
Robert Lor, Staff Engineer
Version 1.1 | Last updated: 07/31/07

HOW to CONFIGURE and RUN
POSTGRESQL ON SOLARISTM 10

> Solaris™ 10 How To Guides

Contents
PostgreSQL for Solaris: Overview Page 1

Starting PostgreSQL for the First Time Page 1
Solaris Express Developer Edition Page 1

Solaris 10 6/06 or 11/06 Page 2

PostgreSQL Integration with Solaris Service Management Facility Page 3

Configuring and Running PostgreSQL in Solaris Zones Page 9
Installing a Solaris Zone Page 9

Creating, Installing and Booting a Zone Page 9

Run PostgreSQL in Solaris Zone Page 10

Mount filesystem in Zone Page 11

Installing PostgreSQL on Earlier Versions of Solaris 10 Page 11
Obtaining the Packages Page 11

PostgreSQL for Solaris Packages Page 11

Package File Locations Page 12

Installing PostgreSQL for Solaris Packages Page 13

Installing Solaris Patches Page 13

Removing PostgreSQL for Solaris Packages Page 14

Summary Page 14

For More Information Page 15

About This Solaris How To Guide
The PostgreSQL How to Guide instructs Solaris system administrators and database professionals in the process of

configuring and running PostgreSQL on a SolarisTM 10 system. This guide covers launching and setting up the

PostgreSQL database using the Solaris Service Management Facility (SMF), and configuring PostgreSQL to run in a

Solaris Container technology called Solaris Zones. The user will then be able to verify and test the PostgreSQL data

base.

This guide assumes that the release of Solaris being used is the Solaris 10 6/06 operating system or later. Starting

with Solaris 10 6/06, PostgreSQL has been integrated with the operating system and can be installed with Solaris. If

an earlier version of Solaris 10 (e.g. Solaris 10 1/06 or Solaris 10 3/05) is used, PostgreSQL must be installed on the

system. Instructions on finding the packages and how to perform the install are included at the end of this guide.

This guide is not exhaustive and does not cover all optional features of these technologies. However, the reference

section provided at the end of the document provides pointers to where administrators can learn more.

Contributors: Robert Lor, Josh Berkus, Joost Pronk, Neha Sampat, Paul Steeves

PostgreSQL for Solaris: Overview
PostgreSQL is a very powerful, open source, enterprise-class, feature-rich relational database system. It has more than 15

years of active development and a proven architecture that has earned it a strong reputation for reliability, data integrity,

accuracy and portability. It also supports storage of binary large objects, including pictures, sounds, or video. It has native

programming interfaces for C/C++, Java, Perl, Python, Ruby, Tcl, and ODBC, among others.

PostgreSQL is highly scalable both in the sheer quantity of data it can manage and in the number of concurrent users it

can accommodate. There are active PostgreSQL systems in production environments that manage in excess of 4 terabytes

of data.

To meet growing demand for open source software deployments, Sun has integrated PostgreSQL for Solaris (the Solaris

optimized release of PostgreSQL) in the Solaris 10 6/06 release to provide its enterprise-class customers with breakthrough

new technologies based on open standards.

Starting PostgreSQL for the First Time
PostgreSQL is shipped with both Solaris Express Developer Edition (SXDE) and Solaris 10. Depending on which Solaris 10
update you're using, the instructions may be different.

Solaris Express Developer Edition
SXDE 5/07 includes PostgreSQL 8.1 and 8.2.

PostgreSQL 8.1:

1. As root, make sure the default data directory is owned by the user postgres and su to postgres:

2. Create PostgreSQL DB cluster:

3. As root, use the SMF's svcadm command to start PostgreSQL:

PostgreSQL 8.2:

1. As root, su to postgres:

2. Create PostgreSQL DB cluster:

3. As root, use the SMF's svcadm command to start PostgreSQL:

The binaries for PostgreSQL 8.1 and 8.2 are located in /usr/bin and /usr/postgres/8.2/bin, respectively. To use 8.2, make
sure to add /usr/postgres/8.2/bin to PATH.

/usr/sbin/svcadm enable postgresql:version_82

$ /usr/postgres/8.2/bin/initdb -D /var/postgres/8.2/data

su - postgres

/usr/sbin/svcadm enable postgresql:version_81

$ /usr/bin/initdb -D /var/lib/pgsql/data

chown postgres:postgres /var/lib/pgsql/data

su - postgres

PostgreSQL How To Guide

1
Solaris 10 Operating System sun.com/solaris

It is possible to run both PostgreSQL 8.1 and 8.2 servers at the same time as long as the port numbers are different.

The data directory used above are the defaults, but you can put the database anywhere. Just make sure the SMF property
for data directory is changed appropriately. See postgres_82 man page (e.g. run "man postgres_82" from the command
prompt) for more information.

Solaris 10 6/06 or 11/06
Once you have successfully installed Solaris 10, there are a few steps that you will need to perform before you can start
the database.

1. Create a Solaris OS user and group that will be used to administer PostgreSQL. If you choose to use an existing user,

skip this step and proceed to Step 2.

NOTE: PostgreSQL cannot be run as root user.

For example, to create a user called “postgres” and assign it to a “postgres” group, execute the following commands

as root. Make sure the directory /export/home exists:

2. The next step is to decide on a directory to create the database and ensure that the permissions are set correctly. The

default location is /var/lib/pgsql/data, but it can be placed anywhere. In fact, in a production environment, you

should place it in its own filesystem partition, with consideration for space, growth, performance and availability.

To use the default directory with the Solaris user called “postgres”, execute the following commands to set the

ownership and permissions:

3. You are now ready to create a database cluster. Login as “postgres” or another user you've selected to run the

database and execute the initdb command.

To create a database cluster in /var/lib/pgsql/data, execute the following command:

4. PostgreSQL is now ready to be started using the following command:

5. You can now test the running database.

To connect to a database called “postgres” running on a default port, execute the following command:

To configure the database, modify the postgresql.conf file in the database cluster directory used in step 3. For tuning tips

on Solaris, visit http://www.sun.com/servers/coolthreads/tnb/applications_postgresql.jsp.

$ psql postgres

$ pg_ctl -D /var/lib/pgsql/data -l postmaster.log start

$ initdb -D /var/lib/pgsql/data

chown postgres /var/lib/pgsql/data
chmod 700 /var/lib/pgsql/data

groupadd postgres
useradd -c 'PostgreSQL user' -d /export/home/postgres -g postgres -m -s
/bin/bash postgres

Solaris 10 Operating System sun.com/solaris

2

http://www.sun.com/servers/coolthreads/tnb/applications_postgresql.jsp

3
Solaris 10 Operating System sun.com/solaris

PostgreSQL Integration with Solaris Service Management Facility (SMF)
PostgreSQL has been integrated with SMF in Solaris Express Developer Edition. If you are using Solaris 10 6/06 or 11/06 and

want the SMF enabled PostgreSQL, you will have to do that manually with the following steps.

SMF creates a standardized control mechanism for application services by turning them into first-class objects that

administrators can observe and manage in a uniform way. These services can then be automatically restarted if they are

accidentally terminated by an administrator, if they are aborted as the result of a software programming error, or if they

are interrupted by an underlying hardware problem. SMF is simple to use. Developers can convert most existing

applications to take full advantage of SMF features just by adding a simple service manifest (XML file) to each application

and using a few SMF commands to import the service description and activate the service.

Below are the SMF service manifest and accompanying shell script needed to integrate PostgreSQL with Solaris SMF.

Perform the following steps to import the manifest into the SMF repository:

1. Save the following XML code to a file called “postgresql.xml” in /var/svc/manifest/application/database. You need to

create the directory if it doesn't exist and have the appropriate privileges to perform this action:

<?xml version="1.0"?>

<!DOCTYPE service_bundle SYSTEM

"/usr/share/lib/xml/dtd/service_bundle.dtd.1">

<!--

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

CDDL HEADER START

The contents of this file are subject to the terms of the

Common Development and Distribution License (the "License").

You may not use this file except in compliance with the License.

You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

or http://www.opensolaris.org/os/licensing.

See the License for the specific language governing permissions

and limitations under the License.

When distributing Covered Code, include this CDDL HEADER in each

file and include the License file at usr/src/OPENSOLARIS.LICENSE.

If applicable, add the following below this CDDL HEADER, with the

fields enclosed by brackets "[]" replaced with your own identifying

information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

ident "%Z%%M% %I% %E SMI"

NOTE: This service manifest is not editable; its contents will

be overwritten by package or patch operations, including

operating system upgrade. Make customizations in a different

file.

-->

<service_bundle type='manifest' name='postgresql'>

<service
name='application/database/postgresql'
type='service'
version='1'>

<!--
Wait for network interfaces to be initialized.

-->
<dependency

name='network'
grouping='require_all'
restart_on='none'
type='service'>
<service_fmri value='svc:/milestone/network:default' />

</dependency>

<!--
Wait for all local filesystems to be mounted.

-->
<dependency

name='filesystem-local'
grouping='require_all'
restart_on='none'
type='service'>
<service_fmri value='svc:/system/filesystem/local:default'

/>
</dependency>

<exec_method
type='method'
name='start'
exec='/lib/svc/method/postgresql start'
timeout_seconds='300' />

Solaris 10 Operating System sun.com/solaris

4

<exec_method
type='method'
name='stop'
exec='/lib/svc/method/postgresql stop'
timeout_seconds='300' />

<exec_method
type='method'
name='refresh'
exec='/lib/svc/method/postgresql refresh'
timeout_seconds='60' />

<!--
We define two instances of PostgreSQL as examples.

-->

<instance name='default' enabled='false'>

<method_context>
<method_credential user='postgres' group='postgres'

/>
</method_context>

<!--
Make sure the data configurable property points to the
appropriate database directory.

-->

<property_group name='postgresql' type='application'>
<propval name='data' type='astring'

value='/var/lib/pgsql/data' />
<propval name='log' type='astring'

value='postmaster.log' />
</property_group>

</instance>

<instance name='postgres' enabled='false'>

<method_context>
<method_credential user='postgres' group='postgres'

/>
</method_context>
<!--

Make sure the data configurable property points to the
appropriate database directory and port number in
postgresql.conf is different than the first instance.

-->
<property_group name='postgresql' type='application'>

<propval name='data' type='astring'
value='/var/lib/pgsql/data2' />

<propval name='log' type='astring'
value='postmaster.log' />

</property_group>

5
Solaris 10 Operating System sun.com/solaris

The default instance of the manifest assumes that the database user is postgres, database cluster directory is

/var/lib/pgsql/data and the postmaster log file is postmaster.log. If any of them is different, update the above XML

accordingly or use the svccfg command to change this property after the manifest has been imported. See the examples

below.

2. Save the following shell script to a file called “postgresql”:

#!/sbin/sh
#
CDDL HEADER START
#
The contents of this file are subject to the terms of the
Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.
#
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.
#
When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
#
CDDL HEADER END

Copyright 2006 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
ident "%Z%%M% %I% %E SMI"

</instance>

<stability value='Evolving' />

<template>
<common_name>

<loctext xml:lang='C'>
PostgreSQL RDBMS

</loctext>
</common_name>
<documentation>

<manpage title='postgres' section='1M' />
<doc_link name='postgresql.org'

uri='http://postgresql.org' />
</documentation>

</template>

</service>

</service_bundle>

Solaris 10 Operating System sun.com/solaris

6

. /lib/svc/share/smf_include.sh

SMF_FMRI is the name of the target service. This allows multiple instances
to use the same script.

getproparg() {
val=`svcprop -p $1 $SMF_FMRI`
[-n "$val"] && echo $val

}

PGBIN=/usr/bin
PGDATA=`getproparg postgresql/data`
PGLOG=`getproparg postgresql/log`

if [-z $SMF_FMRI]; then
echo "SMF framework variables are not initialized."
exit $SMF_EXIT_ERR

fi

if [-z $PGDATA]; then

echo "postgresql/data property not set"
exit $SMF_EXIT_ERR_CONFIG

fi

if [-z $PGLOG]; then
echo "postgresql/log property not set"
exit $SMF_EXIT_ERR_CONFIG

fi

case "$1" in
'start')

$PGBIN/pg_ctl -D $PGDATA -l $PGDATA/$PGLOG start
;;

'stop')
$PGBIN/pg_ctl -D $PGDATA stop
;;

'refresh')
$PGBIN/pg_ctl -D $PGDATA reload
;;

*)
echo $"Usage: $0 {start|refresh}"
exit 1
;;

esac
exit $SMF_EXIT_OK

7
Solaris 10 Operating System sun.com/solaris

3. Place the shell script “postgresql” in /lib/svc/method.

4. Change the permission to 555. You need to have the appropriate write privileges to copy files into this directory.

5. Import the SMF manifest by executing the following commands:

6. Initially, both service instances are disabled. Use the following command to see the state.

NOTE: The full service name or fault management resource identifier (FMRI) for both instances are

svc:/application/database/postgresql:default and svc:/application/database/postgresql:postgres respectively, but

they can be shortened to postgresql:default and postgresql:postgres:

7. Start the service (e.g start PostgreSQL) for the default instance by executing the following command:

From this point on, the PostgreSQL process is controlled by the Solaris SMF, and the administrator can change its state
by using the svcadm command. If the service is terminated for some reason, the SMF restarter daemon will attempt
to restart it, and at system reboot, the service will be started automatically unless it is disabled.

It is possible to change any of the configurable properties (user, data, or log) in postgresql.xml dynamically after the
manifest has been imported. To do so, you need to (a) disable the service, (b) change the property value and refresh
it, and (c) restart the service. Below are two examples for changing the administrative user and data directory.

To change the Solaris administrative user to “foo” for the default instance, execute:

To change the database cluster directory to “/pgdata” for the default instance, execute:

For more details on how to use SMF, please read the smf(5) man page or online documentation at
http://docs.sun.com/app/docs/doc/817-1985/6mhm8o5rh?a=view.

svcadm disable postgresql:default
svccfg -s postgresql:default setprop postgresql/data = "/pgdata"
svcadm refresh postgresql:default
svcadm enable postgresql:default

svcadm disable postgresql:default
svccfg -s postgresql:default setprop method_context/user = "foo"
svcadm refresh postgresql:default
svcadm enable postgresql:default

/usr/sbin/svcadm enable postgresql:default

svcs postgresql

cd /var/svc/manifest/application/database
/usr/sbin/svccfg import postgresql.xml

Solaris 10 Operating System sun.com/solaris

8

http://docs.sun.com/app/docs/doc/817-1985/6mhm8o5rh?a=view

Configuring and Running PostgreSQL in Solaris Zones
Solaris Zones, a part of Solaris Containers technology, is used to virtualize operating system services and provide an

isolated and secure environment for running applications. A zone is a virtualized operating system environment created

within a single instance of the Solaris Operating System. When you create a zone, you produce an application execution

environment in which processes are isolated from the rest of the system. This isolation prevents processes that are running

in one zone from monitoring or affecting processes that are running in other zones. Even a process running with superuser

credentials cannot view or affect activity in other zones.

• Global Zone: Every Solaris system contains a global zone. A global zone contains a fully functional installation of the

Solaris OS that is bootable by the system hardware.

• Non-global Zone: It is the virtualization technology that virtualizes an operating environment and isolates namespace for

processes. There are two types of non-global zone root file system models: sparse and whole root. The sparse root zone

model optimizes the sharing of objects. The whole root zone model provides the maximum configurability.

> Sparse root Zone: The sparse root zone model optimizes the sharing of objects but is less flexible. For example, the

following directories are shared with the global zone: /lib, /platform, /sbin, /usr. Access to files in these directories

will be in read-only mode.

> Whole root Zone: This model provides maximum flexibility. All file systems are private to the zone. The advantages of

this model include the capability for global administrators to customize their zones file system layout. This would be

done, for example, to add arbitrary unbundled or third-party packages.

For complete details on Solaris Containers technology, including Solaris Zones, refer to this online guide:
http://docs.sun.com/app/docs/doc/817-1592.

Installing a Solaris Zone
There are several approaches to consider when running PostgreSQL in Solaris Zones.

• Install PostgreSQL in the global zone and run different PostgreSQL instances in different sparse root zones. The

PostgreSQL binary will be shared by all zones, but not the data. This method will simplify PostgreSQL upgrade as all

zones will automatically see the same binary.

• Install PostgreSQL in a whole root zone so different zones will have their own binary. In this approach, you can run

different versions of PostgreSQL in different zones.

• A combination of 1 & 2. Install PostgreSQL in the global zone, create some sparse root zones to run some instances of

PostgreSQL using the shared binary, and create some whole root zones to run their own copy of PostgreSQL.

The following example will demonstrate the first approach, with PostgreSQL binary installed in the global zone and using a
sparse root zone to run the process.

Before creating a Solaris Zone, decide on a directory where it will reside. In this example, the zone will be installed in
/export/zones/pg_zone. Make sure to limit the access of this directory to only the user with read, write, and execute
permission (e.g chmod 700 /export/zones/pg_zone).

Creating, Installing and Booting a Zone
NOTE: For more detailed, step-by-step instructions on configuring zones, visit the Solaris Containers how to guide at

sun.com/solaris/howtoguides.

1. To configure and define a new zone, use the following command:

This will return the message “pg_zone: No such zone configured” before prompting you to begin configuring a new

global# zonecfg -z pg_zone

9
Solaris 10 Operating System sun.com/solaris

http://sun.com/solaris/howtoguides
http://docs.sun.com/app/docs/doc/817-1592

zone. You are now in the zonecfg shell that is identified by its prompt:"zonecfg:email-zone>".

2. Configuring the zone by executing the following commands:

NOTE: Change “address” and “physical” to the appropriate IP address and name of interface card, respectively.

At this point, a zone configuration file is created in /etc/zones/pg_zone.xml

3. Install the zone using the following command:

This can take a few minutes.

4. When installation completes, use the following command to list the status of the installed zones:

5. Booting a zone places the zone in the running state. A zone can be booted from the installed state or from the ready
state using the following command:

6. Use the following command to log in to the Zone console:

The first time you log in to the console, you are prompted to answer a series of questions.

At this point, the newly created zone is ready to use. You can proceed to setup PostgreSQL in the zone.

Run PostgreSQL in Solaris Zone
Follow the instructions in the section “Starting PostgreSQL for the First Time” to configure and run PostgreSQL.

global# zlogin -C pg_zone

global# zoneadm -z pg_zone boot

global# zoneadm list -iv

global# zoneadm -z pg_zone install

zonecfg:pg_zone> create
zonecfg:pg_zone> set zonepath=/export/zones/pg_zone
zonecfg:pg_zone> set autoboot=true
zonecfg:pg_zone> add net
zonecfg:pg_zone:net> set address=10.6.222.74/24
zonecfg:pg_zone:net> set physical=ipge0
zonecfg:pg_zone:net> end
zonecfg:pg_zone> verify
zonecfg:pg_zone> commit
zonecfg:pg_zone> exit

Solaris 10 Operating System sun.com/solaris

10

Mount filesystem in Zone
1. To mount a filesystem in a non-global zone, add the following entries to the zone configuration (pg_zone.xml):

Change the properties “special”, “raw”, and “dir” appropriately for your environment.

Installing PostgreSQL on Earlier Versions of Solaris 10
This section only applies when using Solaris 10 3/05 or 1/06 releases.

Obtaining the Packages
The packages can be downloaded from http://pgfoundry.org/projects/solarispackages/.

PostgreSQL for Solaris Packages
The table below lists all the packages and what they are used for. For a complete list of files in each package, see the

pkgmap file in each package.

Package Description

SUNWpostgr-libs The SUNWpostgr-libs package provides the essential shared libraries for any

PostgreSQL client program or interface. You will need to install this package to

use any other PostgreSQL package or any clients that need to connect to a

PostgreSQL server.

SUNWpostgr If you want to manipulate a PostgreSQL database on a local or remote

PostgreSQL server, you need this package. You also need to install this package

if you're installing the SUNWpostgr-server package.

SUNWpostgr-contrib The SUNWpostgr-contrib package contains contributed packages that are

included in the PostgreSQL distribution.

SUNWpostgr-devel The SUNWpostgr-devel package contains the header files and libraries needed to

compile C or C++ applications which will directly interact with a PostgreSQL

database management server and the ecpg Embedded C Postgres preprocessor.

You need to install this package if you want to develop applications which will

interact with a PostgreSQL server.

SUNWpostgr-docs The SUNWpostgr-docs package includes the SGML source for the documentation

as well as the documentation in PDF format and some extra documentation.

Install this package if you want to help with the PostgreSQL documentation

project, or if you want to generate printed documentation.

global# zonecfg -z pg_zone
zonecfg:pg_zone> add fs
zonecfg:pg_zone:fs> set type=ufs
zonecfg:pg_zone:fs> set special=/dev/dsk/c1t1d0s0
zonecfg:pg_zone:fs> set raw=/dev/rdsk/c1t1d0s0
zonecfg:pg_zone:fs> set dir=/pg_log
zonecfg:pg_zone:fs> end
zonecfg:pg_zone> verify
zonecfg:pg_zone> commit
zonecfg:pg_zone> exit

11
Solaris 10 Operating System sun.com/solaris

http://pgfoundry.org/projects/solarispackages/

Table 1—PostgreSQL for Solaris packages

Package File Locations
To remain in compliance with the Solaris OS, the PostgreSQL for Solaris packages install files in various locations which are

different than the default locations found in PostgreSQL documentation. According to the PostgreSQL documentation,

PostgreSQL is installed under the directory /usr/local/pgsql, with executables, source, and data existing in various

subdirectories.

Different distributions have different recommended file locations. In particular, the documentation directory can be

/usr/doc, /usr/doc/packages, /usr/share/doc, /usr/share/doc/packages, or some other similar path. The Solaris locations

are listed below:

Files PostgreSQL 8.1 PostgreSQL 8.2

Executables /usr/bin /usr/postgres/8.2/bin

Libraries /usr/lib /usr/postgres/8.2/lib

Documentation /usr/share/doc/pgsql-x.y.z

/usr/share/doc/pgsql-x.y.z/contrib

/usr/postgres/8.2/doc

Contrib /usr/share/pgsql/contrib /usr/postgres/8.2/share/contrib

Data /var/lib/pgsql/data /var/postgres/8.2/backup

Backup Area /var/lib/pgsql/backup /var/postgres/8.2/backup

Templates /usr/share/pgsql /usr/postgres/8.2/share

Package Description

SUNWpostgr-server The SUNWpostgr-server package includes the programs needed to create and

run a PostgreSQL server, which will in turn allow you to create and maintain

PostgreSQL databases. You should install SUNWpostgr-server if you want to

create and maintain your own PostgreSQL databases and/or your own

PostgreSQL server. You also need to install the SUNWpostgr package and its

requirements.

SUNWpostgr-server-data The SUNWpostgr-server-data package creates the default data directories and

may contain a demo database.

SUNWpostgr-tcl The SUNWpostgr-tcl package contains the Pgtcl client library and its

documentation.

SUNWpostgr-jdbc The SUNWpostgr-jdbc package includes the .jar files needed for Java programs to

access a PostgreSQL database.

SUNWpostgr-pl The SUNWpostgr-pl package contains the PL/Perl, and PL/Python procedural

languages for the backend. PL/Pgsql is part of the core server package.

Solaris 10 Operating System sun.com/solaris

12

Table 2—Package file locations

Installing PostgreSQL for Solaris Packages
This section only applies when using Solaris 10 3/05 or Solaris 10 1/06 releases.

To quickly get PostgreSQL up and running, you can install a subset of the packages available. See the table above for

further information. Here are a couple of scenarios:

• If you only want to run a Postgres server, install SUNWpostgr-libs, SUNWpostgr, SUNWpostgr-server-data, and

SUNWpostgr-server

• If you only want to run the Postgres client, install SUNWpostgr-libs and SUNWpostgr

If a package depends on other package(s), you will need to install these dependencies first. You will be notified of these
dependencies during install.

Solaris packages are installed using the pkgadd command. This command transfers the contents of a software package
from the distribution medium or directory and installs it onto a system.

This section provides basic installation instructions for installing your package in order to verify that it installs correctly.

1. Download packages, unzip and untar them.

2. Add the software package to the system:

device-name specifies the location of the package. Note that device-name can be a full directory path name or the
identifiers for a tape, floppy disk, or removable disk.

pkg-abbrev Is the name of one or more packages (separated by spaces) to be added. If omitted, pkgadd installs all
available packages.

For example, the following command will install SUNWpostgr-libs package from the current directory:

After you have installed all the necessary packages, refer to the “Starting PostgreSQL for the First Time” section above to
run the database.

Installing Solaris Patches
If you're installing PostgreSQL on Solaris 10 3/05 or 1/06, you will need to install Python patch 121606-01 before using
PL/Python procedural language. The Python patch can be downloaded from:
http://pgfoundry.org/projects/solarispackages.

Refer to the man pages for instructions on using 'patchadd' and 'patchrm' scripts provided with Solaris. To install the
patch, follow these steps:

1. Download the patch, unzip and untar it into any directory (e.g. /var/tmp).

pkgadd -d . SUNWpostgr-libs

pkgadd -d device-name [pkg-abbrev...]

Files PostgreSQL 8.1 PostgreSQL 8.2

Procedural Languages /usr/lib/pgsql /usr/postgres/8.2/lib

Development Headers /usr/include/pgsql /usr/postgres/8.2/include

Other shared data /usr/share/pgsql /usr/postgres/8.2/share

13
Solaris 10 Operating System sun.com/solaris

http://pgfoundry.org/projects/solarispackages

2. Add the patch to the system. You must have root privileges to add a patch:

The above command will take a few minutes, so be patient.
After the patch is installed successfully, you can proceed to use PL/Python.

NOTE: If you encounter patchadd or patchrm problems, such as "wordlist too large" messages while installing this
patch, you may need to install the following patch:

Removing PostgreSQL for Solaris Packages
You shouldn't need to remove PostgreSQL packages, but if you choose to, it is recommended that you execute a full

database dump (and possibly a filesystem level backup) before removing Solaris packages. Because the pkgrm command

updates information in the software products database, it is important when you remove a package to use the pkgrm

command, even though you might be tempted to use the rm command instead. For example, you could use the rm

command to remove a binary executable file, but that is not the same as using pkgrm to remove the software package that

includes that binary executable. Using the rm command to remove a package’s files will corrupt the software products

database. (If you really only want to remove one file, you can use the removef command, which will update the software

product database correctly.)

1. Log in to the system as superuser.

2. Remove an installed package:

pkg-list Is the name of one or more packages (separated by spaces). If omitted, pkgrm removes all available packages.

3. To verify that the package has successfully been removed, use the pkginfo command:

If pkg-abbrev is installed, the pkginfo command returns a line of information about it. Otherwise, pkginfo returns the
system prompt.

You should stop all server processes before removing packages.
NOTE: If you have created database clusters in /var/lib/pgsql/data directory, any newly created files and directories
will not be removed by a pkgrm of SUNWpostgr-server-data package. If you want to remove the database content, you
have to do it manually.

Summary
Fully integrated into Solaris 10 with flexible support offerings from Sun, PostgreSQL on Solaris 10 is an enterprise-class

open source database. When combined with the reliable, stable Solaris Operating System, customers can use PostgreSQL

for a majority of the commercial database needs. Customers now have the additional reassurance of world-class, global

24x7 support from Sun.

pkginfo | egrep pkg-abbrev

pkgrm pkg-list ...

119254-02 (or newer) Install and Patch Utilities Patch

patchadd /var/tmp/121606-01

Solaris 10 Operating System sun.com/solaris

14

For More information
While this How to Guide provides a user with the basic steps required to get started with a PostgreSQL database on Solaris

10, more information on varying configurations, additional Solaris 10 How to Guides and other relevant information for

PostgreSQL for Solaris are referenced below.

15
Solaris 10 Operating System sun.com/solaris

Solaris 10 Manuals and Reference Materials

Solaris 10 Overview

Solaris 10 FAQ

Solaris 10 Datasheets and Resources

Additional Solaris How to Guides

Predictive Self-Healing Feature Information

sun.com/solaris/

sun.com/solaris/faqs/index.jsp

sun.com/solaris/teachme

sun.com/solaris/howtoguides

sun.com/solaris/availability

PostgreSQL for Solaris Reference Materials

PostgreSQL for Solaris Service & Support Offering

PostgreSQL for Solaris Web Site

sun.com/service/osdb/index.xml

sun.com/solaris/postgresql

Community Resources

PostgreSQL Documentation

PostgreSQL for Solaris Documentation

PostgreSQL Packages for Solaris

postgresql.org/docs/

postgresql.org/docs/techdocs.33

pgfoundry.org/projects/solarispackages/

http://pgfoundry.org/projects/solarispackages/
http://www.postgresql.org/docs/techdocs.33
http://www.postgresql.org/docs/
http://www.sun.com/solaris/postgresql
http://www.sun.com/service/osdb/index.xml
http://www.sun.com/solaris/availability
http://www.sun.com/solaris/howtoguides
http://www.sun.com/solaris/teachme/
http://www.sun.com/software/solaris/faqs/index.jsp
http://sun.com/solaris/

sun.com/solaris

©2007 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

http://www.sun.com/solaris/

