
mdb-cheatsheet.txt Thu Sep 30 19:12:55 2004 1

Commands
 pipeline [!word...] [;] basic
 expr pipeline [!word...] [;] set dot, run once
 expr, expr pipeline [!word...] [;] set dot, repeat
 ,expr pipeline [!word...] [;] repeat
 expr [!word...] [;] set dot, last pipeline, run once
 ,expr [!word...] [;] last pipeline, repeat
 expr, expr [!word...] [;] set dot, last pipeline, repeat
 !word... [;] shell escape

Comments
 // Comment to end of line

Expressions
 Arithmetic
 integer 0i binary, 0o octal, 0t decimal, 0x hex
 0t[0-9]+\.[0-9]+ IEEE floating point
 ’cccccccc’ Little-endian character const
 <identifier variable lookup
 identifier symbol lookup
 (expr) the value of expr
 . the value of dot
 & last dot used by dcmd
 + dot+increment
 ^ dot-increment

 increment is effected by the last formatting dcmd.

 Unary Ops
 #expr logical NOT
 ˜expr bitwise NOT
 -expr integer negation
 %expr object file pointer dereference
 %/[csil]/expr object file typed dereference
 %/[1248]/expr object file sized dereference
 *expr virtual address pointer dereference
 */[csil]/expr virtual address typed dereference
 */[1248]/expr virtual address sized dereference

 [csil] is char-, short-, int-, or long-sized

 Binary Ops
 expr * expr integer multiplication
 expr % expr integer division
 left # right left rounded up to next right multiple
 expr + expr integer addition
 expr - expr integer subtraction
 expr << expr bitwise left shift
 expr >> expr bitwise right shift (logical)
 expr == expr logical equality
 expr != expr logical inequality
 expr & expr bitwise AND
 expr ^ expr bitwise XOR
 expr | expr bitwise OR

Symbols
 kernel {module‘}{file‘}symbol
 proc {LM[0-9]+‘}{library‘}{file‘}symbol

DCMDs
 ::{module‘}d
 expr>var write the value of expr into var

Variables
 0 Most recent value [/\?=]ed.
 9 Most recent count for $< dcmd
 b base VA of the data section
 d size of the data
 e VA of entry point
 hits Event callback match count
 m magic number of primary object file, or zero
 t size of text section
 thread TID of current representative thread.

 registers are exported as variables (g0, g1, ...)

Read formats
 / format VA from .
 \ format PA from .
 ? format primary object file, using VA from .
 = format value of .

 B (1) hex + dot += increment
 C (1) char (C-encoded) - dot -= increment
 V (1) unsigned ^ (var) dot -= incr*count
 b (1) octal N newline
 c (1) char (raw) n newline
 d (2) signed T tab
 h (2) hex, swap endianness r whitespace
 o (2) octal t tab
 q (2) signed octal a dot as symbol+offset
 u (2) decimal I (var) address and instruction
 D (4) signed i (var) instruction
 H (4) hex, swap endianness S (var) string (C-encoded)
 O (4) octal s (var) string (raw)
 Q (4) signed octal E (8) unsigned
 U (4) unsigned F (8) double
 X (4) hex G (8) octal
 Y (4) decoded time32_t J (8) hex
 f (4) float R (8) binary
 K (4|8) hex uintptr_t e (8) signed
 P (4|8) symbol g (8) signed octal
 p (4|8) symbol y (8) decoded time64_t

Write formats
 [/\?][vwWZ] value... value is immediate or $[expr]

 / write virtual addresses
 \ write physical addresses
 ? write object file

 v (1) write low byte of each value, starting at dot
 w (2) write low 2 bytes of each value, starting at dot
 W (4) write low 4 bytes of each value, starting at dot
 Z (8) write all 8 bytes of each value, starting at dot

Search formats
 [/\?][lLM] value [mask] value and mask are immediate or $[expr]

 / search virtual addresses
 \ search physical addresses
 ? search object file

 l (2) search for 2-byte value, optionally masked
 L (4) search for 4-byte value, optionally masked
 M (8) search for 8-byte value, optionally masked

mdb-cheatsheet.txt Thu Sep 30 19:12:55 2004 2

General dcmds
 ::help dcmd
 gives help text for ’dcmd’
 ::dmods -l [module...]
 Lists dcmds and walkers grouped by the dmod which provides them
 ::log -e file
 log session to file
 ::quit / $q
 quit

Target-related dcmds
 ::status
 print summary of current target
 $r / ::regs
 display current register values for target
 $c / ::stack / $C
 print current stack trace ($C: with frame pointers)
 addr[,b]::dump [-g sz] [-e]
 Dump at least b bytes starting at address addr. -g sets
 the group size -- for 64-bit debugging, ’-g 8’ is useful.
 addr::dis
 dissasemble text, starting around addr.

CTF-related
 addr::print [type] [field...]
 Uses CTF info to print out a full structure, or
 particular fields thereof
 ::sizeof type / ::offsetof type field / ::enum enumname
 Get information about a type
 addr::array [type count] [var]
 Walks the count elements of an array of type ’type’
 starting at address.
 addr::list type field [var]
 Walk a circular or NULL-terminated list of type ’type’,
 which starts at addr and uses ’field’ as its linkage.
 ::typegraph / addr::whattype / addr::istype type / addr::notype
 bmc’s type inference engine -- works on non-debug

Kernel: proc-related
 0tpid::pid2proc
 convert the process ID ’pid’ (in decimal) into a proc_t ptr
 as::as2proc
 convert a ’struct as’ pointer to its associated proc_t ptr
 vn::whereopen
 finds all processes with a particular vnode open
 ::pgrep pattern
 prints out proc_t ptrs which match pattern
 [procp]::ps
 process table, or (with procp) the line for particular proc_t
 ::ptree
 prints out a ptree(1)-like indented process tree
 procp::pfiles
 prints out information on a process’ file descriptors

 [procp]::walk proc
 walks all processes, or the tree rooted at procp

Kernel: thread-related
 threadp::findstack
 print out a stack trace (with frame pointers) for threadp
 [threadp]::thread
 summary information about all threads or a particular thread

 [procp]::walk thread
 walk all threads, or all threads in a process (with procp)

Kernel: synchronization-related
 [sobj]::wchaninfo [-v]
 information on blocked-on condition variables. With
 sobj, info about that wchan. With -v, lists all threads
 blocked on the wchan.
 sobj::rwlock
 dumps out a rwlock, including detailed blocking information

 sobj::walk blocked
 walk all threads blocked on sobj, a synchronization object

Kernel: CPU-related
 ::cpuinfo [-v]
 gives information about CPUs on the system and what they
 are doing. With ’-v’, shows threads on the runqueues.
 ::cpupart
 gives information about CPU partitions (psrset(1m)s)
 addr::cpuset
 prints out a cpuset as a list of included CPUs.
 [cpuid]::ttrace
 dump out traptrace records, which are generated in DEBUG
 kernels. These include all traps and various other events of
 interest.

 ::walk cpu
 walk all cpu_ts on the system

Kernel: memory-related
 ::memstat
 Display memory usage summary
 pattern::kgrep [-d dist|-m mask|-M invmask]
 Searches the kernel heap for pointers equal to pattern
 addr::whatis [-b]
 tries to identify what a given kernel address is. With
 ’-b’, gives bufctl address for the buffer (see
 $<bufctl_audit, below)

Kernel: kmem-related
 ::kmastat
 Give statistics on the kmem caches and vmem arenas in the system
 ::kmem_cache
 Information about the kmem caches on the system
 [cachep]::kmem_verify
 Validates all buffers in the system, checking for corruption.
 With cachep, shows the details of a particular cache.
 threadp::allocdby / threadp::freedby
 Shows buffers that were last allocated/freed by a particular
 thread, and are still in that state.
 ::kmalog [fail | slab]
 Dumps out the transaction log, showing recent kmem activity.
 With fail/slab, outputs records of allocation failures and
 slab creations (which are always enabled)
 ::findleaks [-dvf]
 Find memory leaks, coalesced by stack trace.
 ::bufctl [-v]
 print out a summary line for a bufctl -- can also filter them
 -v dumps out a kmem_bufctl_audit_t.

 ::walk cachename
 prints out all allocated buffers in the cache named cachename.

 [cp]::walk kmem/[cp]::walk freemem/[cp]::walk bufctl/[cp]::walk freectl
 Walks {allocated,freed}{buffers,bufctls} for all caches,
 or the particular kmem_cache_t cp.

