170/1 (dtrace)
101020/1 (xterm)
101089/1 (xterm)
100795/1 (xterm)
100741/1 (xterm)
100710/1 (xterm)
101048/1 (xterm)
100697/1 (MozillaFirebird-)
100420/1 (xterm)
100394/1 (xterm)
100368/1 (xterm)

^C

The output reveals that the long run queues are due to many runnable xterm
processes. This experiment coincided with a change in virtual desktop, and therefore
the results are probably due to some sort of X event processing.

sleep and wakeup
In “enqueue and dequeue” on page 276, the final example demonstrated that a burst
in run queue length was due to runnable xterm processes. One hypothesis is that the
observations resulted from a change in virtual desktop. You can use the wakeup probe
to explore this hypothesis by determining who is waking the xterm processes, and
when, as shown in the following example:

#pragma D option quiet

dtrace:::BEGIN
{

start = timestamp;
}

sched:::wakeup
/stringof(args[1]->pr_fname) == "xterm"/
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{
@[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);

}

profile:::tick-1sec
/++x == 10/
{

exit(0);

}

To investigate the hypothesis, run the above script, waiting roughly five seconds, and
switch your virtual desktop exactly once. If the burst of runnable xterm processes is
due to switching the virtual desktop, the output should show a burst of wakeup
activity at the five second mark.

# dtrace -s ./xterm.d

Xsun

value -------------- Distribution ------------ count
4 | 0
5 |@ 1
6 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32

7 | 0

The output does show that the X server is waking xterm processes, clustered around
the time that you switched virtual desktops. If you wanted to understand the
interaction between the X server and the xterm processes, you could aggregate on
user stack traces when the X server fires the wakeup probe.

Understanding the performance of client/server systems like the X windowing system
requires understanding the clients on whose behalf the server is doing work. This kind
of question is difficult to answer with conventional performance analysis tools.
However, if you have a model where a client sends a message to the server and sleeps
pending the server’s processing, you can use the wakeup probe to determine the client
for whom the request is being performed, as shown in the following example:

self int last;

sched:::wakeup
/self->last && args[0]->pr_stype == SOBJ_CV/
{

@[stringof(args[1]->pr_fname)] = sum(vtimestamp - self->last);
self->last = 0;

}

sched:::wakeup
/execname == "Xsun" && self->last == 0/
{

self->last = vtimestamp;

}
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Running the above script results in output similar to the following example:

dtrace -s ./xwork.d
dtrace: script ’./xwork.d’ matched 14 probes
^C
xterm 9522510
soffice.bin 9912594
fvwm2 100423123
MozillaFirebird 312227077

acroread 345901577

This output reveals that much Xsun work is being done on behalf of the processes
acroread, MozillaFirebird and, to a lesser degree, fvwm2. Notice that the script
only examined wakeups from condition variable synchronization objects (SOBJ_CV).
As described in Table 25–4, condition variables are the type of synchronization object
typically used to synchronize for reasons other than access to a shared data region. In
the case of the X server, a client will wait for data in a pipe by sleeping on a condition
variable.

You can additionally use the sleep probe along with the wakeup probe to
understand which applications are blocking on which applications, and for how long,
as shown in the following example:

#pragma D option quiet

sched:::sleep
/!(curlwpsinfo->pr_flag & PR_ISSYS) && curlwpsinfo->pr_stype == SOBJ_CV/
{

bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{

@[stringof(args[1]->pr_fname), execname] =
quantize(timestamp - bedtime[args[0]->pr_addr]);

bedtime[args[0]->pr_addr] = 0;
}

END
{

printa("%s sleeping on %s:\n%@d\n", @);

}

The tail of the output from running the example script for several seconds on a
desktop system resembles the following example:

# dtrace -s ./whofor.d
^C
...
xterm sleeping on Xsun:
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value -------------- Distribution ------------ count
131072 | 0
262144 | 12
524288 | 2
1048576 | 0
2097152 | 5
4194304 |@@@ 45
8388608 | 1
16777216 | 9
33554432 |@@@@@ 83
67108864 |@@@@@@@@@@@ 164
134217728 |@@@@@@@@@@ 147
268435456 |@@@@ 56
536870912 |@ 17
1073741824 | 9
2147483648 | 1
4294967296 | 3
8589934592 | 1
17179869184 | 0

fvwm2 sleeping on Xsun:

value -------------- Distribution ------------ count
32768 | 0
65536 |@@@@@@@@@@@@@@@@@@@@@@ 67
131072 |@@@@@ 16
262144 |@@ 6
524288 |@ 3
1048576 |@@@@@ 15
2097152 | 0
4194304 | 0
8388608 | 1
16777216 | 0
33554432 | 0
67108864 | 1
134217728 | 0
268435456 | 0
536870912 | 1
1073741824 | 1
2147483648 | 2
4294967296 | 2
8589934592 | 2
17179869184 | 0
34359738368 | 2
68719476736 | 0

syslogd sleeping on syslogd:

value -------------- Distribution ------------ count
17179869184 | 0
34359738368 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3
68719476736 | 0

MozillaFirebird sleeping on MozillaFirebird:

Chapter 26 • sched Provider 285



value -------------- Distribution ------------ count
65536 | 0
131072 | 3
262144 |@@ 14
524288 | 0
1048576 |@@@ 18
2097152 | 0
4194304 | 0
8388608 | 1
16777216 | 0
33554432 | 1
67108864 | 3
134217728 |@ 7
268435456 |@@@@@@@@@@ 53
536870912 |@@@@@@@@@@@@@@ 78
1073741824 |@@@@ 25
2147483648 | 0
4294967296 | 0
8589934592 |@ 7

17179869184 | 0

You might want to understand how and why MozillaFirebird is blocking on itself.
You could modify the above script as shown in the following example to answer this
question:

#pragma D option quiet

sched:::sleep
/execname == "MozillaFirebird" && curlwpsinfo->pr_stype == SOBJ_CV/
{

bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/execname == "MozillaFirebird" && bedtime[args[0]->pr_addr]/
{

@[args[1]->pr_pid, args[0]->pr_lwpid, pid, curlwpsinfo->pr_lwpid] =
quantize(timestamp - bedtime[args[0]->pr_addr]);

bedtime[args[0]->pr_addr] = 0;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{

bedtime[args[0]->pr_addr] = 0;
}

END
{

printa("%d/%d sleeping on %d/%d:\n%@d\n", @);

}

Running the modified script for several seconds results in output similar to the
following example:
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# dtrace -s ./firebird.d
^C

100459/1 sleeping on 100459/13:

value -------------- Distribution ------------ count
262144 | 0
524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
1048576 | 0

100459/13 sleeping on 100459/1:

value -------------- Distribution ------------ count
16777216 | 0
33554432 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
67108864 | 0

100459/1 sleeping on 100459/2:

value -------------- Distribution ------------ count
16384 | 0
32768 |@@@@ 5
65536 |@ 2
131072 |@@@@@ 6
262144 | 1
524288 |@ 2
1048576 | 0
2097152 |@@ 3
4194304 |@@@@ 5
8388608 |@@@@@@@@ 9
16777216 |@@@@@ 6
33554432 |@@ 3
67108864 | 0

100459/1 sleeping on 100459/5:

value -------------- Distribution ------------ count
16384 | 0
32768 |@@@@@ 12
65536 |@@ 5
131072 |@@@@@@ 15
262144 | 1
524288 | 1
1048576 | 2
2097152 |@ 4
4194304 |@@@@@ 13
8388608 |@@@ 8
16777216 |@@@@@ 13
33554432 |@@ 6
67108864 |@@ 5
134217728 |@ 4
268435456 | 0
536870912 | 1
1073741824 | 0
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100459/2 sleeping on 100459/1:

value -------------- Distribution ------------ count
16384 | 0
32768 |@@@@@@@@@@@@@@ 11
65536 | 0
131072 |@@ 2
262144 | 0
524288 | 0
1048576 |@@@@ 3
2097152 |@ 1
4194304 |@@ 2
8388608 |@@ 2
16777216 |@ 1
33554432 |@@@@@@ 5
67108864 | 0
134217728 | 0
268435456 | 0
536870912 |@ 1
1073741824 |@ 1
2147483648 |@ 1
4294967296 | 0

100459/5 sleeping on 100459/1:

value -------------- Distribution ------------ count
16384 | 0
32768 | 1
65536 | 2
131072 | 4
262144 | 7
524288 | 1
1048576 | 5
2097152 | 10
4194304 |@@@@@@ 77
8388608 |@@@@@@@@@@@@@@@@@@@@@@@ 270
16777216 |@@@ 43
33554432 |@ 20
67108864 |@ 14
134217728 | 5
268435456 | 2
536870912 | 1

1073741824 | 0

You can also use the sleep and wakeup probes to understand the performance of
door servers such as the name service cache daemon, as shown in the following
example:

sched:::sleep
/curlwpsinfo->pr_stype == SOBJ_SHUTTLE/
{

bedtime[curlwpsinfo->pr_addr] = timestamp;
}
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sched:::wakeup
/execname == "nscd" && bedtime[args[0]->pr_addr]/
{

@[stringof(curpsinfo->pr_fname), stringof(args[1]->pr_fname)] =
quantize(timestamp - bedtime[args[0]->pr_addr]);

bedtime[args[0]->pr_addr] = 0;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{

bedtime[args[0]->pr_addr] = 0;

}

The tail of the output from running the above script on a large mail server resembles
the following example:

imapd
value -------------- Distribution ------------ count
16384 | 0
32768 | 2
65536 |@@@@@@@@@@@@@@@@@ 57
131072 |@@@@@@@@@@@ 37
262144 | 3
524288 |@@@ 11
1048576 |@@@ 10
2097152 |@@ 9
4194304 | 1
8388608 | 0

mountd
value -------------- Distribution ------------ count
65536 | 0
131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 49
262144 |@@@ 6
524288 | 1
1048576 | 0
2097152 | 0
4194304 |@@@@ 7
8388608 |@ 3
16777216 | 0

sendmail
value -------------- Distribution ------------ count
16384 | 0
32768 |@ 18
65536 |@@@@@@@@@@@@@@@@@ 205
131072 |@@@@@@@@@@@@@ 154
262144 |@ 23
524288 | 5
1048576 |@@@@ 50
2097152 | 7
4194304 | 5
8388608 | 2
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16777216 | 0

automountd
value -------------- Distribution ------------ count
32768 | 0
65536 |@@@@@@@@@@ 22
131072 |@@@@@@@@@@@@@@@@@@@@@@@ 51
262144 |@@ 6
524288 | 1
1048576 | 0
2097152 | 2
4194304 | 2
8388608 | 1
16777216 | 1
33554432 | 1
67108864 | 0
134217728 | 0
268435456 | 1

536870912 | 0

You might be interested in the unusual data points for automountd or the persistent
data point at over one millisecond for sendmail. You can add additional predicates to
the above script to hone in on the causes of any exceptional or anomalous results.

preempt, remain-cpu
Because Solaris is a preemptive system, higher priority threads preempt lower priority
ones. Preemption can induce a significant latency bubble in the lower priority thread,
so you might want to know which threads are being preempted by which other
threads. The following example shows how to use the preempt and remain-cpu
probes to display this information:

#pragma D option quiet

sched:::preempt
{

self->preempt = 1;
}

sched:::remain-cpu
/self->preempt/
{

self->preempt = 0;
}

sched:::off-cpu
/self->preempt/
{

/*
* If we were told to preempt ourselves, see who we ended up giving
* the CPU to.
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*/
@[stringof(args[1]->pr_fname), args[0]->pr_pri, execname,

curlwpsinfo->pr_pri] = count();
self->preempt = 0;

}

END
{

printf("%30s %3s %30s %3s %5s\n", "PREEMPTOR", "PRI",
"PREEMPTED", "PRI", "#");

printa("%30s %3d %30s %3d %5@d\n", @);

}

Running the above script for several seconds on a desktop system results in output
similar to the following example:

# dtrace -s ./whopreempt.d
^C

PREEMPTOR PRI PREEMPTED PRI #
sched 60 Xsun 53 1
xterm 59 Xsun 53 1

MozillaFirebird 57 Xsun 53 1
mpstat 100 fvwm2 59 1
sched 99 MozillaFirebird 57 1
sched 60 dtrace 30 1
mpstat 100 Xsun 59 2
sched 60 Xsun 54 2
sched 99 sched 60 2
fvwm2 59 Xsun 44 2
sched 99 Xsun 44 2
sched 60 xterm 59 2
sched 99 Xsun 53 2
sched 99 Xsun 54 3
sched 60 fvwm2 59 3
sched 60 Xsun 59 3
sched 99 Xsun 59 4
fvwm2 59 Xsun 54 8
fvwm2 59 Xsun 53 9
Xsun 59 MozillaFirebird 57 10
sched 60 MozillaFirebird 57 14

MozillaFirebird 57 Xsun 44 16

MozillaFirebird 57 Xsun 54 18

change-pri
Preemption is based on priorities, so you might want to observe changes in priority
over time. The following example uses the change-pri probe to display this
information:

sched:::change-pri
{

@[stringof(args[0]->pr_clname)] =
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lquantize(args[2] - args[0]->pr_pri, -50, 50, 5);

}

The example script captures the degree to which priority is raised or lowered, and
aggregates by scheduling class. Running the above script results in output similar to
the following example:

# dtrace -s ./pri.d
dtrace: script ’./pri.d’ matched 10 probes
^C
IA

value -------------- Distribution ------------ count
< -50 | 20
-50 |@ 38
-45 | 4
-40 | 13
-35 | 12
-30 | 18
-25 | 18
-20 | 23
-15 | 6
-10 |@@@@@@@@ 201
-5 |@@@@@@ 160
0 |@@@@@ 138
5 |@ 47
10 |@@ 66
15 |@ 36
20 |@ 26
25 |@ 28
30 | 18
35 | 22
40 | 8
45 | 11

>= 50 |@ 34

TS
value -------------- Distribution ------------ count
-15 | 0
-10 |@ 1
-5 |@@@@@@@@@@@@ 7
0 |@@@@@@@@@@@@@@@@@@@@ 12
5 | 0
10 |@@@@@ 3

15 | 0

The output shows the priority manipulation of the Interactive (IA) scheduling class.
Instead of seeing priority manipulation, you might want to see the priority values of a
particular process and thread over time. The following script uses the change-pri
probe to display this information:

#pragma D option quiet

BEGIN
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{
start = timestamp;

}

sched:::change-pri
/args[1]->pr_pid == $1 && args[0]->pr_lwpid == $2/
{

printf("%d %d\n", timestamp - start, args[2]);
}

tick-1sec
/++n == 5/
{

exit(0);

}

To see the change in priorities over time, type the following command in one window:

$ echo $$
139208

$ while true ; do let i=0 ; done

In another window, run the script and redirect the output to a file:

# dtrace -s ./pritime.d 139208 1 > /tmp/pritime.out

#

You can use the file /tmp/pritime.out that is generated above as input to plotting
software to graphically display priority over time. gnuplot is a freely available
plotting package that is included in the Solaris Freeware Companion CD. By default,
gnuplot is installed in /opt/sfw/bin.

tick
Solaris uses tick-based CPU accounting, in which a system clock interrupt fires at a fixed
interval and attributes CPU utilization to the threads and processes running at the
time of the tick. The following example shows how to use the tick probe to observe
this attribution:

# dtrace -n sched:::tick’{@[stringof(args[1]->pr_fname)] = count()}’
^C
arch 1
sh 1
sed 1
echo 1
ls 1
FvwmAuto 1
pwd 1
awk 2
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basename 2
expr 2
resize 2
tput 2
uname 2
fsflush 2
dirname 4
vim 9
fvwm2 10
ksh 19
xterm 21
Xsun 93
MozillaFirebird 260

The system clock frequency varies from operating system to operating system, but
generally ranges from 25 hertz to 1024 hertz. The Solaris system clock frequency is
adjustable, but defaults to 100 hertz.

The tick probe only fires if the system clock detects a runnable thread. To use the
tick probe to observe the system clock’s frequency, you must have a thread that is
always runnable. In one window, create a looping shell as shown in the following
example:

$ while true ; do let i=0 ; done

In another window, run the following script:

uint64_t last[int];

sched:::tick
/last[cpu]/
{

@[cpu] = min(timestamp - last[cpu]);
}

sched:::tick
{

last[cpu] = timestamp;
}

# dtrace -s ./ticktime.d
dtrace: script ’./ticktime.d’ matched 2 probes
^C

0 9883789

The minimum interval is 9.8 millisecond, which indicates that the default clock tick
frequency is 10 milliseconds (100 hertz). The observed minimum is somewhat less
than 10 milliseconds due to jitter.

One deficiency of tick-based accounting is that the system clock that performs
accounting is often also responsible for dispatching any time-related scheduling
activity. As a result, if a thread is to perform some amount of work every clock tick
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(that is, every 10 milliseconds), the system will either over-account for the thread or
under-account for the thread, depending on whether the accounting is done before or
after time-related dispatching scheduling activity. In Solaris, accounting is performed
before time-related dispatching. As a result, the system will under-account for threads
running at regular interval. If such threads run for less than the clock tick interval,
they can effectively “hide” behind the clock tick. The following example shows the
degree to which the system has such threads:

sched:::tick,
sched:::enqueue
{

@[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);

}

The output of the example script is two distributions of the millisecond offset within a
ten millisecond interval, one for the tick probe and another for enqueue:

# dtrace -s ./tick.d
dtrace: script ’./tick.d’ matched 4 probes
^C
tick

value -------------- Distribution ------------ count
6 | 0
7 |@ 3
8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 79
9 | 0

enqueue
value -------------- Distribution ------------ count
< 0 | 0
0 |@@ 267
1 |@@ 300
2 |@@ 259
3 |@@ 291
4 |@@@ 360
5 |@@ 305
6 |@@ 295
7 |@@@@ 522
8 |@@@@@@@@@@@@ 1315

9 |@@@ 337

The output histogram named tick shows that the clock tick is firing at an 8
millisecond offset. If scheduling were not at all associated with the clock tick, the
output for enqueue would be evenly spread across the ten millisecond interval.
However, the output shows a spike at the same 8 millisecond offset, indicating that at
least some threads in the system are being scheduled on a time basis.
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Stability
The sched provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 27

io Provider

The io provider makes available probes related to disk input and output. The io
provider enables quick exploration of behavior observed through I/O monitoring
tools such as iostat(1M). For example, using the io provider, you can understand
I/O by device, by I/O type, by I/O size, by process, by application name, by file
name, or by file offset.

Probes
The io probes are described in Table 27–1.

TABLE 27–1 io Probes

Probe Description

start Probe that fires when an I/O request is about to be made either to a
peripheral device or to an NFS server. The bufinfo_t
corresponding to the I/O request is pointed to by args[0]. The
devinfo_t of the device to which the I/O is being issued is pointed
to by args[1]. The fileinfo_t of the file that corresponds to the
I/O request is pointed to by args[2]. Note that file information
availability depends on the filesystem making the I/O request. See
“fileinfo_t” on page 301 for more information.
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TABLE 27–1 io Probes (Continued)
Probe Description

done Probe that fires after an I/O request has been fulfilled. The
bufinfo_t corresponding to the I/O request is pointed to by
args[0]. The done probe fires after the I/O completes, but before
completion processing has been performed on the buffer. As a result
B_DONE is not set in b_flags at the time the done probe fires. The
devinfo_t of the device to which the I/O was issued is pointed to
by args[1]. The fileinfo_t of the file that corresponds to the I/O
request is pointed to by args[2].

wait-start Probe that fires immediately before a thread begins to wait pending
completion of a given I/O request. The buf(9S) structure
corresponding to the I/O request for which the thread will wait is
pointed to by args[0]. The devinfo_t of the device to which the
I/O was issued is pointed to by args[1]. The fileinfo_t of the
file that corresponds to the I/O request is pointed to by args[2].
Some time after the wait-start probe fires, the wait-done probe
will fire in the same thread.

wait-done Probe that fires when a thread is done waiting for the completion of a
given I/O request. The bufinfo_t corresponding to the I/O request
for which the thread will wait is pointed to by args[0]. The
devinfo_t of the device to which the I/O was issued is pointed to
by args[1]. The fileinfo_t of the file that corresponds to the I/O
request is pointed to by args[2]. The wait-done probe fires only
after the wait-start probe has fired in the same thread.

Note that the io probes fire for all I/O requests to peripheral devices, and for all file
read and file write requests to an NFS server. Requests for metadata from an NFS
server, for example, do not trigger io probes due to a readdir(3C) request.

Arguments
The argument types for the io probes are listed in Table 27–2. The arguments are
described in Table 27–1.

TABLE 27–2 io Probe Arguments

Probe args[0] args[1] args[2]

start struct buf * devinfo_t * fileinfo_t *

done struct buf * devinfo_t * fileinfo_t *
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TABLE 27–2 io Probe Arguments (Continued)
Probe args[0] args[1] args[2]

wait-start struct buf * devinfo_t * fileinfo_t *

wait-done struct buf * devinfo_t * fileinfo_t *

Each io probe has arguments consisting of a pointer to a buf(9S) structure, a pointer
to a devinfo_t, and a pointer to a fileinfo_t. These structures are described in
greater detail in this section.

bufinfo_t structure
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer
corresponding to an I/O request is pointed to by args[0] in the start, done,
wait-start, and wait-done probes. The bufinfo_t structure definition is as
follows:

typedef struct bufinfo {
int b_flags; /* flags */
size_t b_bcount; /* number of bytes */
caddr_t b_addr; /* buffer address */
uint64_t b_blkno; /* expanded block # on device */
uint64_t b_lblkno; /* block # on device */
size_t b_resid; /* # of bytes not transferred */
size_t b_bufsize; /* size of allocated buffer */
caddr_t b_iodone; /* I/O completion routine */
dev_t b_edev; /* extended device */

} bufinfo_t;

The b_flags member indicates the state of the I/O buffer, and consists of a bitwise-or
of different state values. The valid state values are in Table 27–3.

TABLE 27–3 b_flags Values

B_DONE Indicates that the data transfer has completed.

B_ERROR Indicates an I/O transfer error. It is set in conjunction with the
b_error field.

B_PAGEIO Indicates that the buffer is being used in a paged I/O request. See the
description of the b_addr field for more information.

B_PHYS Indicates that the buffer is being used for physical (direct) I/O to a
user data area.

B_READ Indicates that data is to be read from the peripheral device into main
memory.
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TABLE 27–3 b_flags Values (Continued)
B_WRITE Indicates that the data is to be transferred from main memory to the

peripheral device.

B_ASYNC The I/O request is asynchronous, and will not be waited upon. The
wait-start and wait-done probes don’t fire for asynchronous
I/O requests. Note that some I/Os directed to be asynchronous might
not have B_ASYNC set: the asynchronous I/O subsystem might
implement the asynchronous request by having a separate worker
thread perform a synchronous I/O operation.

The b_bcount field is the number of bytes to be transferred as part of the I/O
request.

The b_addr field is the virtual address of the I/O request, unless B_PAGEIO is set.
The address is a kernel virtual address unless B_PHYS is set, in which case it is a user
virtual address. If B_PAGEIO is set, the b_addr field contains kernel private data.
Exactly one of B_PHYS and B_PAGEIO can be set, or neither flag will be set.

The b_lblkno field identifies which logical block on the device is to be accessed. The
mapping from a logical block to a physical block (such as the cylinder, track, and so
on) is defined by the device.

The b_resid field is set to the number of bytes not transferred because of an error.

The b_bufsize field contains the size of the allocated buffer.

The b_iodone field identifies a specific routine in the kernel that is called when the
I/O is complete.

The b_error field may hold an error code returned from the driver in the event of an
I/O error. b_error is set in conjunction with the B_ERROR bit set in the b_flags
member.

The b_edev field contains the major and minor device numbers of the device
accessed. Consumers may use the D subroutines getmajor() and getminor() to
extract the major and minor device numbers from the b_edev field.

devinfo_t
The devinfo_t structure provides information about a device. The devinfo_t
structure corresponding to the destination device of an I/O is pointed to by args[1]
in the start, done, wait-start, and wait-done probes. The members of
devinfo_t are as follows:

typedef struct devinfo {
int dev_major; /* major number */
int dev_minor; /* minor number */
int dev_instance; /* instance number */
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string dev_name; /* name of device */
string dev_statname; /* name of device + instance/minor */
string dev_pathname; /* pathname of device */

} devinfo_t;

The dev_major field is the major number of the device. See getmajor(9F) for more
information.

The dev_minor field is the minor number of the device. See getminor(9F) for more
information.

The dev_instance field is the instance number of the device. The instance of a
device is different from the minor number. The minor number is an abstraction
managed by the device driver. The instance number is a property of the device node.
You can display device node instance numbers with prtconf(1M).

The dev_name field is the name of the device driver that manages the device. You can
display device driver names with the -D option to prtconf(1M).

The dev_statname field is the name of the device as reported by iostat(1M). This
name also corresponds to the name of a kernel statistic as reported by kstat(1M).
This field is provided so that aberrant iostat or kstat output can be quickly
correlated to actual I/O activity.

The dev_pathname field is the full path of the device. This path may be specified as
an argument to prtconf(1M) to obtain detailed device information. The path
specified by dev_pathname includes components expressing the device node, the
instance number, and the minor node. However, all three of these elements aren’t
necessarily expressed in the statistics name. For some devices, the statistics name
consists of the device name and the instance number. For other devices, the name
consists of the device name and the number of the minor node. As a result, two
devices that have the same dev_statname may differ in dev_pathname.

fileinfo_t
The fileinfo_t structure provides information about a file. The file to which an I/O
corresponds is pointed to by args[2] in the start, done, wait-start, and
wait-done probes. The presence of file information is contingent upon the filesystem
providing this information when dispatching I/O requests. Some filesystems,
especially third-party filesystems, might not provide this information. Also, I/O
requests might emanate from a filesystem for which no file information exists. For
example, any I/O to filesystem metadata will not be associated with any one file.
Finally, some highly optimized filesystems might aggregate I/O from disjoint files into
a single I/O request. In this case, the filesystem might provide the file information
either for the file that represents the majority of the I/O or for the file that represents
some of the I/O. Alternately, the filesystem might provide no file information at all in
this case.
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The definition of the fileinfo_t structure is as follows:

typedef struct fileinfo {
string fi_name; /* name (basename of fi_pathname) */
string fi_dirname; /* directory (dirname of fi_pathname) */
string fi_pathname; /* full pathname */
offset_t fi_offset; /* offset within file */
string fi_fs; /* filesystem */
string fi_mount; /* mount point of file system */

} fileinfo_t;

The fi_name field contains the name of the file but does not include any directory
components. If no file information is associated with an I/O, the fi_name field will be
set to the string <none>. In some rare cases, the pathname associated with a file might
be unknown. In this case, the fi_name field will be set to the string <unknown>.

The fi_dirname field contains only the directory component of the file name. As with
fi_name, this string may be set to <none> if no file information is present, or
<unknown> if the pathname associated with the file is not known.

The fi_pathname field contains the full pathname to the file. As with fi_name, this
string may be set to <none> if no file information is present, or <unknown> if the
pathname associated with the file is not known.

The fi_offset field contains the offset within the file , or -1 if either file information
is not present or if the offset is otherwise unspecified by the filesystem.

Examples
The following example script displays pertinent information for every I/O as it’s
issued:

#pragma D option quiet

BEGIN
{

printf("%10s %58s %2s\n", "DEVICE", "FILE", "RW");
}

io:::start
{

printf("%10s %58s %2s\n", args[1]->dev_statname,
args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W");

}

The output of the example when cold-starting Acrobat Reader on an x86 laptop
system resembles the following example:
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# dtrace -s ./iosnoop.d
DEVICE FILE RW
cmdk0 /opt/Acrobat4/bin/acroread R
cmdk0 /opt/Acrobat4/bin/acroread R
cmdk0 <unknown> R
cmdk0 /opt/Acrobat4/Reader/AcroVersion R
cmdk0 <unknown> R
cmdk0 <unknown> R
cmdk0 <none> R
cmdk0 <unknown> R
cmdk0 <none> R
cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R
cmdk0 <none> R
cmdk0 <unknown> R
cmdk0 <unknown> R
cmdk0 <unknown> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 <none> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 <unknown> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 <none> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R
cmdk0 <unknown> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R
cmdk0 <none> R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R
cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R

...

The <none> entries in the output indicate that the I/O doesn’t correspond to the data
in any particular file: these I/Os are due to metadata of one form or another. The
<unknown> entries in the output indicate that the pathname for the file is not known.
This situation is relatively rare.
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You could make the example script slightly more sophisticated by using an associative
array to track the time spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN
{

printf("%10s %58s %2s %7s\n", "DEVICE", "FILE", "RW", "MS");
}

io:::start
{

start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{

this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
printf("%10s %58s %2s %3d.%03d\n", args[1]->dev_statname,

args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W",
this->elapsed / 10000000, (this->elapsed / 1000) % 1000);

start[args[0]->b_edev, args[0]->b_blkno] = 0;

}

The output of the above example while hot-plugging a USB storage device into an
otherwise idle x86 laptop system is shown in the following example:

# dtrace -s ./iotime.d
DEVICE FILE RW MS
cmdk0 /kernel/drv/scsa2usb R 24.781
cmdk0 /kernel/drv/scsa2usb R 25.208
cmdk0 /var/adm/messages W 25.981
cmdk0 /kernel/drv/scsa2usb R 5.448
cmdk0 <none> W 4.172
cmdk0 /kernel/drv/scsa2usb R 2.620
cmdk0 /var/adm/messages W 0.252
cmdk0 <unknown> R 3.213
cmdk0 <none> W 3.011
cmdk0 <unknown> R 2.197
cmdk0 /var/adm/messages W 2.680
cmdk0 <none> W 0.436
cmdk0 /var/adm/messages W 0.542
cmdk0 <none> W 0.339
cmdk0 /var/adm/messages W 0.414
cmdk0 <none> W 0.344
cmdk0 /var/adm/messages W 0.361
cmdk0 <none> W 0.315
cmdk0 /var/adm/messages W 0.421
cmdk0 <none> W 0.349
cmdk0 <none> R 1.524
cmdk0 <unknown> R 3.648
cmdk0 /usr/lib/librcm.so.1 R 2.553
cmdk0 /usr/lib/librcm.so.1 R 1.332
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cmdk0 /usr/lib/librcm.so.1 R 0.222
cmdk0 /usr/lib/librcm.so.1 R 0.228
cmdk0 /usr/lib/librcm.so.1 R 0.927
cmdk0 <none> R 1.189
...

cmdk0 /usr/lib/devfsadm/linkmod R 1.110
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 1.763
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 0.161
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.819
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.168
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.886
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.185
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.778
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.166
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 1.634
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 0.163
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.477
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.161
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.198
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.168
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.247
cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link_i386.so R 1.735

...

You can make several observations about the mechanics of the system based on this
output. First, note the long time to perform the first several I/Os, which took about 25
milliseconds each. This time might have been due to the cmdk0 device having been
power managed on the laptop. Second, observe the I/O due to the scsa2usb(7D)
driver loading to deal with USB Mass Storage device. Third, note the writes to
/var/adm/messages as the device is reported. Finally, observe the reading of the
device link generators (the files ending in link.so) , which presumably deal with the
new device.

The io provider enables in-depth understanding of iostat(1M) output. Assume you
observe iostat output similar to the following example:

extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
cmdk0 8.0 0.0 399.8 0.0 0.0 0.0 0.8 0 1
sd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd2 0.0 109.0 0.0 435.9 0.0 1.0 8.9 0 97
nfs1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

nfs2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

You can use the iotime.d script to see these I/Os as they happen, as shown in the
following example:

DEVICE FILE RW MS
sd2 /mnt/archives.tar W 0.856
sd2 /mnt/archives.tar W 0.729
sd2 /mnt/archives.tar W 0.890
sd2 /mnt/archives.tar W 0.759
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sd2 /mnt/archives.tar W 0.884
sd2 /mnt/archives.tar W 0.746
sd2 /mnt/archives.tar W 0.891
sd2 /mnt/archives.tar W 0.760
sd2 /mnt/archives.tar W 0.889

cmdk0 /export/archives/archives.tar R 0.827
sd2 /mnt/archives.tar W 0.537
sd2 /mnt/archives.tar W 0.887
sd2 /mnt/archives.tar W 0.763
sd2 /mnt/archives.tar W 0.878
sd2 /mnt/archives.tar W 0.751
sd2 /mnt/archives.tar W 0.884
sd2 /mnt/archives.tar W 0.760
sd2 /mnt/archives.tar W 3.994
sd2 /mnt/archives.tar W 0.653
sd2 /mnt/archives.tar W 0.896
sd2 /mnt/archives.tar W 0.975
sd2 /mnt/archives.tar W 1.405
sd2 /mnt/archives.tar W 0.724
sd2 /mnt/archives.tar W 1.841

cmdk0 /export/archives/archives.tar R 0.549
sd2 /mnt/archives.tar W 0.543
sd2 /mnt/archives.tar W 0.863
sd2 /mnt/archives.tar W 0.734
sd2 /mnt/archives.tar W 0.859
sd2 /mnt/archives.tar W 0.754
sd2 /mnt/archives.tar W 0.914
sd2 /mnt/archives.tar W 0.751
sd2 /mnt/archives.tar W 0.902
sd2 /mnt/archives.tar W 0.735
sd2 /mnt/archives.tar W 0.908

sd2 /mnt/archives.tar W 0.753

This output appears to show that the file archives.tar is being read from cmdk0
(in /export/archives), and being written to device sd2 (in /mnt). This existence of
two files named archives.tar that are being operated on separately in parallel
seems unlikely. To investigate further, you can aggregate on device, application,
process ID and bytes transferred, as shown in the following example:

#pragma D option quiet

io:::start
{

@[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{

printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
printa("%10s %20s %10d %15@d\n", @);

}

Running this script for a few seconds results in output similar to the following
example:
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# dtrace -s ./whoio.d
^C

DEVICE APP PID BYTES
cmdk0 cp 790 1515520

sd2 cp 790 1527808

This output shows that this activity is a copy of the file archives.tar from one
device to another. This conclusion leads to another natural question: is one of these
devices faster than the other? Which device acts as the limiter on the copy? To answer
these questions, you need to know the effective throughput of each device rather than
the number of bytes per second each device is transferring. You can determine the
throughput with the following example script:

#pragma D option quiet

io:::start
{

start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{

/*
* We want to get an idea of our throughput to this device in KB/sec.
* What we have, however, is nanoseconds and bytes. That is we want
* to calculate:
*
* bytes / 1024
* ------------------------
* nanoseconds / 1000000000
*
* But we can’t calculate this using integer arithmetic without losing
* precision (the denomenator, for one, is between 0 and 1 for nearly
* all I/Os). So we restate the fraction, and cancel:
*
* bytes 1000000000 bytes 976562
* --------- * ------------- = --------- * -------------
* 1024 nanoseconds 1 nanoseconds
*
* This is easy to calculate using integer arithmetic; this is what
* we do below.
*/
this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
@[args[1]->dev_statname, args[1]->dev_pathname] =

quantize((args[0]->b_bcount * 976562) / this->elapsed);
start[args[0]->b_edev, args[0]->b_blkno] = 0;

}

END
{

printa(" %s (%s)\n%@d\n", @);

}
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Running the example script for several seconds yields the following output:

sd2 (/devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0:r)

value ------------- Distribution ------------- count
32 | 0
64 | 3
128 | 1
256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2257
512 | 1
1024 | 0

cmdk0 (/devices/pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0:a)

value ------------- Distribution ------------- count
128 | 0
256 | 1
512 | 0
1024 | 2
2048 | 0
4096 | 2
8192 |@@@@@@@@@@@@@@@@@@ 172
16384 |@@@@@ 52
32768 |@@@@@@@@@@@ 108
65536 |@@@ 34

131072 | 0

The output shows that sd2 is clearly the limiting device. The sd2 throughput is
between 256K/sec and 512K/sec, while cmdk0 is delivering I/O at anywhere from 8
MB/second to over 64 MB/second. The script prints out both the name as seen in
iostat, and the full path of the device. To find out more about the device, you could
specify the device path to prtconf, as shown in the following example:

# prtconf -v /devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0
disk, instance #2 (driver name: sd)

Driver properties:
name=’lba-access-ok’ type=boolean dev=(29,128)
name=’removable-media’ type=boolean dev=none
name=’pm-components’ type=string items=3 dev=none

value=’NAME=spindle-motor’ + ’0=off’ + ’1=on’
name=’pm-hardware-state’ type=string items=1 dev=none

value=’needs-suspend-resume’
name=’ddi-failfast-supported’ type=boolean dev=none
name=’ddi-kernel-ioctl’ type=boolean dev=none

Hardware properties:
name=’inquiry-revision-id’ type=string items=1

value=’1.04’
name=’inquiry-product-id’ type=string items=1

value=’STORAGE DEVICE’
name=’inquiry-vendor-id’ type=string items=1

value=’Generic’
name=’inquiry-device-type’ type=int items=1

value=00000000
name=’usb’ type=boolean
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name=’compatible’ type=string items=1
value=’sd’

name=’lun’ type=int items=1
value=00000000

name=’target’ type=int items=1

value=00000000

As the emphasized terms indicate, this device is a removable USB storage device.

The examples in this section have explored all I/O requests. However, you might only
be interested in one type of request. The following example tracks the directories in
which writes are occurring, along with the applications performing the writes:

#pragma D option quiet

io:::start
/args[0]->b_flags & B_WRITE/
{

@[execname, args[2]->fi_dirname] = count();
}

END
{

printf("%20s %51s %5s\n", "WHO", "WHERE", "COUNT");
printa("%20s %51s %5@d\n", @);

}

Running this example script on a desktop workload for a period of time yields some
interesting results, as shown in the following example output:

# dtrace -s ./whowrite.d
^C

WHO WHERE COUNT
su /var/adm 1

fsflush /etc 1
fsflush / 1
fsflush /var/log 1
fsflush /export/bmc/lisa 1

esd /export/bmc/.phoenix/default/78cxczuy.slt/Cache 1
fsflush /export/bmc/.phoenix 1

esd /export/bmc/.phoenix/default/78cxczuy.slt 1
vi /var/tmp 2
vi /etc 2
cat <none> 2
bash / 2
vi <none> 3

xterm /var/adm 3
fsflush /export/bmc 7

MozillaFirebird <none> 8
vim /export/bmc 9

MozillaFirebird /export/bmc 10
fsflush /var/adm 11
devfsadm /dev 14
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ksh <none> 71
ksh /export/bmc 71

fsflush /export/bmc/.phoenix/default/78cxczuy.slt 119
MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt 119

fsflush <none> 211
MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt/Cache 591

fsflush /export/bmc/.phoenix/default/78cxczuy.slt/Cache 666

sched <none> 2385

As the output indicates, virtually all writes are associated with the Mozilla Firebird
cache. The writes labeled <none> are likely due to writes associated with the UFS log,
writes that are themselves induced by other writes in the filesystem. See ufs(7FS) for
details on logging. This example shows how to use the io provider to discover a
problem at a much higher layer of software. In this case, the script has revealed a
configuration problem: the web browser would induce much less I/O (and quite likely
none at all) if its cache were in a directory in a tmpfs(7FS) filesystem.

The previous examples have used only the start and done probes. You can use the
wait-start and wait-done probes to understand why applications block for I/O –
and for how long. The following example script uses both io probes and sched
probes (see Chapter 26) to derive CPU time compared to I/O wait time for the
StarOffice software:

#pragma D option quiet

sched:::on-cpu
/execname == "soffice.bin"/
{

self->on = vtimestamp;
}

sched:::off-cpu
/self->on/
{

@time["<on cpu>"] = sum(vtimestamp - self->on);
self->on = 0;

}

io:::wait-start
/execname == "soffice.bin"/
{

self->wait = timestamp;
}

io:::wait-done
/self->wait/
{

@io[args[2]->fi_name] = sum(timestamp - self->wait);
@time["<I/O wait>"] = sum(timestamp - self->wait);
self->wait = 0;

}

END
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{
printf("Time breakdown (milliseconds):\n");
normalize(@time, 1000000);
printa(" %-50s %15@d\n", @time);

printf("\nI/O wait breakdown (milliseconds):\n");
normalize(@io, 1000000);
printa(" %-50s %15@d\n", @io);

}

Running the example script during a cold start of the StarOffice software yields the
following output:

Time breakdown (milliseconds):
<on cpu> 3634
<I/O wait> 13114

I/O wait breakdown (milliseconds):
soffice.tmp 0
Office 0
unorc 0
sbasic.cfg 0
en 0
smath.cfg 0
toolboxlayout.xml 0
sdraw.cfg 0
swriter.cfg 0
Linguistic.dat 0
scalc.cfg 0
Views.dat 0
Store.dat 0
META-INF 0
Common.xml.tmp 0
afm 0
libsimreg.so 1
xiiimp.so.2 3
outline 4
Inet.dat 6
fontmetric 6
...
libucb1.so 44
libj641si_g.so 46
libX11.so.4 46
liblng641si.so 48
swriter.db 53
libwrp641si.so 53
liblocaledata_ascii.so 56
libi18npool641si.so 65
libdbtools2.so 69
ofa64101.res 74
libxcr641si.so 82
libucpchelp1.so 83
libsot641si.so 86
libcppuhelper3C52.so 98
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libfwl641si.so 100
libsb641si.so 104
libcomphelp2.so 105
libxo641si.so 106
libucpfile1.so 110
libcppu.so.3 111
sw64101.res 114
libdb-3.2.so 119
libtk641si.so 126
libdtransX11641si.so 127
libgo641si.so 132
libfwe641si.so 150
libi18n641si.so 152
libfwi641si.so 154
libso641si.so 173
libpsp641si.so 186
libtl641si.so 189
<unknown> 189
libucbhelper1C52.so 195
libutl641si.so 213
libofa641si.so 216
libfwk641si.so 229
libsvl641si.so 261
libcfgmgr2.so 368
libsvt641si.so 373
libvcl641si.so 741
libsvx641si.so 885
libsfx641si.so 993
<none> 1096
libsw641si.so 1365

applicat.rdb 1580

As this output shows, much of the cold StarOffice start time is due to waiting for I/O.
(13.1 seconds waiting for I/O as opposed to 3.6 seconds on CPU.) Running the script
on a warm start of the StarOffice software reveals that page caching has eliminated the
I/O time , as shown in the following example output:

Time breakdown (milliseconds):
<I/O wait> 0
<on cpu> 2860

I/O wait breakdown (milliseconds):
temp 0
soffice.tmp 0
<unknown> 0

Office 0

The cold start output shows that the file applicat.rdb accounts for more I/O wait
time than any other file. This result is presumably due to many I/Os to the file. To
explore the I/Os performed to this file, you can use the following D script:

io:::start
/execname == "soffice.bin" && args[2]->fi_name == "applicat.rdb"/
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{
@ = lquantize(args[2]->fi_offset != -1 ?

args[2]->fi_offset / (1000 * 1024) : -1, 0, 1000);

}

This script uses the fi_offset field of the fileinfo_t structure to understand
which parts of the file are being accessed, at the granularity of a megabyte. Running
this script during a cold start of the StarOffice software results in output similar to the
following example:

# dtrace -s ./applicat.d
dtrace: script ’./applicat.d’ matched 4 probes
^C

value ------------- Distribution ------------ count
< 0 | 0
0 |@@@ 28
1 |@@ 17
2 |@@@@ 35
3 |@@@@@@@@@ 72
4 |@@@@@@@@@@ 78
5 |@@@@@@@@ 65

6 | 0

This output indicates that only the first six megabytes of the file are accessed, perhaps
because the file is six megabytes in size. The output also indicates that the entire file is
not accessed. If you wanted to improve the cold start time of StarOffice, you might
want to understand the access pattern of the file. If the needed sections of the file
could be largely contiguous, one way to improve StarOffice cold start time might be to
have a scout thread run ahead of the application, inducing the I/O to the file before
it’s needed. (This approach is particularly straightforward if the file is accessed using
mmap(2).) However, the ~1.6 seconds that this strategy would gain in cold start time
does not merit the additional complexity and maintenance burden in the application.
Either way, the data gathered with the io provider allows a precise understanding of
the benefit that such work could ultimately deliver.

Stability
The io provider uses DTrace’s stability mechanism to describe its stabilities, as shown
in the following table. For more information about the stability mechanism, see
Chapter 39.
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Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 28

mib Provider

The mib provider makes available probes that correspond to counters in the Solaris
management information bases (MIBs). MIB counters are used by the simple network
management protocol (SNMP) that allow remote monitoring of heterogeneous
networking entities. You can also view the counters with the kstat(1M) and
netstat(1M) commands. The mib provider facilitates quick exploration of aberrant
networking behavior that is observed using either remote or local networking
monitors.

Probes
The mib provider makes available probes for counters from several MIBs. The
protocols that export MIBs instrumented by the mib provider are listed in Table 28–1.
The table includes a reference to documentation that specifies some or all of the MIB,
the name of the kernel statistic that may be used to access the running counts (using
the kstat(1M) -n statistic option), and a reference to the table that has a complete
definition of the probes. All MIB counters are also available through the -s option to
netstat(1M).

TABLE 28–1 mib probes

Protocol MIB Description Kernel Statistic mib Probes Table

ICMP RFC 1213 icmp Table 28–2

IP RFC 1213 ip Table 28–3

IPsec — ip Table 28–4

IPv6 RFC 2465 — Table 28–5
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TABLE 28–1 mib probes (Continued)
Protocol MIB Description Kernel Statistic mib Probes Table

SCTP “SCTP MIB” (Internet
draft)

sctp Table 28–7

TCP RFC 1213 tcp Table 28–8

UDP RFC 1213 udp Table 28–9

TABLE 28–2 ICMP mib Probes

icmpInAddrMaskReps Probe that fires whenever an ICMP Address Mask Reply message is
received.

icmpInAddrMasks Probe that fires whenever an ICMP Address Mask Request message
is received.

icmpInBadRedirects Probe that fires whenever an ICMP Redirect message is received that
is determined to be malformed in some way (unknown ICMP code,
sender or target off-link, and the like).

icmpInCksumErrs Probe that fires whenever an ICMP message with a bad checksum is
received.

icmpInDestUnreachs Probe that fires whenever an ICMP Destination Unreachable message
is received.

icmpInEchoReps Probe that fires whenever an ICMP Echo Reply message is received.

icmpInEchos Probe that fires whenever an ICMP Echo request message is received.

icmpInErrors Probe that fires whenever an ICMP message is received that is
determined to have an ICMP-specific error (bad ICMP checksum, bad
length, etc.).

icmpInFragNeeded Probe that fires whenever an ICMP Destination Unreachable
(Fragmentation Needed) message is received, indicating that a sent
packet was lost because it was larger than some MTU and the Don’t
Fragment flag was set.

icmpInMsgs Probe that fires whenever an ICMP message is received. Whenever
this probe fires, the icmpInErrors probe may also fire if the
message is determined to have an ICMP-specific error.

icmpInOverflows Probe that fires whenever an ICMP message is received, but the
message is subsequently dropped due to lack of buffer space.

icmpInParmProbs Probe that fires whenever an ICMP Parameter Problem message is
received.

icmpInRedirects Probe that fires whenever an ICMP Redirect message is received.

icmpInSrcQuenchs Probe that fires whenever an ICMP Source Quench message is
received.
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TABLE 28–2 ICMP mib Probes (Continued)
icmpInTimeExcds Probe that fires whenever an ICMP Time Exceeded message is

received.

icmpInTimestampReps Probe that fires whenever an ICMP Timestamp Reply message is
received.

icmpInTimestamps Probe that fires whenever an ICMP Timestamp request message is
received.

icmpInUnknowns Probe that fires whenever an ICMP message of unknown type is
received.

icmpOutAddrMaskReps Probe that fires whenever an ICMP Address Mask Reply message is
sent.

icmpOutDestUnreachs Probe that fires whenever an ICMP Destination Unreachable message
is sent.

icmpOutDrops Probe that fires whenever an outbound ICMP message is dropped for
some reason (such as memory allocation failure, broadcast/multicast
source or destination, and the like).

icmpOutEchoReps Probe that fires whenever an ICMP Echo Reply message is sent.

icmpOutErrors Probe that fires whenever an ICMP message is not sent due to
problems discovered within ICMP, such as a lack of buffers. This
probe will not fire if errors are discovered outside the ICMP layer,
such as the inability of IP to route the resulting datagram.

icmpOutFragNeeded Probe that fires whenever an ICMP Destination Unreachable
(Fragmentation Needed) message is sent.

icmpOutMsgs Probe that fires whenever an ICMP message is sent. Whenever this
probe fires, the icmpOutErrors probe might also fire if the message
is determined to have ICMP-specific errors.

icmpOutParmProbs Probe that fires whenever an ICMP Parameter Problem message is
sent.

icmpOutRedirects Probe that fires whenever an ICMP Redirect message is sent. For a
host, this probe will never fire, because hosts do not send redirects.

icmpOutTimeExcds Probe that fires whenever an ICMP Time Exceeded message is sent.

icmpOutTimestampReps Probe that fires whenever an ICMP Timestamp Reply message is
sent.
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TABLE 28–3 IP mib Probes

ipForwDatagrams Probe that fires whenever a datagram is received that does not have
this machine as its final IP destination, and an attempt is made to
find a route to forward the datagram to that final destination. On
machines that do not act as IP gateways, this probe will only fire for
those packets that are source-routed through this machine, and for
which the source-route option processing was successful.

ipForwProhibits Probe that fires whenever a datagram is received that does not have
this machine as its final IP destination, but because the machine is not
permitted to act as a router, no attempt is made to find a route to
forward the datagram to that final destination.

ipFragCreates Probe that fires whenever an IP datagram fragment is generated as a
result of fragmentation.

ipFragFails Probe that fires whenever an IP datagram is discarded because it
could not be fragmented, for example, because fragmentation was
required and the Don’t Fragment flag was set.

ipFragOKs Probe that fires whenever an IP datagram has been successfully
fragmented.

ipInCksumErrs Probe that fires whenever an input datagram is discarded due to a
bad IP header checksum.

ipInDelivers Probe that fires whenever an input datagram is successfully delivered
to IP user protocols, including ICMP.

ipInDiscards Probe that fires whenever an input IP datagram is discarded for
reasons unrelated to the packet (for example, for lack of buffer space).
This probe does not fire for any datagram discarded while awaiting
reassembly.

ipInHdrErrors Probe that fires whenever an input datagram is discarded due to an
error in its IP header, including a version number mismatch, a format
error, an exceeded time-to-live, an error discovered in processing IP
options, and the like.

ipInIPv6 Probe that fires whenever an IPv6 packet erroneously arrives on an
IPv4 queue.

ipInReceives Probe that fires whenever a datagram is received from an interface,
even if that datagram is received in error.

ipInUnknownProtos Probe that fires whenever a locally addressed datagram is received
successfully but subsequently discarded because of an unknown or
unsupported protocol.

ipOutDiscards Probe that fires whenever an output IP datagram is discarded for
reasons unrelated to the packet (for example, for lack of buffer space).
This probe will fire for a packet counted in the ipForwDatagrams
MIB counter if the packet meets such a (discretionary) discard
criterion.

318 Solaris Dynamic Tracing Guide • January 2005



TABLE 28–3 IP mib Probes (Continued)
ipOutIPv6 Probe that fires whenever an IPv6 packet is sent over an IPv4

connection.

ipOutNoRoutes Probe that fires whenever an IP datagram is discarded because no
route could be found to transmit it to its destination. This probe will
fire for a packet counted in the ipForwDatagrams MIB counter if
the packet meets this “no-route” criterion. This probe will also fire for
any datagrams which cannot be routed because all default gateways
are down.

ipOutRequests Probe that fires whenever an IP datagram is supplied to IP for
transmission from local IP user protocols (include ICMP). Note that
this probe will not fire for any packet counted in the
ipForwDatagrams MIB counter.

ipOutSwitchIPv6 Probe that fires whenever a connection changes from using IPv4 to
using IPv6 as its IP protocol.

ipReasmDuplicates Probe that fires whenever the IP reassembly algorithm determines
that an IP fragment contains only previously received data.

ipReasmFails Probe that fires whenever any failure is detected by the IP reassembly
algorithm. This probe does not necessarily fire for every discarded IP
fragment because some algorithms, notably the algorithm in RFC
815, can lose track of fragments by combining them as they are
received.

ipReasmOKs Probe that fires whenever an IP datagram is successfully
reassembled.

ipReasmPartDups Probe that fires whenever the IP reassembly algorithm determines
that an IP fragment contains both some previously received data and
some new data.

ipReasmReqds Probe that fires whenever an IP fragment is received that needs to be
reassembled.

TABLE 28–4 IPsec mib Probes

ipsecInFailed Probe that fires whenever a received packet is dropped because it
fails to match the specified IPsec policy.

ipsecInSucceeded Probe that fires whenever a received packet matches the specified
IPsec policy and processing is allowed to continue.
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TABLE 28–5 IPv6 mib Probes

ipv6ForwProhibits Probe that fires whenever an IPv6 datagram is
received that does not have this machine as its
final IPv6 destination, but because the machine is
not permitted to act as a router, no attempt is
made to find a route to forward the datagram to
that final destination.

ipv6IfIcmpBadHoplimit Probe that fires whenever an ICMPv6 neighbor
discovery protocol message is received that is
found to have a Hop Limit less than the defined
maximum. Such messages might not have
originated from a neighbor, and are therefore
discarded.

ipv6IfIcmpInAdminProhibs Probe that fires whenever an ICMPv6
Destination Unreachable (Communication
Administratively Prohibited) message is
received.

ipv6IfIcmpInBadNeighborAdvertisementsProbe that fires whenever an ICMPv6 Neighbor
Advertisement message is received that is
malformed in some way.

ipv6IfIcmpInBadNeighborSolicitations Probe that fires whenever an ICMPv6 Neighbor
Solicit message is received that is malformed in
some way.

ipv6IfIcmpInBadRedirects Probe that fires whenever an ICMPv6 Redirect
message is received that is malformed in some
way.

ipv6IfIcmpInDestUnreachs Probe that fires whenever an ICMPv6
Destination Unreachable message is received.

ipv6IfIcmpInEchoReplies Probe that fires whenever an ICMPv6 Echo Reply
message is received.

ipv6IfIcmpInEchos Probe that fires whenever an ICMPv6 Echo
request message is received.

ipv6IfIcmpInErrors Probe that fires whenever an ICMPv6 message is
received that is determined to have an
ICMPv6-specific error (such as bad ICMPv6
checksum, bad length, and the like).

ipv6IfIcmpInGroupMembBadQueries Probe that fires whenever an ICMPv6 Group
Membership Query message is received that is
malformed in some way.

ipv6IfIcmpInGroupMembBadReports Probe that fires whenever an ICMPv6 Group
Membership Report message is received that is
malformed in some way.
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TABLE 28–5 IPv6 mib Probes (Continued)
ipv6IfIcmpInGroupMembOurReports Probe that fires whenever an ICMPv6 Group

Membership Report message is received.

ipv6IfIcmpInGroupMembQueries Probe that fires whenever an ICMPv6 Group
Membership Query message is received.

ipv6IfIcmpInGroupMembReductions Probe that fires whenever an ICMPv6 Group
Membership Reduction message is received.

ipv6IfIcmpInGroupMembResponses Probe that fires whenever an ICMPv6 Group
Membership Response message is received.

ipv6IfIcmpInGroupMembTotal Probe that fires whenever an ICMPv6 multicast
listener discovery message is received.

ipv6IfIcmpInMsgs Probe that fires whenever an ICMPv6 message is
received. When this probe fires, the
ipv6IfIcmpInErrors probe might also fire if
the message has an ICMPv6-specific error.

ipv6IfIcmpInNeighborAdvertisements Probe that fires whenever an ICMPv6 Neighbor
Advertisement message is received.

ipv6IfIcmpInNeighborSolicits Probe that fires whenever an ICMPv6 Neighbor
Solicit message is received.

ipv6IfIcmpInOverflows Probe that fires whenever an ICMPv6 message is
received, but that message is subsequently
dropped due to lack of buffer space.

ipv6IfIcmpInParmProblems Probe that fires whenever an ICMPv6 Parameter
Problem message is received.

ipv6IfIcmpInRedirects Probe that fires whenever an ICMPv6 Redirect
message is received.

ipv6IfIcmpInRouterAdvertisements Probe that fires whenever an ICMPv6 Router
Advertisement message is received.

ipv6IfIcmpInRouterSolicits Probe that fires whenever an ICMPv6 Router
Solicit message is received.

ipv6IfIcmpInTimeExcds Probe that fires whenever an ICMPv6 Time
Exceeded message is received.

ipv6IfIcmpOutAdminProhibs Probe that fires whenever an ICMPv6
Destination Unreachable (Communication
Administratively Prohibited) message is sent.

ipv6IfIcmpOutDestUnreachs Probe that fires whenever an ICMPv6
Destination Unreachable message is sent.

ipv6IfIcmpOutEchoReplies Probe that fires whenever an ICMPv6 Echo Reply
message is sent.
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TABLE 28–5 IPv6 mib Probes (Continued)
ipv6IfIcmpOutEchos Probe that fires whenever an ICMPv6 Echo

message is sent.

ipv6IfIcmpOutErrors Probe that fires whenever an ICMPv6 message is
not sent due to problems discovered within
ICMPv6, such as a lack of buffers. This probe will
not fire if errors are discovered outside the
ICMPv6 layer, such as the inability of IPv6 to
route the resulting datagram.

ipv6IfIcmpOutGroupMembQueries Probe that fires whenever an ICMPv6 Group
Membership Query message is sent.

ipv6IfIcmpOutGroupMembReductions Probe that fires whenever an ICMPv6 Group
Membership Reduction message is sent.

ipv6IfIcmpOutGroupMembResponses Probe that fires whenever an ICMPv6 Group
Membership Response message is sent.

ipv6IfIcmpOutMsgs Probe that fires whenever an ICMPv6 message is
sent. When this probe fires, the
ipv6IfIcmpOutErrors probe might also fire if
the message has ICMPv6-specific errors.

ipv6IfIcmpOutNeighborAdvertisements Probe that fires whenever an ICMPv6 Neighbor
Advertisement message is sent.

ipv6IfIcmpOutNeighborSolicits Probe that fires whenever an ICMPv6 Neighbor
Solicitation message is sent.

ipv6IfIcmpOutParmProblems Probe that fires whenever an ICMPv6 Parameter
Problem message is sent.

ipv6IfIcmpOutPktTooBigs Probe that fires whenever an ICMPv6 Packet Too
Big message is sent.

ipv6IfIcmpOutRedirects Probe that fires whenever an ICMPv6 Redirect
message is sent. For a host, this probe will never
fire, because hosts do not send redirects.

ipv6IfIcmpOutRouterAdvertisements Probe that fires whenever an ICMPv6 Router
Advertisement message is sent.

ipv6IfIcmpOutRouterSolicits Probe that fires whenever an ICMPv6 Router
Solicit message is sent.

ipv6IfIcmpOutTimeExcds Probe that fires whenever an ICMPv6 Time
Exceeded message is sent.
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TABLE 28–5 IPv6 mib Probes (Continued)
ipv6InAddrErrors Probe that fires whenever an input datagram is

discarded because the IPv6 address in their IPv6
header’s destination field is not a valid address
to be received by this entity. This probe will fire
for invalid addresses (for example, ::0) and for
unsupported addresses (for example, addresses
with unallocated prefixes). For machines that are
not configured to act as IPv6 routers and
therefore do not forward datagrams, this probe
will fire for datagrams discarded because the
destination address was not a local address.

ipv6InDelivers Probe that fires whenever an input datagram is
successfully delivered to IPv6 user-protocols
(including ICMPv6).

ipv6InDiscards Probe that fires whenever an input IPv6
datagram is discarded for reasons unrelated to
the packet (for example, for lack of buffer space).
This probe does not fire for any datagram
discarded while awaiting reassembly.

ipv6InHdrErrors Probe that fires whenever an input datagram is
discarded due to an error in its IPv6 header,
including a version number mismatch, a format
error, an exceeded hop count, an error discovered
in processing IPv6 options, and the like.

ipv6InIPv4 Probe that fires whenever an IPv4 packet
erroneously arrives on an IPv6 queue.

ipv6InMcastPkts Probe that fires whenever a multicast IPv6 packet
is received.

ipv6InNoRoutes Probe that fires whenever a routed IPv6
datagram is discarded because no route could be
found to transmit it to its destination. This probe
will only fire for packets that have originated
externally.

ipv6InReceives Probe that fires whenever an IPv6 datagram is
received from an interface, even if that datagram
is received in error.

ipv6InTooBigErrors Probe that fires whenever a fragment is received
that is larger than the maximum fragment size.

ipv6InTruncatedPkts Probe that fires whenever an input datagram is
discarded because the datagram frame didn’t
carry enough data.
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TABLE 28–5 IPv6 mib Probes (Continued)
ipv6InUnknownProtos Probe that fires whenever a locally-addressed

IPv6 datagram is received successfully but
subsequently discarded because of an unknown
or unsupported protocol.

ipv6OutDiscards Probe that fires whenever an output IPv6
datagram is discarded for reasons unrelated to
the packet (for example, for lack of buffer space).
This probe will fire for a packet counted in the
ipv6OutForwDatagrams MIB counter if the
packet meets such a (discretionary) discard
criterion.

ipv6OutForwDatagrams Probe that fires whenever a datagram is received
that does not have this machine as its final IPv6
destination, and an attempt is made to find a
route to forward the datagram to that final
destination. On a machine that does not act as an
IPv6 router, this probe will only fire for those
packets that are source-routed through the
machine, and for which the source-route option
processing was successful.

ipv6OutFragCreates Probe that fires whenever an IPv6 datagram
fragment is generated as a result of
fragmentation.

ipv6OutFragFails Probe that fires whenever an IPv6 datagram is
discarded because it could not be fragmented, for
example, because its Don’t Fragment flag was
set.

ipv6OutFragOKs Probe that fires whenever an IPv6 datagrams has
been successfully fragmented.

ipv6OutIPv4 Probe that fires whenever an IPv6 packet is sent
over an IPv4 connection.

ipv6OutMcastPkts Probe that fires whenever a multicast packet is
sent.

ipv6OutNoRoutes Probe that fires whenever an IPv6 datagram is
discarded because no route could be found to
transmit it to its destination. This probe will not
fire for packets that have originated externally.

ipv6OutRequests Probe that fires whenever an IPv6 datagram is
supplied to IPv6 for transmission from local IPv6
user protocols (including ICMPv6). This probe
will not fire for any packet counted in the
ipv6ForwDatagrams MIB counter.
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TABLE 28–5 IPv6 mib Probes (Continued)
ipv6OutSwitchIPv4 Probe that fires whenever a connection changes

from using IPv6 to using IPv4 as its IP protocol.

ipv6ReasmDuplicates Probe that fires whenever the IPv6 reassembly
algorithm determines that an IPv6 fragment
contains only previously received data.

ipv6ReasmFails Probe that fires whenever a failure is detected by
the IPv6 reassembly algorithm. This probe does
not necessarily fire for every discarded IPv6
fragment since some algorithms can lose track of
fragments by combining them as they are
received.

ipv6ReasmOKs Probe that fires whenever an IPv6 datagram is
successfully reassembled.

ipv6ReasmPartDups Probe that fires whenever the IPv6 reassembly
algorithm determines that an IPv6 fragment
contains both some previously received data and
some new data.

ipv6ReasmReqds Probe that fires whenever an IPv6 fragment is
received that needs to be reassembled.

TABLE 28–6 Raw IP mib Probes

rawipInCksumErrs Probe that fires whenever a raw IP packet is received that has a bad
IP checksum.

rawipInDatagrams Probe that fires whenever a raw IP packet is received.

rawipInErrors Probe that fires whenever a raw IP packet is received that is
malformed in some way.

rawipInOverflows Probe that fires whenever a raw IP packet is received, but that packet
is subsequently dropped due to lack of buffer space.

rawipOutDatagrams Probe that fires whenever a raw IP packet is sent.

rawipOutErrors Probe that fires whenever a raw IP packet is not sent due to some
error condition, typically because the raw IP packet was malformed
in some way.

TABLE 28–7 SCTP mib Probes

sctpAborted Probe that fires whenever an SCTP association has made a direct
transition to the CLOSED state from any state using the ABORT
primitive, denoting ungraceful termination of the association.

Chapter 28 • mib Provider 325



TABLE 28–7 SCTP mib Probes (Continued)
sctpActiveEstab Probe that fires whenever an SCTP association has made a direct

transition to the ESTABLISHED state from the COOKIE-ECHOED
state, denoting that the upper layer has initiated the association
attempt.

sctpChecksumError Probe that fires whenever an SCTP packet is received from peers with
an invalid checksum.

sctpCurrEstab Probe that fires whenever an SCTP association is tallied as a part of
reading the sctpCurrEstab MIB counter. An SCTP association is
tallied if its current state is ESTABLISHED,
SHUTDOWN-RECEIVED, or SHUTDOWN-PENDING.

sctpFragUsrMsgs Probe that fires whenever a user message has to be fragmented
because of the MTU.

sctpInClosed Probe that fires whenever data is received on a closed SCTP
association.

sctpInCtrlChunks Probe that fires whenever the sctpInCtrlChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpInDupAck Probe that fires whenever a duplicate ACK is received.

sctpInInvalidCookie Probe that fires whenever an invalid cookie is received.

sctpInOrderChunks Probe that fires whenever the sctpInOrderChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpInSCTPPkts Probe that fires whenever the sctpInSCTPPkts MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpInUnorderChunks Probe that fires whenever the sctpInUnorderChunks MIB counter
is updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpListenDrop Probe that fires whenever an incoming connection is dropped for any
reason.

sctpOutAck Probe that fires whenever a selective acknowledgement is sent.

sctpOutAckDelayed Probe that fires whenever delayed acknowledgement processing is
performed for an SCTP association. Any acknowledgements sent as a
part of delayed acknowledgement processing will cause the
sctpOutAck probe to fire.
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TABLE 28–7 SCTP mib Probes (Continued)
sctpOutCtrlChunks Probe that fires whenever the sctpOutCtrlChunks MIB counter is

updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutOfBlue Probe that fires whenever an otherwise correct SCTP packet is
received for which the receiver is not able to identify the association
to which the packet belongs.

sctpOutOrderChunks Probe that fires whenever the sctpOutOrderChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutSCTPPkts Probe that fires whenever the sctpOutSCTPPkts MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutUnorderChunks Probe that fires whenever the sctpOutUnorderChunks MIB
counter is updated, either because the MIB counter is explicitly
queried or because an SCTP connection is closed. The value by which
the MIB counter is to be increased is in args[0].

sctpOutWinProbe Probe that fires whenever a window probe is sent.

sctpOutWinUpdate Probe that fires whenever a window update is sent.

sctpPassiveEstab Probe that fires whenever SCTP associations have made a direct
transition to the ESTABLISHED state from the CLOSED state. The
remote endpoint has initiated the association attempt.

sctpReasmUsrMsgs Probe that fires whenever the sctpReasmUsrMsgs MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpRetransChunks Probe that fires whenever the sctpRetransChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpShutdowns Probe that fires whenever an SCTP association makes the direct
transition to the CLOSED state from either the SHUTDOWN-SENT
state or the SHUTDOWN-ACK-SENT state, denoting graceful
termination of the association.

sctpTimHeartBeatDrop Probe that fires whenever an SCTP association is aborted due to
failure to receive a heartbeat acknowledgement.

sctpTimHeartBeatProbe Probe that fires whenever an SCTP heartbeat is sent.

sctpTimRetrans Probe that fires whenever timer-based retransmit processing is
performed on an association.
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TABLE 28–7 SCTP mib Probes (Continued)
sctpTimRetransDrop Probe that fires whenever prolonged failure to perform timer-based

retransmission results in the association being aborted.

TABLE 28–8 TCP mib Probes

tcpActiveOpens Probe that fires whenever a TCP connection makes a direct transition
from the CLOSED state to the SYN_SENT state.

tcpAttemptFails Probe that fires whenever a TCP connection makes a direct transition
to the CLOSED state from either the SYN_SENT state or the
SYN_RCVD state and whenever a TCP connection makes a direct
transition to the LISTEN state from the SYN_RCVD state.

tcpCurrEstab Probe that fires whenever a TCP connection is tallied as a part of
reading the tcpCurrEstab MIB counter. A TCP connection is tallied
if its current state is either ESTABLISHED or CLOSE_WAIT.

tcpEstabResets Probe that fires whenever a TCP connection makes the direct
transition to the CLOSED state from either the ESTABLISHED state
or the CLOSE_WAIT state.

tcpHalfOpenDrop Probe that fires whenever a connection is dropped due to a full queue
of connections in the SYN_RCVD state.

tcpInAckBytes Probe that fires whenever an ACK is received for previously sent
data. The number of bytes acknowledged is passed in args[0].

tcpInAckSegs Probe that fires whenever an ACK is received for a previously sent
segment.

tcpInAckUnsent Probe that fires whenever an ACK is received for an unsent segment.

tcpInClosed Probe that fires whenever data was received for a connection in a
closing state.

tcpInDataDupBytes Probe that fires whenever a segment is received such that all data in
the segment has been previously received. The number of bytes in
the duplicated segment is passed in args[0].

tcpInDataDupSegs Probe that fires whenever a segment is received such that all data in
the segment has been previously received. The number of bytes in
the duplicated segment is passed in args[0].

tcpInDataInorderBytes Probe that fires whenever data is received such that all data prior to
the new data’s sequence number has been previously received. The
number of bytes received in-order is passed in args[0].

tcpInDataInorderSegs Probe that fires whenever a segment is received such that all data
prior to the new segment’s sequence number has been previously
received.
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TABLE 28–8 TCP mib Probes (Continued)
tcpInDataPartDupBytes Probe that fires whenever a segment is received such that some of the

data in the segment has been previously received, but some of the
data in the segment is new. The number of duplicate bytes is passed
in args[0].

tcpInDataPartDupSegs Probe that fires whenever a segment is received such that some of the
data in the segment has been previously received, but some of the
data in the segment is new. The number of duplicate bytes is passed
in args[0].

tcpInDataPastWinBytes Probe that fires whenever data is received that lies past the current
receive window. The number of bytes is in args[0].

tcpInDataPastWinSegs Probe that fires whenever a segment is received that lies past the
current receive window.

tcpInDataUnorderBytes Probe that fires whenever data is received such that some data prior
to the new data’s sequence number is missing. The number of bytes
received unordered is passed in args[0].

tcpInDataUnorderSegs Probe that fires whenever a segment is received such that some data
prior to the new data’s sequence number is missing.

tcpInDupAck Probe that fires whenever a duplicate ACK is received.

tcpInErrs Probe that fires whenever a TCP error (for example, a bad TCP
checksum) is found on a received segment.

tcpInSegs Probe that fires whenever a segment is received, even if that segment
is later found to have an error that prevents further processing.

tcpInWinProbe Probe that fires whenever a window probe is received.

tcpInWinUpdate Probe that fires whenever a window update is received.

tcpListenDrop Probe that fires whenever an incoming connection is dropped due to
a full listen queue.

tcpListenDropQ0 Probe that fires whenever a connection is dropped due to a full queue
of connections in the SYN_RCVD state.

tcpOutAck Probe that fires whenever an ACK is sent.

tcpOutAckDelayed Probe that fires whenever an ACK is sent after having been initially
delayed.

tcpOutControl Probe that fires whenever a SYN, FIN, or RST is sent.

tcpOutDataBytes Probe that fires whenever data is sent. The number of bytes sent is in
args[0].

tcpOutDataSegs Probe that fires whenever a segment is sent.

tcpOutFastRetrans Probes that fires whenever a segment is retransmitted as part of the
fast retransmit algorithm.
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TABLE 28–8 TCP mib Probes (Continued)
tcpOutRsts Probe that fires whenever a segment is sent with the RST flag set.

tcpOutSackRetransSegs Probe that fires whenever a segment is retransmitted on a connection
that has selective acknowledgement enabled.

tcpOutSegs Probe that fires whenever a segment is sent that contains at least one
non-retransmitted byte.

tcpOutUrg Probe that fires whenever a segment is sent with the URG flag set,
and with a valid urgent pointer.

tcpOutWinProbe Probe that fires whenever a window probe is sent.

tcpOutWinUpdate Probe that fires whenever a window update is sent.

tcpPassiveOpens Probe that fires whenever a TCP connections have made a direct
transition to the SYN_RCVD state from the LISTEN state.

tcpRetransBytes Probe that fires whenever data is retransmitted. The number of bytes
retransmitted is in args[0].

tcpRetransSegs Probe that fires whenever a segment is sent that contains one or more
retransmitted bytes.

tcpRttNoUpdate Probe that fires whenever data was received, but there was no
timestamp information available with which to update the RTT.

tcpRttUpdate Probe that fires whenever data was received containing the
timestamp information necessary to update the RTT.

tcpTimKeepalive Probe that fires whenever timer-based keep-alive processing is
performed on a connection.

tcpTimKeepaliveDrop Probe that fires whenever keep-alive processing results in
termination of a connection.

tcpTimKeepaliveProbe Probe that fires whenever a keep-alive probe is sent out as a part of
keep-alive processing.

tcpTimRetrans Probe that fires whenever timer-based retransmit processing is
performed on a connection.

tcpTimRetransDrop Probe that fires whenever prolonged failure to perform timer-based
retransmission results in termination of the connection.

TABLE 28–9 UDP mib Probes

udpInCksumErrs Probe that fires whenever a datagram is discarded due to a bad UDP
checksum.

udpInDatagrams Probe that fires whenever a UDP datagram is received.
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TABLE 28–9 UDP mib Probes (Continued)
udpInErrors Probe that fires whenever a UDP datagram is received, but is

discarded due to either a malformed packet header or the failure to
allocate an internal buffer.

udpInOverflows Probe that fires whenever a UDP datagram is received, but
subsequently dropped due to lack of buffer space.

udpNoPorts Probe that fires whenever a UDP datagram is received on a port to
which no socket is bound.

udpOutDatagrams Probe that fires whenever a UDP datagram is sent.

udpOutErrors Probe that fires whenever a UDP datagram is not sent due to some
error condition, typically because the datagram was malformed in
some way.

Arguments
The sole argument for each mib probe has the same semantics: args[0] contains the
value with which the counter is to be incremented. For most mib probes, args[0]
always contains the value 1, but for some probes args[0] may take arbitrary positive
values. For these probes, the meaning of args[0] is noted in the probe description.

Stability
The mib provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 29

fpuinfo Provider

The fpuinfo provider makes available probes that correspond to the simulation of
floating-point instructions on SPARC microprocessors. While most floating-point
instructions are executed in hardware, some floating-point operations trap into the
operating system for simulation. The conditions under which floating-point operations
require operating system simulation are specific to a microprocessor implementation.
The operations that require simulation are rare. However, if an application uses one of
these operations frequently, the effect on performance could be severe. The fpuinfo
provider enables rapid investigation of floating-point simulation seen through either
kstat(1M) and the fpu_info kernel statistic or trapstat(1M) and the
fp-xcp-other trap.

Probes
The fpuinfo provider makes available a probe for each type of floating-point
instruction that can be simulated. The fpuinfo provider has a Name Stability of CPU;
the names of the probes are specific to a microprocessor implementation, and might
not be available on different microprocessors within the same family. For example,
some of the probes listed might only be available on UltraSPARC-III and not
UltraSPARC-III+ or vice versa.

The fpuinfo probes are described in Table 29–1.

TABLE 29–1 fpuinfo Probes

fpu_sim_fitoq Probe that fires whenever an fitoq instruction is simulated by the kernel.

fpu_sim_fitod Probe that fires whenever an fitod instruction is simulated by the kernel.

fpu_sim_fitos Probe that fires whenever an fitos instruction is simulated by the kernel.
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TABLE 29–1 fpuinfo Probes (Continued)
fpu_sim_fxtoq Probe that fires whenever an fxtoq instruction is simulated by the kernel.

fpu_sim_fxtod Probe that fires whenever an fxtod instruction is simulated by the kernel.

fpu_sim_fxtos Probe that fires whenever an fxtos instruction is simulated by the kernel.

fpu_sim_fqtox Probe that fires whenever an fqtox instruction is simulated by the kernel.

fpu_sim_fdtox Probe that fires whenever an fdtox instruction is simulated by the kernel.

fpu_sim_fstox Probe that fires whenever an fstox instruction is simulated by the kernel.

fpu_sim_fqtoi Probe that fires whenever an fqtoi instruction is simulated by the kernel.

fpu_sim_fdtoi Probe that fires whenever an fdtoi instruction is simulated by the kernel.

fpu_sim_fstoi Probe that fires whenever an fstoi instruction is simulated by the kernel.

fpu_sim_fsqrtq Probe that fires whenever an fsqrtq instruction is simulated by the kernel.

fpu_sim_fsqrtd Probe that fires whenever an fsqrtd instruction is simulated by the kernel.

fpu_sim_fsqrts Probe that fires whenever an fsqrts instruction is simulated by the kernel.

fpu_sim_fcmpeq Probe that fires whenever an fcmpeq instruction is simulated by the kernel.

fpu_sim_fcmped Probe that fires whenever an fcmped instruction is simulated by the kernel.

fpu_sim_fcmpes Probe that fires whenever an fcmpes instruction is simulated by the kernel.

fpu_sim_fcmpq Probe that fires whenever an fcmpq instruction is simulated by the kernel.

fpu_sim_fcmpd Probe that fires whenever an fcmpd instruction is simulated by the kernel.

fpu_sim_fcmps Probe that fires whenever an fcmps instruction is simulated by the kernel.

fpu_sim_fdivq Probe that fires whenever an fdivq instruction is simulated by the kernel.

fpu_sim_fdivd Probe that fires whenever an fdivd instruction is simulated by the kernel.

fpu_sim_fdivs Probe that fires whenever an fdivs instruction is simulated by the kernel.

fpu_sim_fdmulx Probe that fires whenever an fdmulx instruction is simulated by the kernel.

fpu_sim_fsmuld Probe that fires whenever an fsmuld instruction is simulated by the kernel.

fpu_sim_fmulq Probe that fires whenever an fmulq instruction is simulated by the kernel.

fpu_sim_fmuld Probe that fires whenever an fmuld instruction is simulated by the kernel.

fpu_sim_fmuls Probe that fires whenever an fmuls instruction is simulated by the kernel.

fpu_sim_fsubq Probe that fires whenever an fsubq instruction is simulated by the kernel.

fpu_sim_fsubd Probe that fires whenever an fsubd instruction is simulated by the kernel.

fpu_sim_fsubs Probe that fires whenever an fsubs instruction is simulated by the kernel.

fpu_sim_faddq Probe that fires whenever an faddq instruction is simulated by the kernel.
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TABLE 29–1 fpuinfo Probes (Continued)
fpu_sim_faddd Probe that fires whenever an faddd instruction is simulated by the kernel.

fpu_sim_fadds Probe that fires whenever an fadds instruction is simulated by the kernel.

fpu_sim_fnegd Probe that fires whenever an fnegd instruction is simulated by the kernel.

fpu_sim_fnegq Probe that fires whenever an fneqq instruction is simulated by the kernel.

fpu_sim_fnegs Probe that fires whenever an fnegs instruction is simulated by the kernel.

fpu_sim_fabsd Probe that fires whenever an fabsd instruction is simulated by the kernel.

fpu_sim_fabsq Probe that fires whenever an fabsq instruction is simulated by the kernel.

fpu_sim_fabss Probe that fires whenever an fabss instruction is simulated by the kernel.

fpu_sim_fmovd Probe that fires whenever an fmovd instruction is simulated by the kernel.

fpu_sim_fmovq Probe that fires whenever an fmovq instruction is simulated by the kernel.

fpu_sim_fmovs Probe that fires whenever an fmovs instruction is simulated by the kernel.

fpu_sim_fmovr Probe that fires whenever an fmovr instruction is simulated by the kernel.

fpu_sim_fmovcc Probe that fires whenever an fmovcc instruction is simulated by the kernel.

Arguments
There are no arguments to fpuinfo probes.

Stability
The fpuinfo provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving CPU

Module Private Private Unknown
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Element Name stability Data stability Dependency class

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving CPU

336 Solaris Dynamic Tracing Guide • January 2005



CHAPTER 30

pid Provider

The pid provider allows for tracing of the entry and return of any function in a user
process as well as any instruction as specified by an absolute address or function
offset. The pid provider has no probe effect when probes are not enabled. When
probes are enabled, the probes only induce probe effect on those processes that are
traced.

Naming pid Probes
The pid provider actually defines a class of providers. Each process can potentially
have its own associated pid provider. A process with ID 123, for example, would be
traced by using the pid123 provider. For probes from one of these providers, the
module portion of the probe description refers to an object loaded in the
corresponding process’s address space. The following example uses mdb(1) to display
a list of objects:

$ mdb -p 1234
Loading modules: [ ld.so.1 libc.so.1 ]
> ::objects

BASE LIMIT SIZE NAME
10000 34000 24000 /usr/bin/csh

ff3c0000 ff3e8000 28000 /lib/ld.so.1
ff350000 ff37a000 2a000 /lib/libcurses.so.1
ff200000 ff2be000 be000 /lib/libc.so.1
ff3a0000 ff3a2000 2000 /lib/libdl.so.1

ff320000 ff324000 4000 /platform/sun4u/lib/libc_psr.so.1

In the probe description, you name the object by the name of the file, not its full path
name. You can also omit the “.1” or “so.1” suffix. All of the following examples
name the same probe:

pid123:libc.so.1:strcpy:entry
pid123:libc.so:strcpy:entry
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pid123:libc:strcpy:entry

The first example is the actual name of the probe. The other examples are convenient
aliases that are replaced with the full load object name internally.

For the load object of the executable, you can use the alias a.out. The following two
probe descriptions name the same probe:

pid123:csh:main:return

pid123:a.out:main:return

As with all anchored DTrace probes, the function field of the probe description names
a function in the module field. A user application binary might have several names for
the same function. For example, mutex_lock might be an alternate name for the
function pthread_mutex_lock in libc.so.1. DTrace chooses one canonical name
for such functions and uses that name internally. The following example shows how
DTrace internally remaps module and function names to a canonical form:

# dtrace -q -n pid101267:libc:mutex_lock:entry’{ \
printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename); }’

pid101267:libc.so.1:pthread_mutex_lock:entry

^C

This automatic renaming means that the names of the probes you enable may be
slightly different than those actually enabled. The canonical name will always be
consistent between runs of DTrace on systems running the same Solaris release.

See Chapter 33 for examples of how to use the pid provider effectively.

Function Boundary Probes
The pid provider enables you to trace function entry and return in user programs just
as the FBT provider provides that capability for the kernel. Most of the examples in
this manual that use the FBT provider to trace kernel function calls can be modified
slightly to apply to user processes.

entry Probes
An entry probe fires when the traced function is invoked. The arguments to entry
probes are the values of the arguments to the traced function.
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return Probes
A return probes fires when the traced function returns or makes a tail call to another
function. The value for arg0 is the offset in the function of the return instruction;
arg1 holds the return value.

Function Offset Probes
The pid provider lets you trace any instruction in a function. For example to trace the
instruction 4 bytes into a function main(), you could use a command similar to the
following example:

pid123:a.out:main:4

Every time the program executes the instruction at address main+4, this probe will be
activated. The arguments for offset probes are undefined. The uregs[] array will
help you examine process state at these probe sites. See “uregs[] Array” on page 352
for more information.

Stability
The pid provider uses DTrace’s stability mechanism to describe its stabilities, as
shown in the following table. For more information about the stability mechanism, see
Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown
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CHAPTER 31

plockstat Provider

The plockstat provider makes available probes that can be used to observe the
behavior of user-level synchronization primitives including lock contention and hold
times. The plockstat(1M) command is a DTrace consumer that uses the plockstat
provider to gather data on user-level locking events.

Overview
The plockstat provider makes available probes for the following types of events:

Contention Events These probes correspond to contention on a user-level
synchronization primitive, and fire when a thread is forced to
wait for a resource to become available. Solaris is generally
optimized for the non-contention case, so prolonged contention
is not expected; these probes should be used to understand those
cases where contention does arise. Because contention is
designed to be (relatively) rare, enabling contention-event probes
generally doesn’t have a serious probe effect; they can be enabled
without concern for substantially affecting performance.

Hold Events These probes correspond to acquiring, releasing or otherwise
manipulating a user-level synchronization primitive. As such,
these probes can be used to answer arbitrary questions about the
way user-level synchronization primitives are manipulated.
Because applications typically acquire and release
synchronization primitives very often, enabling hold-event
probes can have a greater probe effect than enabling
contention-event probes. While the probe effect induced by
enabling them can be substantial, it is not pathological; they may
still be enabled with confidence on production applications.
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Error Events These probes correspond to any kind of anomalous behavior
encountered when acquiring or releasing a user-level
synchronization primitive. These events can be used to detect
errors encountered while a thread is blocking on a user-level
synchronization primitive. Error events should be extremely
uncommon so enabling them shouldn’t induce a serious probe
effect.

Mutex Probes
Mutexes enforce mutual exclusion to critical sections. When a thread attempts to
acquire a mutex held by another thread using mutex_lock(3C) or
pthread_mutex_lock(3C), it will determine if the owning thread is running on a
different CPU. If it is, the acquiring thread will spin for a short while waiting for the
mutex to become available. If the owner is not executing on another CPU, the
acquiring thread will block.

The four plockstat probes pertaining to mutexes are listed in Table 31–1. For each
probe, arg0 contains a pointer to the mutex_t or pthread_mutex_t structure
(these are identical types) that represents the mutex.

TABLE 31–1 Mutex Probes

mutex-acquire Hold event probe that fires immediately after a mutex is acquired. arg1
contains a boolean value that indicates whether the acquisition was
recursive on a recursive mutex. arg2 indicates the number of iterations
that the acquiring thread spent spinning on this mutex. arg2 will be
non-zero only if the mutex-spin probe fired on this mutex acquisition.

mutex-block Contention event probe that fires before a thread blocks on a held
mutex. Both mutex-block and mutex-spin might fire for a single
lock acquisition.

mutex-spin Contention event probe that fires before a thread begins spinning on a
held mutex. Both mutex-block and mutex-spin might fire for a
single lock acquisition.

mutex-release Hold event probe that fires immediately after an mutex is released.
arg1 contains a boolean value that indicates whether the event
corresponds to a recursive release on a recursive mutex.

mutex-error Error event probe that fires when an error is encountered on a mutex
operation. arg1 is the errno value for the error encountered.
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Reader/Writer Lock Probes
Reader/write locks permit multiple readers or a single writer, but not both, to be in a
critical section at one time. These locks are typically used for structures that are
searched more frequently than they are modified, or when threads spend substantial
time in a critical section. Users interact with reader/writer locks using the Solaris
rwlock(3C) or POSIX pthread_rwlock_init(3C) interfaces.

The probes pertaining to readers/writer locks are in Table 31–2. For each probe, arg0
contains a pointer to the rwlock_t or pthread_rwlock_tstructure (these are
identical types) that represents the adaptive lock. arg1 contains a boolean value that
indicates whether the operation was as a writer.

TABLE 31–2 Readers/Writer Lock Probes

rw-acquire Hold event probe that fires immediately after a readers/writer lock is
acquired.

rw-block Contention event probe that fires before a thread blocks while attempting to
acquire a lock. If enabled, the rw-acquire probe or the rw-error probe
will fire after rw-block.

rw-release Hold event probe that fires immediately after a reader/writer lock is
released

rw-error Error event probe that fires when an error is encountered during a
reader/writer lock operation. arg1 is the errno value of the error
encountered.

Stability
The plockstat provider uses DTrace’s stability mechanism to describe its stabilities,
as shown in the following table. For more information about the stability mechanism,
see Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown
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Element Name stability Data stability Dependency class

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 32

fasttrap Provider

The fasttrap provider allows for tracing at specific, preprogrammed user process
locations. Unlike most other DTrace providers, the fasttrap provider is not designed
for tracing system activity Rather, this provider is meant as a way for DTrace
consumers to inject information into the DTrace framework by activating the
fasttrap probe.

Probes
The fasttrap provider makes available a single probe, fasttrap:::fasttrap,
that fires whenever a user-level process makes a certain DTrace call into the kernel.
The DTrace call to activate the probe is not publicly available at the present time.

Stability
The fasttrap provider uses DTrace’s stability mechanism to describe its stabilities,
as shown in the following table. For more information about the stability mechanism,
see Chapter 39.

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown
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Element Name stability Data stability Dependency class

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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CHAPTER 33

User Process Tracing

DTrace is an extremely powerful tool for understanding the behavior of user
processes. DTrace can be invaluable when debugging, analyzing performance
problems, or simply understanding the behavior of a complex application. This
chapter focuses on the DTrace facilities relevant for tracing user process activity and
provides examples to illustrate their use.

copyin() and copyinstr()
Subroutines
DTrace’s interaction with processes is a little different than most traditional debuggers
or observability tools. Many such tools appear to execute within the scope of the
process, letting users dereference pointers to program variables directly. Rather than
appearing to execute within or as part of the process itself, DTrace probes execute in
the Solaris kernel. To access process data, a probe needs to use the copyin() or
copyinstr() subroutines to copy user process data into the address space of the
kernel.

For example, consider the following write(2) system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a
string passed to the write(2) system call:

syscall::write:entry
{

printf("%s", stringof(arg1)); /* incorrect use of arg1 */

}
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If you try to run this script, DTrace will produce error messages similar to the
following example:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \

invalid address (0x10038a000) in action #1

The arg1 variable, containing the value of the buf parameter, is an address that refers
to memory in the process executing the system call. To read the string at that address,
use the copyinstr() subroutine and record its result with the printf() action:

syscall::write:entry
{

printf("%s", copyinstr(arg1)); /* correct use of arg1 */

The output of this script shows all of the strings being passed to the write(2) system
call. Occasionally, however, you might see irregular output similar to the following
example:

0 37 write:entry madaï¿½ï¿½ï¿½

The copyinstr() subroutine acts on an input argument that is the user address of a
null-terminated ASCII string. However, buffers passed to the write(2) system call
might refer to binary data rather than ASCII strings. To print only as much of the
string as the caller intended, use the copyin() subroutine, which takes a size as its
second argument:

syscall::write:entry
{

printf("%s", stringof(copyin(arg1, arg2)));

}

Notice that the stringof operator is necessary so that DTrace properly converts the
user data retrieved using copyin() to a string. The use of stringof is not necessary
when using copyinstr() because this function always returns type string.

Avoiding Errors
The copyin() and copyinstr() subroutines cannot read from user addresses
which have not yet been touched so even a valid address may cause an error if the
page containing that address has not yet been faulted in by being accessed. Consider
the following example:

# dtrace -n syscall::open:entry’{ trace(copyinstr(arg0)); }’
dtrace: description ’syscall::open:entry’ matched 1 probe
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 2 (ID 50: syscall::open:entry): invalid address

(0x9af1b) in action #1 at DIF offset 52
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In the above example output, the application was functioning properly, and the
address in arg0 was valid, but it referred to a page that had not yet been accessed by
the corresponding process. To resolve this issue, wait for kernel or application to use
the data before tracing it. For example, you might wait until the system call returns to
apply copyinstr(), as shown in the following example:

# dtrace -n syscall::open:entry’{ self->file = arg0; }’ \
-n syscall::open:return’{ trace(copyinstr(self->file)); self->file = 0; }’
dtrace: description ’syscall::open:entry’ matched 1 probe
CPU ID FUNCTION:NAME
2 51 open:return /dev/null

Eliminating dtrace(1M) Interference
If you trace every call to the write(2) system call, you will cause a cascade of output.
Each call to write() causes the dtrace(1M) command to call write() as it displays
the output, and so on. This feedback loop is a good example of how the dtrace
command can interfere with the desired data. You can use a simple predicate to
prevent these unwanted data from being traced:

syscall::write:entry
/pid != $pid/
{

printf("%s", stringof(copyin(arg1, arg2)));

}

The $pid macro variable expands to the process identifier of the process that enabled
the probes. The pid variable contains the process identifier of the process whose
thread was running on the CPU where the probe was fired. Therefore the predicate
/pid != $pid/ ensures that the script does not trace any events related to the
running of this script itself.

syscall Provider
The syscall provider enables you to trace every system call entry and return.
System calls can be a good starting point for understanding a process’s behavior,
especially if the process seems to be spending a large amount of time executing or
blocked in the kernel. You can use the prstat(1M) command to see where processes
are spending time:

$ prstat -m -p 31337
PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP

13499 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6
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This example shows that the process is consuming a large amount of system time. One
possible explanation for this behavior is that the process is executing a large number
of system calls. You can use a simple D program specified on the command-line to see
which system calls are happening most often:

# dtrace -n syscall:::entry’/pid == 31337/{ @syscalls[probefunc] = count(); }’
dtrace: description ’syscall:::entry’ matched 215 probes
^C

open 1
lwp_park 2
times 4
fcntl 5
close 6
sigaction 6
read 10
ioctl 14
sigprocmask 106

write 1092

This report shows which system calls are being called most often, in this case, the
write(2) system call. You can use the syscall provider to further examine the
source of all the write() system calls:

# dtrace -n syscall::write:entry’/pid == 31337/{ @writes[arg2] = quantize(); }’
dtrace: description ’syscall::write:entry’ matched 1 probe
^C

value ------------- Distribution ------------- count
0 | 0
1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037
2 |@ 3
4 | 0
8 | 0
16 | 0
32 |@ 3
64 | 0
128 | 0
256 | 0
512 | 0
1024 |@ 5

2048 | 0

The output shows that the process is executing many write() system calls with a
relatively small amount of data. This ratio could be the source of the performance
problem for this particular process. This example illustrates a general methodology for
investigating system call behavior.

350 Solaris Dynamic Tracing Guide • January 2005



ustack() Action
Tracing a process thread’s stack at the time a particular probe is activated is often
useful for examining a problem in more detail. The ustack() action traces the user
thread’s stack. If, for example, a process that opens many files occasionally fails in the
open(2) system call, you can use the ustack() action to discover the code path that
executes the failed open():

syscall::open:entry
/pid == $1/
{

self->path = copyinstr(arg0);
}

syscall::open:return
/self->path != NULL && arg1 == -1/
{

printf("open for ’%s’ failed", self->path);
ustack();

}

This script also illustrates the use of the $1 macro variable which takes the value of
the first operand specified on the dtrace(1M) command-line:

# dtrace -s ./badopen.d 31337
dtrace: script ’./badopen.d’ matched 2 probes
CPU ID FUNCTION:NAME
0 40 open:return open for ’/usr/lib/foo’ failed

libc.so.1‘__open+0x4
libc.so.1‘open+0x6c
420b0
tcsh‘dosource+0xe0
tcsh‘execute+0x978
tcsh‘execute+0xba0
tcsh‘process+0x50c
tcsh‘main+0x1d54

tcsh‘_start+0xdc

The ustack() action records program counter (PC) values for the stack and
dtrace(1M) resolves those PC values to symbol names by looking though the
process’s symbol tables. If dtrace can’t resolve the PC value to a symbol, it will print
out the value as a hexadecimal integer.
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If a process exits or is killed before the ustack() data is formatted for output,
dtrace might be unable to convert the PC values in the stack trace to symbol names,
and will be forced to display them as hexadecimal integers. To work around this
limitation, specify a process of interest with the -c or -p option to dtrace. See
Chapter 14 for details on these and other options. If the process ID or command is not
known in advance, the following example D program that can be used to work around
the limitation:

/*
* This example uses the open(2) system call probe, but this technique
* is applicable to any script using the ustack() action where the stack
* being traced is in a process that may exit soon.
*/
syscall::open:entry
{

ustack();
stop_pids[pid] = 1;

}

syscall::rexit:entry
/stop_pids[pid] != 0/
{

printf("stopping pid %d", pid);
stop();
stop_pids[pid] = 0;

}

The above script stops a process just before it exits if the ustack() action has been
applied to a thread in that process. This technique ensures that the dtrace command
will be able to resolve the PC values to symbolic names. Notice that the value of
stop_pids[pid] is set to 0 after it has been used to clear the dynamic variable.
Remember to set stopped processes running again using the prun(1) command or
your system will accumulate many stopped processes.

uregs[] Array
The uregs[] array enables you to access individual user registers. The following
tables list indices into the uregs[] array corresponding to each supported Solaris
system architecture.

TABLE 33–1 SPARC uregs[] Constants

Constant Register

R_G0..R_G7 %g0..%g7 global registers
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TABLE 33–1 SPARC uregs[] Constants (Continued)
Constant Register

R_O0..R_O7 %o0..%o7 out registers

R_L0..R_L7 %l0..%l7 local registers

R_I0..R_I7 %i0..%i7 in registers

R_CCR %ccr condition code register

R_PC %pc program counter

R_NPC %npc next program counter

R_Y %y multiply/divide register

R_ASI %asi address space identifier register

R_FPRS %fprs floating-point registers state

TABLE 33–2 x86 uregs[] Constants

Constant Register

R_CS %cs

R_GS %gs

R_ES %es

R_DS %ds

R_EDI %edi

R_ESI %esi

R_EBP %ebp

R_EAX %eax

R_ESP %esp

R_EAX %eax

R_EBX %ebx

R_ECX %ecx

R_EDX %edx

R_TRAPNO %trapno

R_ERR %err

R_EIP %eip

R_CS %cs
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TABLE 33–2 x86 uregs[] Constants (Continued)
Constant Register

R_ERR %err

R_EFL %efl

R_UESP %uesp

R_SS %ss

On AMD64 platforms, the uregs array has the same content as it does on x86
platforms, plus the additional elements listed in the following table:

TABLE 33–3 amd64 uregs[] Constants

Constant Register

R_RSP %rsp

R_RFL %rfl

R_RIP %rip

R_RAX %rax

R_RCX %rcx

R_RDX %rdx

R_RBX %rbx

R_RBP %rbp

R_RSI %rsi

R_RDI %rdi

R_R8 %r8

R_R9 %r9

R_R10 %r10

R_R11 %r11

R_R12 %r12

R_R13 %r13

R_R14 %r14

R_R15 %r15

The aliases listed in the following table can be used on all platforms:
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TABLE 33–4 Common uregs[] Constants

Constant Register

R_PC program counter register

R_SP stack pointer register

R_R0 first return code

R_R1 second return code

pid Provider
The pid provider enables you to trace any instruction in a process. Unlike most other
providers, pid probes are created on demand based on the probe descriptions found
in your D programs. As a result, no pid probes are listed in the output of dtrace -l
until you have enabled them yourself.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is as the user space analogue to
the fbt provider. The following example program traces all function entries and
returns that are made from a single function. The $1 macro variable (the first operand
on the command line) is the process ID for the process to trace. The $2 macro variable
(the second operand on the command line) is the name of the function from which to
trace all function calls.

EXAMPLE 33–1 userfunc.d: Trace User Function Entry and Return

pid$1::$2:entry
{

self->trace = 1;
}

pid$1::$2:return
/self->trace/
{

self->trace = 0;
}

pid$1:::entry,
pid$1:::return
/self->trace/
{

}
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Type in the above example script and save it in a file named userfunc.d, and then
chmod it to be executable. This script produces output similar to the following
example:

# ./userfunc.d 15032 execute
dtrace: script ’./userfunc.d’ matched 11594 probes
0 -> execute
0 -> execute
0 -> Dfix
0 <- Dfix
0 -> s_strsave
0 -> malloc
0 <- malloc
0 <- s_strsave
0 -> set
0 -> malloc
0 <- malloc
0 <- set
0 -> set1
0 -> tglob
0 <- tglob
0 <- set1
0 -> setq
0 -> s_strcmp
0 <- s_strcmp

...

The pid provider can only be used on processes that are already running. You can use
the $target macro variable (see Chapter 15) and the dtrace -c and -p options to
create and grab processes of interest and instrument them using DTrace. For example,
the following D script can be used to determine the distribution of function calls made
to libc by a particular subject process:

pid$target:libc.so::entry
{

@[probefunc] = count();

}

To determine the distribution of such calls made by the date(1) command, save the
script in a file named libc.d and execute the following command:

# dtrace -s libc.d -c date
dtrace: script ’libc.d’ matched 2476 probes
Fri Jul 30 14:08:54 PDT 2004
dtrace: pid 109196 has exited

pthread_rwlock_unlock 1
_fflush_u 1
rwlock_lock 1
rw_write_held 1
strftime 1
_close 1
_read 1
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__open 1
_open 1
strstr 1
load_zoneinfo 1

...
_ti_bind_guard 47

_ti_bind_clear 94

Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon
demand, the pid provider will create a probe for every instruction in a function. The
name of each probe is the offset of its corresponding instruction in the function
expressed as a hexadecimal integer. For example, to enable a probe associated with the
instruction at offset 0x1c in function foo of module bar.so in the process with PID
123, you can use the following command:

# dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each
instruction, you can use the command:

# dtrace -n pid123:bar.so:foo:

This command demonstrates an extremely powerful technique for debugging and
analyzing user applications. Infrequent errors can be difficult to debug because they
can be difficult to reproduce. Often, you can identify a problem after the failure has
occurred, too late to reconstruct the code path. The following example demonstrates
how to combine the pid provider with speculative tracing (see Chapter 13) to solve
this problem by tracing every instruction in a function.

EXAMPLE 33–2 errorpath.d: Trace User Function Call Error Path

pid$1::$2:entry
{

self->spec = speculation();
speculate(self->spec);
printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}

pid$1::$2:
/self->spec/
{

speculate(self->spec);
}

pid$1::$2:return
/self->spec && arg1 == 0/
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EXAMPLE 33–2 errorpath.d: Trace User Function Call Error Path (Continued)

{
discard(self->spec);
self->spec = 0;

}

pid$1::$2:return
/self->spec && arg1 != 0/
{

commit(self->spec);
self->spec = 0;

}

Executing errorpath.d results in output similar to the following example:

# ./errorpath.d 100461 _chdir
dtrace: script ’./errorpath.d’ matched 19 probes
CPU ID FUNCTION:NAME
0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0
0 25253 _chdir:entry
0 25269 _chdir:0
0 25270 _chdir:4
0 25271 _chdir:8
0 25272 _chdir:c
0 25273 _chdir:10
0 25274 _chdir:14
0 25275 _chdir:18
0 25276 _chdir:1c
0 25277 _chdir:20
0 25278 _chdir:24
0 25279 _chdir:28
0 25280 _chdir:2c

0 25268 _chdir:return
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CHAPTER 34

Statically Defined Tracing for User
Applications

DTrace provides a facility for user application developers to define customized probes
in application code to augment the capabilities of the pid provider. These static
probes impose little to no overhead when disabled and are dynamically enabled like
all other DTrace probes. You can use static probes to describe application semantics to
users of DTrace without exposing or requiring implementation knowledge of your
applications. This chapter describes how to define static probes in user applications
and how to use DTrace to enable such probes in user processes.

Choosing the Probe Points
DTrace allows developers to embed static probe points in application code, including
both complete applications and shared libraries. These probes can be enabled
wherever the application or library is running, either in development or in production.
You should define probes that have a semantic meaning that is readily understood by
your DTrace user community. For example, you could define query-receive and
query-respond probes for a web server that correspond to a client submitting a
request and the web server responding to that request. These example probes are
easily understood by most DTrace users and correspond to the highest level
abstractions for the application, rather than lower level implementation details. DTrace
users might use these probes to understand the time distribution of requests. If your
query-receive probe presented the URL request strings as an argument, a DTrace
user could determine which requests were generating the most disk I/O by combining
this probe with the io provider.

You should also consider the stability of the abstractions you describe when choosing
probe names and locations. Will this probe persist in future releases of the application,
even if the implementation changes? Does the probe make sense on all system
architectures or is it specific to a particular instruction set? This chapter will discuss
the details of how these decisions guide your static tracing definitions.
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Adding Probes to an Application
DTrace probes for libraries and executables are defined in an ELF section in the
corresponding application binary. This section describes how to define your probes,
add them to your application source code, and augment your application’s build
process to include the DTrace probe definitions.

Defining Providers and Probes
You define DTrace probes in a .d source file which is then used when compiling and
linking your application. First, select an appropriate name for your user application
provider. The provider name you choose will be appended with the process identifier
for each process that is executing your application code. For example, if you chose the
provider name myserv for a web server that was executing as process ID 1203, the
DTrace provider name corresponding to this process would be myserv1203. In your
.d source file, add a provider definition similar to the following example:

provider myserv {
...

};

Next, add a definition for each probe and the corresponding arguments. The following
example defines the two probes discussed in “Choosing the Probe Points” on page
359. The first probe has two arguments, both of type string, and the second probe
has no arguments. The D compiler converts two consecutive underscores (--) in any
probe name to a hyphen (-).

provider myserv {
probe query__receive(string, string);
probe query__respond();

};

You should add stability attributes to your provider definition so that consumers of
your probes understand the likelihood of change in future versions of your
application. See Chapter 39 for more information on the DTrace stability attributes.
Stability attributes are defined as shown in the following example:

EXAMPLE 34–1 myserv.d: Statically Defined Application Probes

#pragma D attributes Evolving/Evolving/Common provider myserv provider
#pragma D attributes Private/Private/Unknown provider myserv module
#pragma D attributes Private/Private/Unknown provider myserv function
#pragma D attributes Evolving/Evolving/Common provider myserv name
#pragma D attributes Evolving/Evolving/Common provider myserv args
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EXAMPLE 34–1 myserv.d: Statically Defined Application Probes (Continued)

provider myserv {
probe query__receive(string, string);
probe query__respond();

};

Adding Probes to Application Code
Now that you have defined your probes in a .d file, you need to augment your source
code to indicate the locations that should trigger your probes. Consider the following
example C application source code:

void
main_look(void)
{

...
query = wait_for_new_query();
process_query(query)
...

}

To add a probe site, add a reference to the DTRACE_PROBE() macro defined in
<sys/sdt.h> as shown in the following example:

#include <sys/sdt.h>
...

void
main_look(void)
{

...
query = wait_for_new_query();
DTRACE_PROBE2(myserv, query__receive, query->clientname, query->msg);
process_query(query)
...

}

The suffix 2 in the macro name DTRACE_PROBE2 refers the number of arguments that
are passed to the probe. The first two arguments to the probe macro are the provider
name and probe name and must correspond to your D provider and probe definitions.
The remaining macro arguments are the arguments assigned to the DTrace arg0..9
variables when the probes fires.Your application source code can contain multiple
references to the same provider and probe name. If multiple references to the same
probe are present in your source code, any of the macro references will cause the
probe to fire.
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Building Applications with Probes
You must augment the build process for your application to include the DTrace
provider and probe definitions. A typical build process takes each source file and
compiles it to create a corresponding object file. The compiled object files are then
linked together to create the finished application binary, as shown in the following
example:

cc -c src1.c
cc -c src2.c
...

cc -o myserv src1.o src2.o ...

To include DTrace probe definitions in your application, add appropriate Makefile
rules to your build process to execute the dtrace command as shown in the
following example:

cc -c src1.c
cc -c src2.c
...
dtrace -G -32 -s myserv.d src1.o src2.o ...

cc -o myserv myserv.o src1.o src2.o ...

The dtrace command shown above post-processes the object files generated by the
preceding compiler commands and generates the object file myserv.o from
myserv.d and the other object files. The dtrace -G option is used to link provider
and probe definitions with a user application. The -32 option is used to build 32–bit
application binaries. The -64 option is used to build 64–bit application binaries.
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CHAPTER 35

Security

This chapter describes the privileges that system administrators can use to grant
access to DTrace to particular users or processes. DTrace enables visibility into all
aspects of the system including user-level functions, system calls, kernel functions,
and more. It allows for powerful actions some of which can modify a program’s state.
Just as it would be inappropriate to allow a user access to another user’s private files, a
system administrator should not grant every user full access to all the facilities that
DTrace offers. By default, only the super-user can use DTrace. The Least Privilege
facility can be used to allow other users controlled use of DTrace.

Privileges
The Solaris Least Privilege facility enables administrators to grant specific privileges to
specific Solaris users. To give a user a privilege on login, insert a line into the
/etc/user_attr file of the form:

user-name::::defaultpriv=basic,privilege

To give a running process an additional privilege, use the ppriv(1) command:

# ppriv -s A+privilege process-ID

The three privileges that control a user’s access to DTrace features are dtrace_proc,
dtrace_user, and dtrace_kernel. Each privilege permits the use of a certain set
of DTrace providers, actions, and variables, and each corresponds to a particular type
of use of DTrace. The privilege modes are described in detail in the following sections.
System administrators should carefully weigh each user’s need against the visibility
and performance impact of the different privilege modes. Users need at least one of
the three DTrace privileges in order to use any of the DTrace functionality.
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Privileged Use of DTrace
Users with any of the three DTrace privileges may enable probes provided by the
dtrace provider (see Chapter 17), and may use the following actions and variables:

Providers dtrace

Actions exit printf tracemem

discard speculate

printa trace

Variables args probemod this

epid probename timestamp

id probeprov vtimestamp

probefunc self

Address Spaces None

dtrace_proc Privilege
The dtrace_proc privilege permits use of the pid and fasttrap providers for
process-level tracing. It also allows the use of the following actions and variables:

Providers pid

Actions copyin copyout stop

copyinstr raise ustack

Variables execname pid uregs

Address Spaces User

This privilege does not grant any visibility to Solaris kernel data structures or to
processes for which the user does not have permission.

Users with this privilege may create and enable probes in processes that they own. If
the user also has the proc_owner privilege, probes may be created and enabled in
any process. The dtrace_proc privilege is intended for users interested in the
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debugging or performance analysis of user processes. This privilege is ideal for a
developer working on a new application or an engineer trying to improve an
application’s performance in a production environment.

Note – Users with the dtrace_proc and proc_owner privileges may enable any pid
probe from any process, but can only create probes in processes whose privilege set is
a subset of their own privilege set. Refer to the Least Privilege documentation for
complete details.

The dtrace_proc privilege allows access to DTrace that can impose a performance
penalty only on those processes to which the user has permission. The instrumented
processes will impose more of a load on the system resources, and as such it may have
some small impact on the overall system performance. Aside from this increase in
overall load, this privilege does not allow any instrumentation that impacts
performance for any processes other than those being traced. As this privilege grants
users no additional visibility into other processes or the kernel itself, it is
recommended that this privilege be granted to all users that may need to better
understand the inner-workings of their own processes.

dtrace_user Privilege
The dtrace_user privilege permits use of the profile and syscall providers
with some caveats, and the use of the following actions and variables:

Providers profile syscall fasttrap

Actions copyin copyout stop

copyinstr raise ustack

Variables execname pid uregs

Address Spaces User

The dtrace_user privilege provides only visibility to those processes to which the
user already has permission; it does not allow any visibility into kernel state or
activity. With this privilege, users may enable the syscall provider, but the enabled
probes will only activate in processes to which the user has permission. Similarly, the
profile provider may be enabled, but the enabled probes will only activate in
processes to which the user has permission, never in the Solaris kernel.
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This privilege permits the use of instrumentation that, while only allowing visibility
into particular processes, can affect overall system performance. The syscall
provider has some small performance impact on every system call for every process.
The profile provider affects overall system performance by executing every time
interval, similar to a real-time timer. Neither of these performance degradations is so
great as to severely limit the system’s progress, but system administrators should
consider the implications of granting a user this privilege. Refer to Chapter 21 and
Chapter 19 for a discussion of the performance impact of the syscall and profile
providers.

dtrace_kernel Privilege
The dtrace_kernel privilege permits the use of every provider except for the use of
the pid and fasttrap providers on processes not owned by the user. This privilege
also permits the use of all actions and variables except for kernel destructive actions
(breakpoint(), panic(), chill()). This privilege permits complete visibility into
kernel and user state. The facilities enabled by the dtrace_user privilege are a strict
subset of those enabled by dtrace_kernel.

Providers All with above restrictions

Actions All but destructive actions

Variables All

Address Spaces User Kernel

Super User Privileges
A user with all privileges may use every provider and every action including the
kernel destructive actions unavailable to every other class of user.

Providers All

Actions All including destructive
actions

Variables All
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Address Spaces User Kernel
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CHAPTER 36

Anonymous Tracing

This chapter describes anonymous tracing, tracing that is not associated with any
DTrace consumer. Anonymous tracing is used in situations when no DTrace consumer
processes can run. The most common use of anonymous tracing is to permit device
driver developers to debug and trace activity that occurs during system boot. Any
tracing that you can do interactively you can do anonymously. However, only the
super user may create an anonymous enabling, and only one anonymous enabling can
exist at any time.

Anonymous Enablings
To create an anonymous enabling, use the -A option with a dtrace(1M) invocation
that specifies the desired probes, predicates, actions and options. dtrace will add a
series of driver properties representing your request to the dtrace(7D) driver’s
configuration file, typically /kernel/drv/dtrace.conf. These properties will be
read by the dtrace(7D) driver when it is loaded. The driver will enable the specified
probes with the specified actions, and create an anonymous state to associate with the
new enabling. Normally, the dtrace(7D) driver is loaded on-demand, as are any
drivers that act as DTrace providers. To allow tracing during boot, the dtrace(7D)
driver must be loaded as early as possible. dtrace adds the necessary forceload
statements to /etc/system (see system(4)) for each required DTrace provider and
for dtrace(7D) itself.

Thereafter, when the system boots, a message is emitted by dtrace(7D) to indicate
that the configuration file has been successfully processed.

All options may be set with an anonymous enabling, including buffer size, dynamic
variable size, speculation size, number of speculations, and so on.

To remove an anonymous enabling, specify -A to dtrace without any probe
descriptions.
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Claiming Anonymous State
Once the machine has completely booted, any anonymous state may be claimed by
specifying the -a option with dtrace. By default, -a claims the anonymous state,
processes the existing data, and continues to run. To consume the anonymous state
and then exit, add the -e option.

Once anonymous state has been consumed from the kernel, it cannot be replaced: the
in-kernel buffers that contained it are reused. If you attempt to claim anonymous
tracing state where none exists, dtrace will generate a message similar to the
following example:

dtrace: could not enable tracing: No anonymous tracing state

If drops or errors have occurred, dtrace will generate the appropriate messages
when the anonymous state is claimed. The messages for drops and errors are the same
for both anonymous and non-anonymous state.

Anonymous Tracing Examples
The following example shows an anonymous DTrace enabling for every probe in the
iprb(7D) module:

# dtrace -A -m iprb
dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf
dtrace: added forceload directives to /etc/system
dtrace: run update_drv(1M) or reboot to enable changes

# reboot

After rebooting, dtrace(7D) prints a message on the console to indicate that it is
enabling the specified probes:

...
Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
NOTICE: enabling probe 0 (:iprb::)
NOTICE: enabling probe 1 (dtrace:::ERROR)
configuring IPv4 interfaces: iprb0.

...

When the machine has rebooted, the anonymous state may be consumed by specifying
the -a option with dtrace:
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# dtrace -a
CPU ID FUNCTION:NAME
0 22954 _init:entry
0 22955 _init:return
0 22800 iprbprobe:entry
0 22934 iprb_get_dev_type:entry
0 22935 iprb_get_dev_type:return
0 22801 iprbprobe:return
0 22802 iprbattach:entry
0 22874 iprb_getprop:entry
0 22875 iprb_getprop:return
0 22934 iprb_get_dev_type:entry
0 22935 iprb_get_dev_type:return
0 22870 iprb_self_test:entry
0 22871 iprb_self_test:return
0 22958 iprb_hard_reset:entry
0 22959 iprb_hard_reset:return
0 22862 iprb_get_eeprom_size:entry
0 22826 iprb_shiftout:entry
0 22828 iprb_raiseclock:entry
0 22829 iprb_raiseclock:return

...

The following example focuses only on those functions called from iprbattach().
In an editor, type the following script and save it in a file named iprb.d.

fbt::iprbattach:entry
{

self->trace = 1;
}

fbt:::
/self->trace/
{}

fbt::iprbattach:return
{

self->trace = 0;

}

Run the following commands to clear the previous settings from the driver
configuration file, install the new anonymous tracing request, and reboot:

# dtrace -AFs iprb.d
dtrace: cleaned up old anonymous enabling in /kernel/drv/dtrace.conf
dtrace: cleaned up forceload directives in /etc/system
dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf
dtrace: added forceload directives to /etc/system
dtrace: run update_drv(1M) or reboot to enable changes

# reboot

After rebooting, dtrace(7D) prints a different message on the console to indicate the
slightly different enabling:
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...
Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
NOTICE: enabling probe 0 (fbt::iprbattach:entry)
NOTICE: enabling probe 1 (fbt:::)
NOTICE: enabling probe 2 (fbt::iprbattach:return)
NOTICE: enabling probe 3 (dtrace:::ERROR)
configuring IPv4 interfaces: iprb0.

...

After the machine has completely booted, run the dtrace with the -a option and the
-e option to consume the anonymous data and then exit.

# dtrace -ae
CPU FUNCTION
0 -> iprbattach
0 -> gld_mac_alloc
0 -> kmem_zalloc
0 -> kmem_cache_alloc
0 -> kmem_cache_alloc_debug
0 -> verify_and_copy_pattern
0 <- verify_and_copy_pattern
0 -> tsc_gethrtime
0 <- tsc_gethrtime
0 -> getpcstack
0 <- getpcstack
0 -> kmem_log_enter
0 <- kmem_log_enter
0 <- kmem_cache_alloc_debug
0 <- kmem_cache_alloc
0 <- kmem_zalloc
0 <- gld_mac_alloc
0 -> kmem_zalloc
0 -> kmem_alloc
0 -> vmem_alloc
0 -> highbit
0 <- highbit
0 -> lowbit
0 <- lowbit
0 -> vmem_xalloc
0 -> highbit
0 <- highbit
0 -> lowbit
0 <- lowbit
0 -> segkmem_alloc
0 -> segkmem_xalloc
0 -> vmem_alloc
0 -> highbit
0 <- highbit
0 -> lowbit
0 <- lowbit
0 -> vmem_seg_alloc
0 -> highbit
0 <- highbit
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0 -> highbit
0 <- highbit
0 -> vmem_seg_create

...
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CHAPTER 37

Postmortem Tracing

This chapter describes the DTrace facilities for postmortem extraction and processing of
the in-kernel data of DTrace consumers. In the event of a system crash, the information
that has been recorded with DTrace may provide the crucial clues to root-cause the
system failure. DTrace data may be extracted and processed from the system crash
dump to aid you in understanding fatal system failures. By coupling these
postmortem capabilities of DTrace with its ring buffering buffer policy (see
Chapter 11), DTrace can be used as an operating system analog to the black box flight
data recorder present on commercial aircraft.

To extract DTrace data from a specific crash dump, you should begin by running the
Solaris Modular Debugger, mdb(1), on the crash dump of interest. The MDB module
containing the DTrace functionality will be loaded automatically. To learn more about
MDB, refer to the Solaris Modular Debugger Guide.

Displaying DTrace Consumers
To extract DTrace data from a DTrace consumer, you must first determine the DTrace
consumer of interest by running the ::dtrace_state MDB dcmd:

> ::dtrace_state
ADDR MINOR PROC NAME FILE

ccaba400 2 - <anonymous> -
ccab9d80 3 d1d6d7e0 intrstat cda37078
cbfb56c0 4 d71377f0 dtrace ceb51bd0
ccabb100 5 d713b0c0 lockstat ceb51b60

d7ac97c0 6 d713b7e8 dtrace ceb51ab8

This command displays a table of DTrace state structures. Each row of the table
consists of the following information:

� The address of the state structure
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� The minor number associated with the dtrace(7D) device
� The address of the process structure that corresponds to the DTrace consumer
� The name of the DTrace consumer (or <anonymous> for anonymous consumers)
� The name of the file structure that corresponds to the open dtrace(7D) device

To obtain further information about a specific DTrace consumer, specify the address of
its process structure to the ::ps dcmd:

> d71377f0::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 100647 100642 100647 100638 0 0x00004008 d71377f0 dtrace

Displaying Trace Data
Once you determine the consumer of interest, you can retrieve the data corresponding
to any unconsumed buffers by specifying the address of the state structure to the
::dtrace dcmd. The following example shows the output of the ::dtrace dcmd on
an anonymous enabling of syscall:::entry with the action trace(execname):

> ::dtrace_state
ADDR MINOR PROC NAME FILE

cbfb7a40 2 - <anonymous> -

> cbfb7a40::dtrace
CPU ID FUNCTION:NAME
0 344 resolvepath:entry init
0 16 close:entry init
0 202 xstat:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init
0 344 resolvepath:entry init
0 216 memcntl:entry init
0 16 close:entry init
0 202 xstat:entry init
0 14 open:entry init
0 206 fxstat:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 186 mmap:entry init
0 190 munmap:entry init

...

The ::dtrace dcmd handles errors in the same way that dtrace(1M) does: if drops,
errors, speculative drops, or the like were encountered while the consumer was
executing, ::dtrace will emit a message corresponding to the dtrace(1M)message.
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The order of events as displayed by ::dtrace is always oldest to youngest within a
given CPU. The CPU buffers themselves are displayed in numerical order. If an
ordering is required for events on different CPUs, trace the timestamp variable.

You can display only the data for a specific CPU by specifying the -c option to
::dtrace:

> cbfb7a40::dtrace -c 1
CPU ID FUNCTION:NAME
1 14 open:entry init
1 206 fxstat:entry init
1 186 mmap:entry init
1 344 resolvepath:entry init
1 16 close:entry init
1 202 xstat:entry init
1 202 xstat:entry init
1 14 open:entry init
1 206 fxstat:entry init
1 186 mmap:entry init

...

Notice that ::dtrace only processes in-kernel DTrace data. Data that has been
consumed from the kernel and processed (through dtrace(1M) or other means) will
not be available to be processed with ::dtrace. To assure that the most amount of
data possible is available at the time of failure, use a ring buffer buffering policy. See
Chapter 11 for more information on buffer policies.

The following example creates a very small (16K) ring buffer and records all system
calls and the process making them:

# dtrace -P syscall’{trace(curpsinfo->pr_psargs)}’ -b 16k -x bufpolicy=ring

dtrace: description ’syscall:::entry’ matched 214 probes

Looking at a crash dump taken when the above command was running results in
output similar to the following example:

> ::dtrace_state
ADDR MINOR PROC NAME FILE

cdccd400 3 d15e80a0 dtrace ced065f0

> cdccd400::dtraceCPU ID FUNCTION:NAME
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 139 getmsg:return mibiisa -r -p 25216
0 138 getmsg:entry mibiisa -r -p 25216
0 17 close:return mibiisa -r -p 25216
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...
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 96 ioctl:entry mibiisa -r -p 25216
0 97 ioctl:return mibiisa -r -p 25216
0 16 close:entry mibiisa -r -p 25216
0 17 close:return mibiisa -r -p 25216
0 124 lwp_park:entry mibiisa -r -p 25216
1 68 access:entry mdb -kw
1 69 access:return mdb -kw
1 202 xstat:entry mdb -kw
1 203 xstat:return mdb -kw
1 14 open:entry mdb -kw
1 15 open:return mdb -kw
1 206 fxstat:entry mdb -kw
1 207 fxstat:return mdb -kw
1 186 mmap:entry mdb -kw

...
1 13 write:return mdb -kw
1 10 read:entry mdb -kw
1 11 read:return mdb -kw
1 12 write:entry mdb -kw
1 13 write:return mdb -kw
1 96 ioctl:entry mdb -kw
1 97 ioctl:return mdb -kw
1 364 pread64:entry mdb -kw
1 365 pread64:return mdb -kw
1 366 pwrite64:entry mdb -kw
1 367 pwrite64:return mdb -kw
1 364 pread64:entry mdb -kw
1 365 pread64:return mdb -kw
1 38 brk:entry mdb -kw
1 39 brk:return mdb -kw

>

Note that CPU 1’s youngest records include a series of write(2) system calls by an
mdb -kw process. This result is likely related to the reason for the system failure
because a user can modify running kernel data or text with mdb(1) when run with the
-k and -w options. In this case, the DTrace data provides at least an interesting avenue
of investigation, if not the root cause of the failure.
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CHAPTER 38

Performance Considerations

Because DTrace causes additional work in the system, enabling DTrace always affects
system performance in some way. Often, this effect is negligible, but it can become
substantial if many probes are enabled with costly enablings. This chapter describes
techniques for minimizing the performance effect of DTrace.

Limit Enabled Probes
Dynamic instrumentation techniques enable DTrace to provide unparalleled tracing
coverage of the kernel and of arbitrary user processes. While this coverage allows
revolutionary new insight into system behavior, it also can cause enormous probe
effect. If tens of thousands or hundreds of thousands of probes are enabled, the effect
on the system can easily be substantial. Therefore, you should only enable as many
probes as you need to solve a problem. You should not, for example, enable all FBT
probes if a more concise enabling will answer your question. For example, your
question might allow you to concentrate on a specific module of interest or a specific
function.

When using the pid provider, you should be especially careful. Because the pid
provider can instrument every instruction, you could enable millions of probes in an
application, and therefore slow the target process to a crawl.

DTrace can also be used in situations where large numbers of probes must be enabled
for a question to be answered. Enabling a large number of probes might slow down
the system quite a bit, but it will never induce fatal failure on the machine. You should
therefore not hesitate to enable many probes if required.
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Use Aggregations
As discussed in Chapter 9, DTrace’s aggregations allow for a scalable way of
aggregating data. Associative arrays might appear to offer similar functionality to
aggregations. However, by nature of being global, general-purpose variables, they
cannot offer the linear scalability of aggregations. You should therefore prefer to use
aggregations over associative arrays when possible. The following example is not
recommended:

syscall:::entry
{

totals[execname]++;
}

syscall::rexit:entry
{

printf("%40s %d\n", execname, totals[execname]);
totals[execname] = 0;

}

The following example is preferable:

syscall:::entry
{

@totals[execname] = count();
}

END
{

printa("%40s %@d\n", @totals);

}

Use Cacheable Predicates
DTrace predicates are used to filter unwanted data from the experiment by tracing
data is only traced if a specified condition is found to be true. When enabling many
probes, you generally use predicates of a form that identifies a specific thread or
threads of interest, such as /self->traceme/ or /pid == 12345/. Although many
of these predicates evaluate to a false value for most threads in most probes, the
evaluation itself can become costly when done for many thousands of probes. To
reduce this cost, DTrace caches the evaluation of a predicate if it includes only
thread-local variables (for example, /self->traceme/) or immutable variables (for
example, /pid == 12345/). The cost of evaluating a cached predicate is much
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smaller than the cost of evaluating a non-cached predicate, especially if the predicate
involves thread-local variables, string comparisons, or other relatively costly
operations. While predicate caching is transparent to the user, it does imply some
guidelines for constructing optimal predicates, as shown in the following table:

Cacheable Uncacheable

self->mumble mumble[curthread], mumble[pid, tid]

execname curpsinfo->pr_fname,
curthread->t_procp->p_user.u_comm

pid curpsinfo->pr_pid,
curthread->t_procp->p_pipd->pid_id

tid curlwpsinfo->pr_lwpid, curthread->t_tid

curthread curthread->any member, curlwpsinfo->any member,
curpsinfo->any member

The following example is not recommended:

syscall::read:entry
{

follow[pid, tid] = 1;
}

fbt:::
/follow[pid, tid]/
{}

syscall::read:return
/follow[pid, tid]/
{

follow[pid, tid] = 0;

}

The following example using thread-local variables is preferable:

syscall::read:entry
{

self->follow = 1;
}

fbt:::
/self->follow/
{}

syscall::read:return
/self->follow/
{

self->follow = 0;

}
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A predicate must consist exclusively of cacheable expressions in order to be cacheable.
The following predicates are all cacheable:

/execname == "myprogram"/
/execname == $$1/
/pid == 12345/
/pid == $1/

/self->traceme == 1/

The following examples, which use global variables, are not cacheable:

/execname == one_to_watch/
/traceme[execname]/
/pid == pid_i_care_about/

/self->traceme == my_global/
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CHAPTER 39

Stability

Sun often provides developers with early access to new technologies as well as
observability tools that allow users to peer into the internal implementation details of
user and kernel software. Unfortunately, new technologies and internal
implementation details are both prone to changes as interfaces and implementations
evolve and mature when software is upgraded or patched. Sun documents application
and interface stability levels using a set of labels described in the attributes(5) man
page to help set user expectations for what kinds of changes might occur in different
kinds of future releases.

No one stability attribute appropriately describes the arbitrary set of entities and
services that can be accessed from a D program. DTrace and the D compiler therefore
include features to dynamically compute and describe the stability levels of D
programs you create. This chapter discusses the DTrace features for determining
program stability to help you design stable D programs. You can use the DTrace
stability features to inform you of the stability attributes of your D programs, or to
produce compile-time errors when your program has undesirable interface
dependencies.

Stability Levels
DTrace provides two types of stability attributes for entities such as built-in variables,
functions, and probes: a stability level and an architectural dependency class. The DTrace
stability level assists you in making risk assessments when developing scripts and
tools based on DTrace by indicating how likely an interface or DTrace entity is to
change in a future release or patch. The DTrace dependency class tells you whether an
interface is common to all Solaris platforms and processors, or whether the interface is
associated with a particular architecture such as SPARC processors only. The two
types of attributes used to describe interfaces can vary independently.
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The stability values used by DTrace appear in the following list in order from lowest
to highest stability. The more stable interfaces can be used by all D programs and
layered applications because Sun will endeavor to ensure that these continue to work
in future minor releases. Applications that depend only on Stable interfaces should
reliably continue to function correctly on future minor releases and will not be broken
by interim patches. The less stable interfaces allow experimentation, prototyping,
tuning, and debugging on your current system, but should be used with the
understanding that they might change incompatibly or even be dropped or replaced
with alternatives in future minor releases.

The DTrace stability values also help you understand the stability of the software
entities you are observing, in addition to the stability of the DTrace interfaces
themselves. Therefore, DTrace stability values also tell you how likely your D
programs and layered tools are to require corresponding changes when you upgrade
or change the software stack you are observing.

Internal The interface is private to DTrace and represents an
implementation detail of DTrace. Internal interfaces might change
in minor or micro releases.

Private The interface is private to Sun and represents an interface
developed for use by other Sun products that is not yet publicly
documented for use by customers and ISVs. Private interfaces
might change in minor or micro releases.

Obsolete The interface is supported in the current release but is scheduled
to be removed, most likely in a future minor release. When
support of an interface is to be discontinued, Sun will attempt to
provide notification before discontinuing the interface. The D
compiler might produce warning messages if you attempt to use
an Obsolete interface.

External The interface is controlled by an entity other than Sun. At Sun’s
discretion, Sun can deliver updated and possibly incompatible
versions of such interfaces as part of any release, subject to their
availability from the controlling entity. Sun makes no claims
regarding either source or binary compatibility for External
interfaces between any two releases. Applications based on these
interfaces might not work in future releases, including patches that
contain External interfaces.

Unstable The interface is provided to give developers early access to new or
rapidly changing technology or to an implementation artifact that
is essential for observing or debugging system behavior for which
a more stable solution is anticipated in the future. Sun makes no
claims about either source or binary compatibility for Unstable
interfaces from one minor release to another.

Evolving The interface might eventually become Standard or Stable but is
still in transition. Sun will make reasonable efforts to ensure
compatibility with previous releases as it evolves. When
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non-upward compatible changes become necessary, they will
occur in minor and major releases. These changes will be avoided
in micro releases whenever possible. If such a change is necessary,
it will be documented in the release notes for the affected release,
and when feasible, Sun will provide migration aids for binary
compatibility and continued D program development.

Stable The interface is a mature interface under Sun’s control. Sun will try
to avoid non-upward-compatible changes to these interfaces,
especially in minor or micro releases. If support of a Stable
interface must be discontinued, Sun will attempt to provide
notification and the stability level changes to Obsolete.

Standard The interface complies with an industry standard. The
corresponding documentation for the interface will describe the
standard to which the interface conforms. Standards are typically
controlled by a standards development organization, and changes
can be made to the interface in accordance with approved changes
to the standard. This stability level can also apply to interfaces that
have been adopted(without a formal standard by an industry
convention. Support is provided for only the specified versions of
a standard; support for later versions is not guaranteed. If the
standards development organization approves a
non-upward-compatible change to a Standard interface that Sun
decides to support, Sun will announce a compatibility and
migration strategy.

Dependency Classes
Since Solaris and DTrace support a variety of operating platforms and processors,
DTrace also labels interfaces with a dependency class that tells you whether an interface
is common to all Solaris platforms and processors, or whether the interface is
associated with a particular system architecture. The dependency class is orthogonal
to the stability levels described earlier. For example, a DTrace interface can be Stable
but only supported on SPARC microprocessors, or it can be Unstable but common to
all Solaris systems. The DTrace dependency classes are described in the following list
in order from least common (that is, most specific to a particular architecture) to most
common (that is, common to all architectures).

Unknown The interface has an unknown set of architectural dependencies.
DTrace does not necessarily know the architectural dependencies
of all entities, such as data types defined in the operating system
implementation. The Unknown label is typically applied to
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interfaces of very low stability for which dependencies cannot be
computed. The interface might not be available when using DTrace
on any architecture other than the one you are currently using.

CPU The interface is specific to the CPU model of the current system.
You can use the psrinfo(1M) utility’s -v option to display the
current CPU model and implementation names. Interfaces with
CPU model dependencies might not be available on other CPU
implementations, even if those CPUs export the same instruction
set architecture (ISA). For example, a CPU-dependent interface on
an UltraSPARC-III+ microprocessor might not be available on an
UltraSPARC-II microprocessor, even though both processors
support the SPARC instruction set.

Platform The interface is specific to the hardware platform of the current
system. A platform typically associates a set of system components
and architectural characteristics such as a set of supported CPU
models with a system name such as
SUNW,Ultra-Enterprise-10000. You can display the current
platform name using the uname(1) -i option. The interface might
not be available on other hardware platforms.

Group The interface is specific to the hardware platform group of the
current system. A platform group typically associates a set of
platforms with related characteristics together under a single
name, such as sun4u. You can display the current platform group
name using the uname(1) -m option. The interface is available on
other platforms in the platform group, but might not be available
on hardware platforms that are not members of the group.

ISA The interface is specific to the instruction set architecture (ISA)
supported by the microprocessors on this system. The ISA
describes a specification for software that can be executed on the
microprocessor, including details such as assembly language
instructions and registers. You can display the native instruction
sets supported by the system using the isainfo(1) utility. The
interface might not be supported on systems that do not export
any of the same instruction sets. For example, an ISA-dependent
interface on a Solaris SPARC system might not be supported on a
Solaris x86 system.

Common The interface is common to all Solaris systems regardless of the
underlying hardware. DTrace programs and layered applications
that depend only on Common interfaces can be executed and
deployed on other Solaris systems with the same Solaris and
DTrace revisions. The majority of DTrace interfaces are Common,
so you can use them wherever you use Solaris.
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Interface Attributes
DTrace describes interfaces using a triplet of attributes consisting of two stability
levels and a dependency class. By convention, the interface attributes are written in
the following order, separated by slashes:

name-stability / data-stability / dependency-class

The name stability of an interface describes the stability level associated with its name
as it appears in your D program or on the dtrace(1M) command-line. For example,
the execname D variable is a Stable name: Sun guarantees that this identifier will
continue to be supported in your D programs according to the rules described for
Stable interfaces above.

The data stability of an interface is distinct from the stability associated with the
interface name. This stability level describes Sun’s commitment to maintaining the
data formats used by the interface and any associated data semantics. For example,
the pid D variable is a Stable interface: process IDs are a Stable concept in Solaris, and
Sun guarantees that the pid variable will be of type pid_t with the semantic that it is
set to the process ID corresponding to the thread that fired a given probe in
accordance with the rules for Stable interfaces.

The dependency class of an interface is distinct from its name and data stability, and
describes whether the interface is specific to the current operating platform or
microprocessor.

DTrace and the D compiler track the stability attributes for all of the DTrace interface
entities, including providers, probe descriptions, D variables, D functions, types, and
program statements themselves, as we’ll see shortly. Notice that all three values can
vary independently. For example, the curthread D variable has
Stable/Private/Common attributes: the variable name is Stable and is Common to all
Solaris operating platforms, but this variable provides access to a Private data format
that is an artifact of the Solaris kernel implementation. Most D variables are provided
with Stable/Stable/Common attributes, as are the variables you define.
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Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and
action statements in your D programs. You can use the dtrace -v option to display a
report of your program’s stability. The following example uses a program written on
the command line:

# dtrace -v -n dtrace:::BEGIN’{exit(0);}’
dtrace: description ’dtrace:::BEGIN’ matched 1 probe
Stability data for description dtrace:::BEGIN:

Minimum probe description attributes
Identifier Names: Evolving
Data Semantics: Evolving
Dependency Class: Common

Minimum probe statement attributes
Identifier Names: Stable
Data Semantics: Stable
Dependency Class: Common

CPU ID FUNCTION:NAME

0 1 :BEGIN

You may also wish to combine the dtrace -v option with the -e option, which tells
dtrace to compile but not execute your D program, so that you can determine program
stability without having to enable any probes and execute your program. Here is
another example stability report:

# dtrace -ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’
Stability data for description dtrace:::BEGIN:

Minimum probe description attributes
Identifier Names: Evolving
Data Semantics: Evolving
Dependency Class: Common

Minimum probe statement attributes
Identifier Names: Stable
Data Semantics: Private
Dependency Class: Common

#

Notice that in our new program, we have referenced the D variable curthread,
which has a Stable name, but Private data semantics (that is, if you look at it, you are
accessing Private implementation details of the kernel), and this status is now reflected
in the program’s stability report. Stability attributes in the program report are
computed by selecting the minimum stability level and class out of the corresponding
values for each interface attributes triplet.
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Stability attributes are computed for a probe description by taking the minimum
stability attributes of all specified probe description fields according to the attributes
published by the provider. The attributes of the available DTrace providers are shown
in the chapter corresponding to each provider. DTrace providers export a stability
attributes triplet for each of the four description fields for all probes published by that
provider. Therefore, a provider’s name may have a greater stability than the individual
probes it exports. For example, the probe description:

fbt:::

indicating that DTrace should trace entry and return from all kernel functions, has
greater stability than the probe description:

fbt:foo:bar:entry

which names a specific internal function bar() in the kernel module foo. For
simplicity, most providers use a single set of attributes for all of the individual
module:function:name values that they publish. Providers also specify attributes for
the args[] array, as the stability of any probe arguments varies by provider.

If the provider field is not specified in a probe description, then the description is
assigned the stability attributes Unstable/Unstable/Common because the description
might end up matching probes of providers that do not yet exist when used on a
future Solaris version. As such, Sun is not able to provide guarantees about the future
stability and behavior of this program. You should always explicitly specify the
provider when writing your D program clauses. In addition, any probe description
fields that contain pattern matching characters (see Chapter 4) or macro variables such
as $1 (see Chapter 15) are treated as if they are unspecified because these description
patterns might expand to match providers or probes released by Sun in future
versions of DTrace and the Solaris OS.

Stability attributes are computed for most D language statements by taking the
minimum stability and class of the entities in the statement. For example, the
following D language entities have the following attributes:

Entity Attributes

D built-in variable curthread Stable/Private/Common

D user-defined variable x Stable/Stable/Common

If you write the following D program statement:

x += curthread->t_pri;
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then the resulting attributes of the statement are Stable/Private/Common, the
minimum attributes associated with the operands curthread and x. The stability of
an expression is computed by taking the minimum stability attributes of each of the
operands.

Any D variables you define in your program are automatically assigned the attributes
Stable/Stable/Common. In addition, the D language grammar and D operators are
implicitly assigned the attributes Stable/Stable/Common. References to kernel
symbols using the backquote (‘) operator are always assigned the attributes
Private/Private/Unknown because they reflect implementation artifacts. Types that
you define in your D program source code, specifically those that are associated with
the C and D type namespace, are assigned the attributes Stable/Stable/Common.
Types that are defined in the operating system implementation and provided by other
type namespaces are assigned the attributes Private/Private/Unknown. The D type
cast operator yields an expression whose stability attributes are the minimum of the
input expression’s attributes and the attributes of the cast output type.

If you use the C preprocessor to include C system header files, these types will be
associated with the C type namespace and will be assigned the attributes
Stable/Stable/Common as the D compiler has no choice but to assume that you are
taking responsibility for these declarations. It is therefore possible to mislead yourself
about your program’s stability if you use the C preprocessor to include a header file
containing implementation artifacts. You should always consult the documentation
corresponding to the header files you are including in order to determine the correct
stability levels.

Stability Enforcement
When developing a DTrace script or layered tool, you may wish to identify the specific
source of stability issues or ensure that your program has a desired set of stability
attributes. You can use the dtrace -x amin=attributes option to force the D compiler
to produce an error when any attributes computation results in a triplet of attributes
less than the minimum values you specify on the command-line. The following
example demonstrates the use of -x amin using a snippet of D program source.
Notice that attributes are specified using three labels delimited by / in the usual order.

# dtrace -x amin=Evolving/Evolving/Common \
-ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’

dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->t_procp);}: \
in action list: attributes for scalar curthread (Stable/Private/Common) \
are less than predefined minimum

#
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CHAPTER 40

Translators

In Chapter 39, we learned about how DTrace computes and reports program stability
attributes. Ideally, we would like to construct our DTrace programs by consuming
only Stable or Evolving interfaces. Unfortunately, when debugging a low-level
problem or measuring system performance, you may need to enable probes that are
associated with internal operating system routines such as functions in the kernel,
rather than probes associated with more stable interfaces such as system calls. The
data available at probe locations deep within the software stack is often a collection of
implementation artifacts rather than more stable data structures such as those
associated with the Solaris system call interfaces. In order to aid you in writing stable
D programs, DTrace provides a facility to translate implementation artifacts into stable
data structures accessible from your D program statements.

Translator Declarations
A translator is a collection of D assignment statements provided by the supplier of an
interface that can be used to translate an input expression into an object of struct type.
To understand the need for and use of translators, we’ll consider as an example the
ANSI-C standard library routines defined in stdio.h. These routines operate on a
data structure named FILE whose implementation artifacts are abstracted away from
C programmers. A standard technique for creating a data structure abstraction is to
provide only a forward declaration of a data structure in public header files, while
keeping the corresponding struct definition in a separate private header file.

If you are writing a C program and wish to know the file descriptor corresponding to
a FILE struct, you can use the fileno(3C) function to obtain the descriptor rather
than dereferencing a member of the FILE struct directly. The Solaris header files
enforce this rule by defining FILE as an opaque forward declaration tag so it cannot be
dereferenced directly by C programs that include <stdio.h>. Inside the libc.so.1
library, you can imagine that fileno() is implemented in C something like this:
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int
fileno(FILE *fp)
{

struct file_impl *ip = (struct file_impl *)fp;

return (ip->fd);

}

Our hypothetical fileno() takes a FILE pointer as an argument and casts it to a
pointer to a corresponding internal libc structure, struct file_impl, and then
returns the value of the fd member of the implementation structure. Why does Solaris
implement interfaces like this? By abstracting the details of the current libc
implementation away from client programs, Sun is able to maintain a commitment to
strong binary compatibility while continuing to evolve and change the internal
implementation details of libc. In our example, the fd member could change size or
position within struct file_impl, even in a patch, and existing binaries calling
fileno(3C) would not be affected by this change because they do not depend on
these artifacts.

Unfortunately, observability software such as DTrace has the need to peer inside the
implementation in order to provide useful results, and does not have the luxury of
calling arbitrary C functions defined in Solaris libraries or in the kernel. You could
declare a copy of struct file_impl in your D program in order to instrument the
routines declared in stdio.h, but then your D program would rely on Private
implementation artifacts of the library that might break in a future micro or minor
release, or even in a patch. Ideally, we want to provide a construct for use in D
programs that is bound to the implementation of the library and is updated
accordingly, but still provides an additional layer of abstraction associated with
greater stability.

A new translator is created using a declaration of the form:

translator output-type < input-type input-identifier > {
member-name = expression ;
member-name = expression ;
...

};

The output-type names a struct that will be the result type for the translation. The
input-type specifies the type of the input expression, and is surrounded in angle
brackets < > and followed by an input-identifier that can be used in the translator
expressions as an alias for the input expression. The body of the translator is
surrounded in braces { } and terminated with a semicolon (;), and consists of a list of
member-name and identifiers corresponding translation expressions. Each member
declaration must name a unique member of the output-type and must be assigned an
expression of a type compatible with the member type, according to the rules for the D
assignment (=) operator.

For example, we could define a struct of stable information about stdio files based
on some of the available libc interfaces:
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struct file_info {
int file_fd; /* file descriptor from fileno(3C) */
int file_eof; /* eof flag from feof(3C) */

};

A hypothetical D translator from FILE to file_info could then be declared in D as
follows:

translator struct file_info < FILE *F > {
file_fd = ((struct file_impl *)F)->fd;
file_eof = ((struct file_impl *)F)->eof;

};

In our hypothetical translator, the input expression is of type FILE * and is assigned
the input-identifier F. The identifier F can then be used in the translator member
expressions as a variable of type FILE * that is only visible within the body of the
translator declaration. To determine the value of the output file_fd member, the
translator performs a cast and dereference similar to the hypothetical implementation
of fileno(3C) shown above. A similar translation is performed to obtain the value of
the EOF indicator.

Sun provides a set of translators for use with Solaris interfaces that you can invoke
from your D programs, and promises to maintain these translators according to the
rules for interface stability defined earlier as the implementation of the corresponding
interface changes. We’ll learn about these translators later in the chapter, after we learn
how to invoke translators from D. The translator facility itself is also provided for use
by application and library developers who wish to offer their own translators that D
programmers can use to observe the state of their software packages.

Translate Operator
The D operator xlate is used to perform a translation from an input expression to
one of the defined translation output structures. The xlate operator is used in an
expression of the form:

xlate < output-type > ( input-expression )

For example, to invoke the hypothetical translator for FILE structs defined above and
access the file_fd member, you would write the expression:

xlate <struct file_info *>(f)->file_fd;
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where f is a D variable of type FILE *. The xlate expression itself is assigned the
type defined by the output-type. Once a translator is defined, it can be used to translate
input expressions to either the translator output struct type, or to a pointer to that
struct.

If you translate an input expression to a struct, you can either dereference a particular
member of the output immediately using the “.” operator, or you can assign the entire
translated struct to another D variable to make a copy of the values of all the
members. If you dereference a single member, the D compiler will only generate code
corresponding to the expression for that member. You may not apply the & operator to
a translated struct to obtain its address, as the data object itself does not exist until it is
copied or one of its members is referenced.

If you translate an input expression to a pointer to a struct, you can either dereference
a particular member of the output immediately using the -> operator, or you can
dereference the pointer using the unary * operator, in which case the result behaves as
if you translated the expression to a struct. If you dereference a single member, the D
compiler will only generate code corresponding to the expression for that member.
You may not assign a translated pointer to another D variable as the data object itself
does not exist until it is copied or one of its members is referenced, and therefore
cannot be addressed.

A translator declaration may omit expressions for one or more members of the output
type. If an xlate expression is used to access a member for which no translation
expression is defined, the D compiler will produce an appropriate error message and
abort the program compilation. If the entire output type is copied by means of a
structure assignment, any members for which no translation expressions are defined
will be filled with zeroes.

In order to find a matching translator for an xlate operation, the D compiler
examines the set of available translators in the following order:

� First, the compiler looks for a translation from the exact input expression type to
the exact output type.

� Second, the compiler resolves the input and output types by following any typedef
aliases to the underlying type names, and then looks for a translation from the
resolved input type to the resolved output type.

� Third, the compiler looks for a translation from a compatible input type to the
resolved output type. The compiler uses the same rules as it does for determining
compatibility of function call arguments with function prototypes in order to
determine if an input expression type is compatible with a translator’s input type.

If no matching translator can be found according to these rules, the D compiler
produces an appropriate error message and program compilation fails.
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Process Model Translators
The DTrace library file /usr/lib/dtrace/procfs.d provides a set of translators
for use in your D programs to translate from the operating system kernel
implementation structures for processes and threads to the stable proc(4) structures
psinfo and lwpsinfo. These structures are also used in the Solaris /proc filesystem
files /proc/pid/psinfo and /proc/pid/lwps/lwpid/lwpsinfo, and are defined in
the system header file /usr/include/sys/procfs.h. These structures define
useful Stable information about processes and threads such as the process ID, LWP ID,
initial arguments, and other data displayed by the ps(1) command. Refer to proc(4)
for a complete description of the struct members and semantics.

TABLE 40–1 procfs.d Translators

Input Type Input Type Attributes Output Type Output Type Attributes

proc_t * Private/Private/Common psinfo_t * Stable/Stable/Common

kthread_t * Private/Private/Common lwpsinfo_t * Stable/Stable/Common

Stable Translations
While a translator provides the ability to convert information into a stable data
structure, it does not necessarily resolve all stability issues that can arise in translating
data. For example, if the input expression for an xlate operation itself references
Unstable data, the resulting D program is also Unstable because program stability is
always computed as the minimum stability of the accumulated D program statements
and expressions. Therefore, it is sometimes necessary to define a specific stable input
expression for a translator in order to permit stable programs to be constructed. The D
inline mechanism can be used to facilitate such stable translations.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables
described earlier as stable translations. For example, the curlwpsinfo variable is
actually an inline declared as follows:

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);

#pragma D attributes Stable/Stable/Common curlwpsinfo

The curlwpsinfo variable is defined as an inlined translation from the curthread
variable, a pointer to the kernel’s Private data structure representing a thread, to the
Stable lwpsinfo_t type. The D compiler processes this library file and caches the
inline declaration, making curlwpsinfo appear as any other D variable. The

Chapter 40 • Translators 395



#pragma statement following the declaration is used to explicitly reset the attributes
of the curlwpsinfo identifier to Stable/Stable/Common, masking the reference to
curthread in the inlined expression. This combination of D features permits D
programmers to use curthread as the source of a translation in a safe fashion that can
be updated by Sun coincident to corresponding changes in the Solaris implementation.
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CHAPTER 41

Versioning

In Chapter 39, we learned about the DTrace features for determining the stability
attributes of D programs that you create. Once you have created a D program with the
appropriate stability attributes, you may also wish to bind this program to a particular
version of the D programming interface. The D interface version is a label applied to a
particular set of types, variables, functions, constants, and translators made available
to you by the D compiler. If you specify a binding to a specific version of the D
programming interface, you ensure that you can recompile your program on future
versions of DTrace without encountering conflicts between program identifiers that
you define and identifiers defined in future versions of the D programming interface.
You should establish version bindings for any D programs that you wish to install as
persistent scripts (see Chapter 15) or use in layered tools.

Versions and Releases
The D compiler labels sets of types, variables, functions, constants, and translators
corresponding to a particular software release using a version string. A version string is
a period-delimited sequence of decimal integers of the form “x” (a Major release),
“x.y” (a Minor release), or “x.y.z” (a Micro release). Versions are compared by
comparing the integers from left to right. If the leftmost integers are not equal, the
string with the greater integer is the greater (and therefore more recent) version. If the
leftmost integers are equal, the comparison proceeds to the next integer in order from
left to right to determine the result. All unspecified integers in a version string are
interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to Sun’s standard nomenclature for interface
versions, as described in attributes(5). A change in the D programming interface is
accompanied by a new version string. The following table summarizes the version
strings used by DTrace and the likely significance of the corresponding DTrace
software release.
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TABLE 41–1 DTrace Release Versions

Release Version Significance

Major x.0 A Major release is likely to contain major feature additions; adhere to
different, possibly incompatible Standard revisions; and though unlikely,
could change, drop, or replace Standard or Stable interfaces (see
Chapter 39). The initial version of the D programming interface is labeled as
version 1.0.

Minor x.y Compared to an x.0 or earlier version (where y is not equal to zero), a new
Minor release is likely to contain minor feature additions, compatible
Standard and Stable interfaces, possibly incompatible Evolving interfaces,
or likely incompatible Unstable interfaces. These changes may include new
built-in D types, variables, functions, constants, and translators. In addition,
a Minor release may remove support for interfaces previously labeled as
Obsolete (see Chapter 39).

Micro x.y.z Micro releases are intended to be interface compatible with the previous
release (where z is not equal to zero), but are likely to include bug fixes,
performance enhancements, and support for additional hardware.

In general, each new version of the D programming interface will provide a superset
of the capabilities offered by the previous version, with the exception of any Obsolete
interfaces that have been removed.

Versioning Options
By default, any D programs you compile using dtrace -s or specify using the
dtrace -P, -m, -f, -n, or -i command-line options are bound to the most recent D
programming interface version offered by the D compiler. You can determine the
current D programming interface version using the dtrace -V option:

$ dtrace -V
dtrace: Sun D 1.0

$

If you wish to establish a binding to a specific version of the D programming interface,
you can set the version option to an appropriate version string. Similar to other
DTrace options (see Chapter 16), you can set the version option either on the
command-line using dtrace -x:

# dtrace -x version=1.0 -n ’BEGIN{trace("hello");}’

or you can use the #pragma D option syntax to set the option in your D program
source file:
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#pragma D option version=1.0

BEGIN
{

trace("hello");
}

If you use the #pragma D option syntax to request a version binding, you must
place this directive at the top of your D program file prior to any other declarations
and probe clauses. If the version binding argument is not a valid version string or
refers to a version not offered by the D compiler, an appropriate error message will be
produced and compilation will fail. You can therefore also use the version binding
facility to cause execution of a D script on an older version of DTrace to fail with an
obvious error message.

Prior to compiling your program declarations and clauses, the D compiler loads the
set of D types, functions, constants, and translators for the appropriate interface
version into the compiler namespaces. Therefore, any version binding options you
specify simply control the set of identifiers, types, and translators that are visible to
your program in addition to the variables, types, and translators that your program
defines. Version binding prevents the D compiler from loading newer interfaces that
may define identifiers or translators that conflict with declarations in your program
source code and would therefore cause a compilation error. See “Identifier Names and
Keywords” on page 45 for tips on how to pick identifier names that are unlikely to
conflict with interfaces offered by future versions of DTrace.

Provider Versioning
Unlike interfaces offered by the D compiler, interfaces offered by DTrace providers
(that is, probes and probe arguments) are not affected by or associated with the D
programming interface or the previously described version binding options. The
available provider interfaces are established as part of loading your compiled
instrumentation into the DTrace software in the operating system kernel and vary
depending on your instruction set architecture, operating platform, processor, the
software installed on your Solaris system, and your current security privileges. The D
compiler and DTrace runtime examine the probes described in your D program
clauses and report appropriate error messages when probes requested by your D
program are not available. These features are orthogonal to the D programming
interface version because DTrace providers do not export interfaces that can conflict
with definitions in your D programs; that is, you can only enable probes in D, you
cannot define them, and probe names are kept in a separate namespace from other D
program identifiers.

DTrace providers are delivered with a particular release of Solaris and are described in
the corresponding version of the Solaris Dynamic Tracing Guide. The chapter of this
guide corresponding to each provider will also describe any relevant changes to or
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new features offered by a given provider. You can use the dtrace -l option to
explore the set of providers and probes available on your Solaris system. Providers
label their interfaces using the DTrace stability attributes, and you can use the DTrace
stability reporting features (see Chapter 39) to determine whether the provider
interfaces used by your D program are likely to change or be offered in future Solaris
releases.
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Glossary

action A behavior implemented by the DTrace framework that can be
performed at probe firing time that either traces data or modifies
system state external to DTrace. Actions include tracing data, stopping
processes, and capturing stack traces, among others.

aggregation An object that stores the result of an aggregating function as defined
formally in Chapter 9, indexed by a tuple of expressions that can be
used to organize the results.

clause A D program declaration consisting of a probe specifier list, an
optional predicate, and an optional list of action statements
surrounded by braces { }.

consumer A program that uses DTrace to enable instrumentation and reads out
the resulting stream of trace data. The dtrace command is the
canonical DTrace consumer; the lockstat(1M) utility is another
specialized DTrace consumer.

DTrace A dynamic tracing facility that provides concise answers to arbitrary
questions.

enabling A group of enabled probes and their associated predicates and actions.

predicate A logical expression that determines whether or not a set of tracing
actions should be executed when a probe fires. Each D program clause
may have a predicate associated with it, surrounded by slashes / /.

probe A location or activity in the system to which DTrace can dynamically
bind instrumentation including a predicate and actions. Each probe is
named by a tuple indicating its provider, module, function, and
semantic name. A probe may be anchored to a particular module and
function, or it may be unanchored if it is not associated with a particular
program location (for example, a profile timer).
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provider A kernel module that implements a particular type of instrumentation
on behalf of the DTrace framework. The provider exports a namespace
of probes and a stability matrix for its name and data semantics, as
shown in the chapters of this book.

subroutine A behavior implemented by the DTrace framework that can be
performed at probe firing time that modifies internal DTrace state but
does not trace any data. Similar to actions, subroutines are requested
using the D function call syntax.

translator A collection of D assignment statements that convert implementation
details of a particular instrumented subsystem into a object of struct
type that forms an interface of greater stability than the input
expression.
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Numbers and Symbols
$ (dollar sign), 101
*curlwpsinfo, 67
*curpsinfo, 67
*curthread, 67
$target macro variable, 186

A
actions

alloca, 142
basename, 142
bcopy, 142
cleanpath, 143
copyin, 143
copyinstr, 143
copyinto, 144
data recording, 128
default, 127
destructive, 135

breakpoint, 138
chill, 140
copyout, 136
copyoutstr, 136
panic, 140
raise, 136
stop, 136
system, 136

dirname, 144
exit, 141
jstack, 135
msgsize, 144

actions (Continued)
mutex_owned, 144
mutex_owner, 145
mutex_type_adaptive, 145
printa, 129
printf, 129
progenyof, 145
rand, 145
rw_iswriter, 146
rw_write_held, 146
special, 141
speculation, 146
stack, 130

and aggregators, 130
strjoin, 146
strlen, 146
trace, 129
tracemem, 129
ustack, 131

adaptive lock probes, 196
aggregations, 380
aggregator

clearing, 123
drops, 126
normalization, 120
output, 119
truncating, 124

aggregators, 112
anonymous enabling, 369
anonymous tracing, 369

claiming anonymous state, 370
example of use, 370

arg0, 67
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arg1, 67
arg2, 67
arg3, 67
arg4, 67
arg5, 67
arg6, 67
arg7, 67
arg8, 67
arg9, 67
args[], 67
arrays

and and pointers, 83
multi-dimensional scalar, 86

associative arrays, 60
and dynamic variable drops, 61
and explicit variable declarations, 61
and keys, 60
and tuples, 60, 61
assigned to zero, 61
defining, 61
differences from normal arrays, 60
object types, 61
unassigned, 61
uses of, 60

avg, 113

B
b_flags Values, 299
backquote character (‘), 70
BEGIN probe, 191
binary construction with probes, 360
bit-fields, 103
breakpoints, 218
buffer

resizing policy, 151
sizes, 150

buffer policy, on resizing, 151
bufinfo_t structure, 299
built-in variables, 67, 96

C
C preprocessor, and the D programming

language, 76
cacheable predicates, 380

caller, 67
clause-local variables, 64

and probe clause lifetime, 65
defining, 66
example of use, 65
explicit variable declaration, 65
uses of, 66
value persistence, 66

constant definitions, 105
constructing a binary, 360
contention-event probes, 195, 341
copyin(), 347
copyinstr(), 347
count, 113
cwd, 67

D
D programming language

and the C preprocessor, 76
differences from ANSI-C, 60, 86
variable declarations in, 60

data recording actions, 128
declarations, 73
dependency classes, 385
destructive actions, 135

kernel, 138
process, 135

devinfo_t structure, 300
displaying consumers, 375
displaying trace data, 376
dollar sign ($), 101
dtrace, 113

exit values, 179
operands, 179

DTrace
options, 187

dtrace
options, 174

32, 174
64, 174
A, 174
a, 174
b, 174
C, 175
c, 175
D, 175
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dtrace, options (Continued)
e, 175
F, 175
f, 175
G, 175
H, 176
I, 176
i, 176
L, 176
l, 176
m, 176

DTrace
options

modifying, 189, 341
dtrace

options
n, 176
o, 176
P, 177
p, 176
q, 177
S, 177
s, 177
U, 177
V, 177
v, 177
w, 177
X, 178
x, 177
Z, 179

dtrace interference, 349
dtrace_kernel privilege, 366
dtrace probe stability, 194
dtrace_proc privilege, 364
dtrace_userprivilege, 365
dtrace utility, 173

E
embedding probe points, 359
END probe, 192
entry probes, 338, 339
enumeration, 106

syntax, 106
UIO_READ visibility, 107
UIO_WRITE visibility, 107

enumeration of symbolic names, 106

epid, 67
errno, 67
error-event probes, 342
ERROR probe, 193
evolving stability value, 384
examples

anonymous tracing, 370
enumeration, 107
exec probe, 258
FBT, 210
io probe use, 302
of clause-local variables, 65
of pid probe use, 338
of stability reports, 388
of thread-local variables, 63
of union use, 100
sdt probe, 226
speculation, 166

exec probes, 258
execname, 67, 114
exit probe, 259
explicit variable declaration

for associative arrays, 61
for clause-local variables, 65
for scalar variables, 60

explicit variable declarations, for thread-local
variables, 63

external stability value, 384
external variables, 70

and D operators, 70
and interface stability, 70

extracting DTrace data, 375

F
fasttrap probe, 345

stability, 345
FBT probe, 209
FBT probes

and breakpoints, 218
and module loading, 219
stability, 219
uninstrumentable functions, 218
unsporting functions, 217

FBTprobes, tail-call optimization, 216
fileinfo_t structure, 301
fill buffer policy, 148
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fill buffer policy (Continued)
and END probes, 149

fpuinfo, 333
stability, 335

function boundary testing (FBT), 355
function offset probes, 339

H
hold-event probes, 195, 341

I
id, 67
inline directives, 107
interface attributes, 387
interface dependency classes, 385

common, 386
CPU, 386
group, 386
ISA, 386
platform, 386
unknown, 385

internal stability value, 384
interpreter files, 181
io probe, 297
ipl, 67

K
kernel boundary probes, 209
kernel module, specifying, 70
kernel symbol

name conflict resolution, 70
namespace, 70
type associations, 70

kstat framework, and structs, 99

L
large file system calls, 222
lockstat, stability of, 199
lockstat provider, 195

contention-event probes, 195

lockstat provider (Continued)
hold-event probes, 195
probes, 195

lockstat stability, 199
lquantize, 113
lwp-exit probe, 261
lwp-start probe, 261
lwpsinfo_t, 254

M
macro arguments, 184
macro variables, 101, 182
max, 113
member sizes, 103
memory addresses, 79
mib probe, 315

arguments, 331
stability, 331

min, 113
modifying options, 189
module loading, 219
multi-dimensional scalar arrays, 86
mutex probes, 342

O
obsolete stability value, 384
offsetof, 103
offsets, 103
operator overloading, 91
options, 187

modifying, 189, 341

P
performance, 379

cacheable predicates, 380
pid, 67
pid probes

and function boundaries, 338
example of use, 338

pid provider, 355, 357
pidprobes, 337-338
plockstat, 341
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pointers, 79
and arrays, 83
and explicit casts, 85
and struct, 95
and type conversion, 85
arithmetic operations on, 84
declaring, 79
safe use of, 80
to DTrace objects, 86

pragmas, 74
predicates, 76
principal buffer

policies, 147
fill, 148
ring, 149
switch, 148

printa, 159
printf, 153

conversion flags, 154
conversion formats, 157
conversion specifications, 154
size prefixes, 156
width and precision specifiers, 155

private stability value, 384
privileges, 363

and DTrace, 364
dtrace_kernel, 366
dtrace_proc, 364
dtrace_user, 365
superuser, 366

probe actions, 76
probe clause, lifetime and clause-local

variables, 65
probe clauses, 73
probe descriptions, 74

recommended syntax, 74
special characters in, 74

probe points, 359
probefunc, 67
probemod, 67
probename, 67
probeprov, 67
probes

adaptive lock, 196
BEGIN, 191
contention-event, 195, 341
done, 297
END, 192

probes (Continued)
entry, 209, 338
ERROR, 193
error-event, 342
exec, 258
exit, 259
fasttrap, 345
FBT, 209

and tail-call optimization, 216
breakpoints, 218
example of use, 210
module loading, 219
stability, 219
uninstrumentable functions, 218
unsporting functions, 217

for lockstat, 195
fpuinfo, 333
function boundary, 338
function offset, 339
hold-event, 195, 341
io, 297

arguments, 298
bufinfo_t structure, 299
devinfo_t structure, 300
example of use, 302
fileinfo_t structure, 301
stability, 313

limiting, 379
lwp-exit, 261
lwp-start, 261
mib, 315
mutex, 342
pid, 337, 339
plockstat

stability, 343
proc, 251
profile, 201
reader/writer, 198
reader/writer locks, 343
return, 209, 339
sched, 265
sdt, 225

arguments, 230
creating, 230
example of use, 226
stability, 231

signal-send, 263
spin lock, 196
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probes (Continued)
start, 259, 297
syscall(), 349
syscall, 221
thread lock, 198
tick, 204
vminfo, 243

arguments, 246
example of use, 246

wait-done, 297
wait-start, 297

proc probe, 251
arguments, 253
stability, 264

profile probes, 201
arguments, 204
creation, 206
stability, 206
timer resolution, 204

provider versioning, 399
psinfo_t, 257

Q
quantize, 113

R
reader/writer lock probes, 198, 343
return probes, 339
ring buffer policy, 149
root, 67

S
scalar arrays, 82
scalar variables, 59

creation, 59
explicit variable declaration, 60

sched probe, 265
stability, 296

scripting, 181
sdt probe, 225

arguments, 230
creating, 230

security, 363
signal-send probe, 263
sizeof, 103
speculation, 163

committing, 165
creating, 164
discarding, 166
example of use, 166
options, 170
tuning, 170
use, 164

speculation() function, 164
speculative drops, 170
spin lock probes, 196
stability, 383

computations, 388
enforcement, 390
fasttrap, 345
FBT probes, 219
io, 313
levels, 383
mib, 331
of dtrace probes, 194
of lockstat, 199
of syscall probes, 223
plockstat, 343
proc, 264
reports, 388

example of use, 388
sched, 296
sdt probe, 231
values, 384

evolving, 384
external, 384
internal, 384
obsolete, 384
private, 384
stable, 385
standard, 385
unstable, 384

vminfo, 250
stable stability value, 385
stackdepth, 67
standard stability value, 385
start probe, 259
statically defined tracking (SDT), See SDT
string constants, 90
strings, 89
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strings (Continued)
and operator overloading, 91
assignment, 90
comparison, 91
conversion, 91
relational operators, 91
type, 89

struct, 93
and pointers, 95
example of use, 96

subroutines, 142
copyin(), 347
copyinstr(), 347

sum, 113
superuser privileges, 366
switch buffer policy, 148
syscall probe, 221
syscall probes

arguments, 223
large file system interfaces, 222
stability, 223

system calls, for large files, 222

T
targeting a process ID, 186
thread-local variables, 62

and dynamic variable drops, 62
and explicit variable declarations, 63
and thread identity, 62
assigned to zero, 62
example of use, 63
referencing, 62
types, 62
unassigned, 62

thread lock probes, 198
tick probes, 204
tid, 67
timestamp, 67
trace, 161
trace data

displaying, 376
extracting, 375

tracing instructions, 357
tunables, 187
type definitions, 105
type namespaces, 108

type namespaces (Continued)
built in, 109

typedef, 105

U
uninstrumentable functions, 218
unions, 99

and the kstat framework, 99
example of use, 100

unsporting functions, 217
unstable stability value, 384
uregs[], 67
uregs[] array, 352
user process memory, 87
user process tracing, 347
ustack(), 351

V
version string, 397
versioning, 397

for providers, 399
options, 398
version binding, 399

virtual memory, 79
vminfo probe, 243

arguments, 246
example, 246
stability, 250

vtimestamp, 67

W
walltimestamp, 67
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