
DTrace Quick Reference
DTrace Providers
Provider Description
dtrace Provides several probes related to DTrace itself. Use these probes to initialize state before

tracing begins, process state after tracing has completed, and handle unexpected execution
errors in other probes.

lockstat Provides probes that can be used to discern lock contention statistics, or to understand
virtually any aspect of locking behavior.

profile Provides probes associated with a time-based interrupt firing every fixed, specified time
interval.

fbt Provides probes associated with the entry to and return from most functions in the Solaris
kernel.

syscall Provides a probe at the entry to and return from every system call in the system.
sdt Provides probes at sites that a programmer has formally designated. This provider allows

programmers to choose locations of interest to DTrace users and convey some knowledge
about each location through the probe name.

sysinfo Provides probes that correspond to kernel statistics classified by the name sys.
vminfo Provides probes that correspond to the vm kernel statistics.
proc Provides probes pertaining to the following activities: process creation and termination, LWP

creation and termination, execution of new program images, and sending and handling
signals.

sched Provides probes related to CPU scheduling. Because a CPU is the one resource that all
threads must consume, the sched provider is very useful for understanding systemic
behavior.

io Provides probes related to disk input and output.
mib Provides probes that correspond to counters in the Solaris management information bases

(MIBs).
fpuinfo Provides probes that correspond to the simulation of floating-point instructions on SPARC

microprocessors.
pid Allows for tracing of the entry and return of any function in a user process as well as any

instruction as specified by an absolute address or function offset.
plockstat Provides probes that can be used to observe the behavior of user-level synchronization

primitives, including lock contention and hold times.
fasttrap Allows for tracing at specific, preprogrammed user process locations.

DTrace Functions
Name Prototype Description
trace void trace

(expression)
Takes a D expression as argument and traces the result to
the directed buffer.

tracemem void tracemem
(address, size_t
nbytes)

Takes the memory address specified by address into the
directed buffer for the length specified by nbytes.
Address is a D expression.

printf void printf (string
format,...)

The arguments are a format string followed by a variable
number of arguments. The arguments are formatted for
output according to the specified format string.

printa void printa
(aggregation)
void printa (string

Enables displaying and formatting of aggregations. If a
format is not specified, the default format is used.

format, aggregation)
stack void stack (int

nframes),

void stack (void)

Records a kernel stack trace, nframes in depth. The
number specified by the stackframes option is used if
nframes is not specified. May also be used as a key to an
aggregation.

ustack void ustack (int
nframes, int
strsize)
void ustack (int
nframes)
void ustack (void)

Records a user stack trace, nframes in depth. The
number specified by the ustackframes option is used
if nframes is unspecified. If strsize is specified and
non-zero, ustack() will allocate the specified amount of
string space and use it to perform address-to-symbol
translation directly from the kernel.

jstack void jstack (int
nframes, int
strsize)
void jstack (int
nframes)
void jstack (void)

Alias for ustack() that uses the jstackframes option
for the stack frame value and jstackstrsize for the
string space size.

stop void stop (void) Forces the process that fires the enabled probe to stop
when it next leaves the kernel.

raise void raise (int
signal)

Sends the specified signal to the currently running process.

copyout void copyout (void
*buf, uintptr_t
addr, size_t nbytes)

Copies nbytes from the buffer buf to the address addr
in the address space of the process associated with the
current thread.

copyoutstr void copyoutstr
(string str,
uintptr_t addr,
size_t maxlen)

Copies the string str to the address addr in the address
space of the process associated with the current thread.
The string length is limited to the value set by the
strsize option.

system void system (string
program, ...)

Causes program to be executed as if it were given to the
shell as input. Program may contain any of the
printf/printa formats. Other arguments must match
the specified format in program.

breakpoint void breakpoint
(void)

Induces a kernel breakpoint, causing the system to stop
and transfer control to the kernel debugger.

panic void panic (void) Causes a kernel panic. Should be used to force a system
crash dump at a time of interest.

chill void chill (int
nanoseconds)

Causes DTrace to spin for the given nanoseconds. For
system safety, DTrace will refuse to execute the chill
action for more than 500 milliseconds in each 1-second on
any CPU.

exit void exit (int
status)

Immediately stops tracing, notifies DTrace consumer to
cease tracing, performs any final processing, and calls exit
with the specified status.

alloca void *alloca (size_t
size)

Allocates size bytes out of scratch space and returns a
pointer to the allocated memory.

basename string basename
(char *str)

Creates a string that consists of a copy of the specified
string, but without any prefix that ends in /.

bcopy void bcopy (void
*src, void *dest,

Copies size bytes from the memory pointed to by src, to
the memory pointed to by dest. All source memory must

size_t size) lie outside of scratch memory, and all destination memory
must lie within it.

cleanpath string cleanpath
(char *str)

Creates a string that consists of a copy of the path
indicated by str, but with redundant elements eliminated.
This might result in shorter invalid paths being returned.

copyin void *copyin
(uintptr_t addr,
size_t size)

Copies the specified size in bytes from the specified user
address into a DTrace scratch buffer and returns the
address of this buffer. The resulting buffer pointer is 8-
byte aligned.

copyinstr string copyinstr
(uintptr_t addr)

Copies a null-terminated C string from the specified user
address into a DTrace scratch buffer, and returns the
address of this buffer. The strsize option limits the
string length.

copyinto void copyinto
(uintptr_t addr,
size_t size, void
*dest)

Copies the specified size in bytes from the specified user
address into the DTrace scratch buffer specified by dest.

dirname string dirname (char
*str)

Creates a string that consists of all but the last level of the
path name specified by str.

msgdsize size_t msgdsize
(mblk_t *mp)

Returns the number of bytes in the data message pointed to
by mp.

msgsize size_t msgsize
(mblk_t *mp)

Returns the number of bytes in the message pointed to by
mp.

mutex_owned int mutex_owned
(kmutex_t *mutex)

Returns non-zero if the calling thread currently holds the
specified kernel mutex, or zero if the specified adaptive
mutex is currently unowned.

mutex_owner kthread_t
*mutex_owner
(kmutex_t *mutex)

Returns the thread pointer of the current owner of the
specified adaptive kernel mutex. Returns NULL if the
specified adaptive mutex is currently unowned, or if the
specified mutex is a spin mutex.

mutex_type_a
daptive

int
mutex_type_adaptive
(kmutex_t *mutex)

Returns non-zero if the specified kernel mutex is of type
MUTEX_ADAPTIVE, or zero if it is not.

progenyof int progenyof (pid_t
pid)

Returns non-zero if the calling process is among the
progeny of the specified process ID.

rand int rand (void) Returns a pseudo-random integer.
rw_iswriter int

rw_iswriter(krwlock_
t *rwlock)

Returns non-zero if the specified reader-writer lock is
either held or desired by a writer. Returns zero if the lock
is held only by readers, no writer is blocked, or the lock is
not held at all.

rw_write_hel
d

int rw_write_held
(krwlock_t *rwlock)

Returns non-zero if the specified reader-writer lock is
currently held by a writer. Returns zero if the lock is held
only by readers or not held at all.

speculation int speculation
(void)

Reserves a speculative trace buffer for use with
speculate() and returns an identifier for this buffer.

strjoin string strjoin(char
*str1 char *str2)

Creates a string that consists of str1 concatenated with
str2.

strlen size_t strlen(string
str)

Returns the length of the specified string in bytes,
excluding the terminating null byte.

DTrace Aggregating Functions
Name Arguments Result
count none Number of times called.
sum scalar expression Total value of the specified expressions.
avg scalar expression Arithmetic average of the specified expressions.
min scalar expression Smallest value among the specified expressions.
max scalar expression Largest value among the specified expressions.
lquantize scalar expression, lower

bound, upper bound, step
value

A linear frequency distribution, sized by the specified range, of the
values of the specified expressions. Increments the value in the
highest bucket that is less than the specified expression.

quantize scalar expression A power-of-two frequency distribution of the values of the specified
expressions. Increments the value in the highest power-of-two
bucket that is less than the specified expression.

DTrace Variables
Variable Description Usage
Scalar Used to represent fixed-size data objects. They could be individual

such as pointers and integers or composite such as arrays.
x=123 (scalar variable x
of type integer)

Associative
array

Used to represent collections of data elements that can be retrieved
by specifying a key. There is no predefined limit of the number of
elements. Elements can be indexed by any tuple, and elements are
not stored in preallocated consecutive storage locations.

a[123,“hello”] =
56 (associative array a
with key, [int, string])

Thread-
Local

Used to declare variable storage that is local to each operating system
thread.

self->x= 45 (thread-
local variable x of type
integer)

Clause-
Local

This variable is active for the lifetime of a given probe clause and its
storage is reused for each D program clause.

this->c='D'
(character clause-local
variable c)

Built-in All these variables are scalar global variables. --
External The backquote character (`) is a scoping operator for accessing

variables that are defined in the OS and not in your D program.
`kmem_flags
(accessing a C variable in
the kernel source code)

DTrace Built-in Variables
Type and Name Description
int64_t arg0,
..., arg9

The first 10 input arguments to a probe represented as raw 64-bit integers. If
fewer than 10 arguments are passed to the current probe, the remaining variables
return zero.

args[] The typed arguments to the current probe, if any. args[] array is accessed using
an integer index, but each element is defined to be the type corresponding to the
given probe argument.

uintptr_t caller The program counter location of the current thread just before entering the current
probe.

chipid_t chip The CPU chip identifier for the current physical chip.
processorid_t cpu The CPU identifier for the current CPU.
cpuinfo_t *curcpu The CPU information for the current CPU.
lwpsinfo_t
*curlwpsinfo

The lightweight process (LWP) state of the LWP associated with the current
thread.

psinfo_t
*curpsinfo

The process state of the process associated with the current thread.

kthread_t The address of the operating system kernel's internal data structure for the current

*curthread thread, the kthread_t. kthread_t is defined in <sys/thread.h>.
string cwd The name of the current working directory of the process associated with the

current thread.
uint_t epid The enabled probe ID (EPID) for the current probe. This integer uniquely

identifies a particular probe that is enabled with a specific predicate and set of
actions.

int errno The error value returned by the last system call executed by this thread.
string execname The name that was passed to exec(2) to execute the current process.
gid_t gid The real group ID of the current process.
uint_t id The probe ID for the current probe. This ID is the system-wide unique identifier

for the probe as published by DTrace.
uint_t ipl The interrupt priority level (IPL) on the current CPU at probe firing time.
lgrp_id_t lgrp The latency group ID for the latency group of which the current CPU is a

member.
pid_t pid The process ID of the current process.
pid_t ppid The parent process ID of the current process.
string probefunc The function name portion of the current probe's description.
string probemod The module name portion of the current probe's description.
string probename The name portion of the current probe's description.
string probeprov The provider name portion of the current probe's description.
psetid_t pset The processor set ID for the processor set containing the current CPU.
string root The name of the root directory of the process associated with the current thread.
uint_t stackdepth The current thread's stack frame depth at probe firing time.
id_t tid The thread ID of the current thread. For threads associated with user processes,

this value is equal to the result of a call to pthread_self.
uint64_t
timestamp

The current value of a nanosecond timestamp counter. This counter increments
from an arbitrary point in the past and should only be used for relative
computations.

uid_t uid The real user ID of the current process.
uint64_t uregs[] The current thread's saved user-mode register values at probe firing time.
uint64_t
vtimestamp

The current value of a nanosecond timestamp counter that is the amount of time
the current thread has been running on a CPU, minus the time spent in DTrace
predicates and actions.

uint64_t
walltimestamp

The current number of nanoseconds since 00:00 Universal Coordinated Time,
January 1, 1970.

