
OpenBoot 3.x
Quick Reference

Sun Microsystems Computer Corporation
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
415 960-1300 FAX 415 969-9131

Part No: 802-3240-10
Revision A,November 1995

Syntax

Enter commands at the ok prompt. They are executed left-to-right after a
carriage-return. Separate all commands by one or more spaces.

Help Commands

Examining and Creating Device Aliases

Device Tree Browsing Commands

Common Options for the boot Command

help List main help categories.

help category Show help for all commands in the category. Use only the first
word of the category description.

help command Show help for individual command (where available).

devalias Display all current device aliases.

devalias alias Display the device path name corresponding to
alias.

devalias alias device-path Define an alias representing the device path.
If an alias with the same name already exists, the
new value supersedes the old.

.properties Display the names and values of the current node’s
properties.

dev node-name Search for a node with the given name in the
subtree below the current node, and choose the first
such node found.

dev .. Choose the device node that is the parent of the
current node.

dev / Choose the root machine node.

device-end Leave the device tree.

ls Display the names of the current node’s children.

pwd Display the device path name that names the
current node.

show-devs [device-path] Display all the devices directly under the specified
device in the device tree. show-devs used alone
shows the entire device tree.

words Display the names of the current node’s methods.

boot [device-specifier] [filename] [options]

[device-specifier] The name (full path name or alias) of a device. Examples:
cdrom (CD-ROM drive)
disk (hard disk)
floppy (3-1/2" diskette drive)
net (Ethernet)
tape (SCSI tape)

[filename] The name of the program to be booted (for example,
stand/diag). If specified, filename is relative to the root
of the selected device and partition. If not, the boot
program uses the value of the boot-file parameter.

Diagnostic Test Commands

System Information Display Commands

Emergency Keyboard Commands

File Loading Commands

[options] -a - Prompt interactively for the device and name of the
boot file.

-h - Halt after loading the program.
(OS-specific options may differ from system to system.)

probe-scsi Identify devices attached to the built-in SCSI bus.

test device-specifier Execute the specified device’s self-test method.
For example:
test floppy - test the floppy drive, if installed
test net - test the network connection

test-all [device-specifier] Test all devices (that have a built-in self-test
method) below the specified node. (If
device-specifier is absent, the root node is used.)

watch-clock Test the clock function.

watch-net Monitor the network connection.

banner Display the power-on banner.

.version Display the version and date of the boot PROM.

.speed Display CPU and bus speeds.

Hold down keys during power-on sequence.

Stop Bypass POST. This command does not depend on security-mode.
(Note: some systems bypass POST as a default; in such cases, use
Stop-D to start POST.)

Stop-A Abort.

Stop-D Enter diagnostic mode (set diag-switch? to true).

Stop-F Enter Forth on TTYA instead of probing. Use fexit to continue with
the initialization sequence. (Useful if hardware is broken.)

Stop-N Reset NVRAM contents to default values.

boot [specifiers] -h (--) Load file from specified source.

byte-load (adr xt--) Interpret a loaded FCode binary file.
xt is usually 1.

dl (--) Load a Forth file over a serial line with
TIP and interpret. Type:
~C cat filename
^-D

dlbin (--) Load a binary file over a serial line
with TIP. Type: ~C cat filename

dload filename (adr --) Load specified file over Ethernet to
given address.

go (--) Begin executing a previously-loaded
binary program, or resume executing
an interrupted program.

SPARC™ Register Commands

SPARC V9 Register Commands

init-program (--) Initialize to execute a binary file.

load [specifiers] (--) Load data from specified device into
memory at the address given by
load-base . (See boot format.)

load-base (-- adr) Address at which load places the
data it reads from a device.

%g0 through %g7 (-- value) Return the value in the given register.

%i0 through %i7 (-- value) Return the value in the given register.

%l0 through %l7 (-- value) Return the value in the given register.

%o0 through %o7 (-- value) Return the value in the given register.

%pc %npc (-- value) Return the value in the given register.

.fregisters (--) Display values in %f0 through %f31.

.locals (--) Display the values in the i, l and o
registers.

.registers (--) Display values in %g0 through %g7, plus
%pc, %npc, %psr, %y, %wim, %tbr.

.window (window# --) Display the desired window.

ctrace (--) Display the return stack showing C
subroutines.

set-pc (value --) Set %pc to the given value, and set %npc
to (value+4).

to regname (value --) Change the value stored in any of the
above registers. Use in the form:
value to regname.

w (window# --) Set the current window for displaying %ix
%lx or %ox.

%fprs

%asi

%pstate

%tl-c

%pil

%tstate

%tt

%tba

%cwp

%cansave

%canrestore

%otherwin

%wstate

%cleanwin

(-- value) Return the value in the specified
register.

.pstate (--) Formatted display of the processor
state register.

.ver (--) Formatted display of the version
register.

.ccr (--) Formatted display of the ccr register.

.trap-registers (--) Display trap-related registers.

Breakpoint Commands

Disassembler Commands

Miscellaneous Operations

+bp (adr --) Add a breakpoint at the given address.

-bp (adr --) Remove the breakpoint at the given address.

--bp (--) Remove the most-recently-set breakpoint.

.bp (--) Display all currently set breakpoints.

.breakpoint (--) Perform a specified action when a breakpoint
occurs
(Example, [’] .registers to

.breakpoint).

.instruction (--) Display the address, opcode for the last-
encountered breakpoint.

.step (--) Perform a specified action when a single step
occurs (see .breakpoint).

bpoff (--) Remove all breakpoints.

finish-loop (--) Execute until the end of this loop.

go (--) Continue from a breakpoint. This can be used
to go to an arbitrary address by setting up the
processor’s program counter before issuing go.

gos (n --) Execute go n times.

hop (--) (Like the step command.) Treats a subroutine
call as a single instruction.

hops (n --) Execute hop n times.

return (--) Execute until the end of this subroutine.

returnl (--) Execute until the end of this leaf subroutine.

skip (--) Skip (do not execute) the current instruction.

step (--) Single-step one instruction.

steps (n --) Execute step n times.

till (adr --) Execute until the given address is
encountered. Equivalent to +bp go .

+dis (--) Continue disassembling where the last disassembly left off.

dis (adr --) Begin disassembling at the given address.

eject-floppy (--) Eject the diskette from the drive.

firmware-

version

(-- n) Return major/minor CPU firmware version (that
is, 0x00020001 = firmware version 2.1).

ftrace (--) Show calling sequence when exception
occurred.

get-msecs (-- ms) Return the approximate current time in
milliseconds.

ms (n --) Delay for n milliseconds. Resolution is 1
millisecond.

reset-all (--) Reset the entire system (similar to a power
cycle).

NVRAM Configuration Parameters

sync (--) Call the operating system to write any pending
information to the hard disk.

auto-boot? true If true, boot automatically after
power-on or reset.

boot-command boot Executed when auto-boot? is true.

boot-device disk net Device from which to boot.

boot-file empty
string

File to boot (an empty string lets
secondary booter choose default).

diag-device net Diagnostic boot source device.

diag-file empty
string

File from which to boot in diagnostic
mode.

diag-level min Level of diagnostics to run (min or
max).

diag-switch? false If true, run in diagnostic mode.

fcode-debug? false If true, include name fields for plug-in
device FCodes.

input-device keyboard Power-on input device (usually
keyboard , ttya , or ttyb).

keyboard-click? false If true, enable keyboard click.

keymap no default Keymap for custom keyboard.

nvramrc empty
string

Contents of NVRAMRC.

oem-banner empty
string

Custom OEM banner (enabled by
oem-banner? true).

oem-banner? false If true, use custom OEM banner.

oem-logo no default Byte array custom OEM logo (enabled
by oem-logo? true). Displayed in hex.

oem-logo? false If true, use custom OEM logo (else,
use Sun logo).

output-device screen Power-on output device (usually
screen , ttya , or ttyb).

sbus-probe-list 01 Which SBus slots are probed and in
what order.

scsi-initiator-id 7 SCSI bus address of host adapter,
range 0-f.

security-mode none Firmware security level (none ,
command, or full).

security-password no default Firmware security password (never
displayed).

ttya-mode 9600,8,n,1,- TTYA (baud, #bits, parity, #stop,
handshake).

ttyb-mode 9600,8,n,1- TTYB (baud, #bits, parity, #stop,
handshake).

ttya-ignore-cd true If true, OS ignores TTYA carrier-detect.

ttyb-ignore-cd true If true, OS ignores TTYB carrier-
detect.

Viewing and Changing Configuration Parameters

NVRAMRC Editor Commands

ttya-rts-dtr-off false If true, OS does not assert DTR and
RTS on TTYA.

ttyb-rts-dtr-off false If true, OS does not assert DTR and
RTS on TTYB.

use-nvramrc? false If true, execute commands in
NVRAMRC during system start-up.

watchdog-reboot? false If true, reboot after watchdog reset.

password Set security-password .

printenv [parameter] Display all current parameters and current default
values (numbers are usually shown as decimal
values). printenv parameter shows the current
value of the named parameter.

setenv parameter value Set the parameter to the given decimal or text
value.
(Changes are permanent, but usually only take
effect after a reset).

set-default parameter Reset the value of the named parameter to the
factory default.

set-defaults Reset parameter values to the factory defaults.

nvalias alias device-path Store the command "devalias alias device-path"
in NVRAMRC. (The alias persists until the
nvunalias or set-defaults commands are
executed.)

nvedit Enter the NVRAMRC editor. If data remains in the
temporary buffer from a previous nvedit session,
resume editing those previous contents. If not,
read the contents of NVRAMRC into the temporary
buffer and begin editing it.

nvquit Discard the contents of the temporary buffer,
without writing it to NVRAMRC.

nvrecover Recover the contents of NVRAMRC if they have
been lost as a result of the execution of
set-defaults ; then enter the editor as with
nvedit . nvrecover fails if nvedit is executed
between the time that the NVRAMRC contents
were lost and the time that nvrecover is
executed.

nvstore Copy the contents of the temporary buffer to
NVRAMRC; discard the contents of the temporary
buffer.

nvunalias alias Delete the corresponding alias from NVRAMRC.

Editor Commands (for Command Lines and NVRAMRC)

esc = Press and release Escape key first; ^ = Press and hold Control key

Using the NVRAMRC Editor

ok nvedit

 :

(use editor commands)

 :

^C (get back to ok prompt)

ok nvstore (save changes)

ok setenv use-nvramrc? true (enable NVRAMRC)

Numeric Usage and Stack Comments

• Numeric I/O defaults to hexadecimal.
• Switch to decimal with decimal , switch to hexadecimal with hex .
• Use 10 .d to see which base is currently active.

A numeric stack is used for all numeric parameters. Typing any integer puts that value
on top of the stack. (Previous values are pushed down.) The right-hand item in a set al-
ways indicates the topmost stack item.

• The command "." removes and displays the top stack value.
• The command .s non-destructively shows the entire stack contents.

A stack comment such as (n1 n2 -- n3) or (adr len --) or (--) listed after each command
name shows the effect on the stack of executing that command. Items before the -- are
used by the command and removed from the stack. These items must be present on the
stack before the command can properly execute. Items after the -- are left on the stack
after the command completes execution, and are available for use by
subsequent commands.

Prev.
Line

Beg.
Line

Prev.
Word

Prev.
Char

Next
Char

Next
Word

End
Line

Next
Line

Move ^ P ^ A escB ^ B ^ F escF ^ E ^ N

Delet
e ^ U ^ W Del ^ D escD ^ K

Re-type line ^R

Show all lines ^L

Paste after ^-K ^Y

Complete command ^ space

Show all matches ^/ or ^?}

| Alternate stack results.
Example: (input -- adr len false | result true).

? Unknown stack items (changed from ???).

??? Unknown stack items.

adr Memory address (generally a virtual address).

adr16 Memory address, must be 16-bit aligned.

adr32 Memory address, must be 32-bit aligned.

adr64 Memory address, must be 64-bit aligned.

byte bxxx 8-bit value (smallest byte in a 32-bit word).

char 7-bit value (smallest byte), high bit unspecified.

Changing the Number Base

Basic Number Display

Stack Manipulation Commands

cnt/len/size Count or length.

flag xxx? 0 = false; any other value = true (usually -1).

long lxxx 32-bit value.

n n1 n2 n3 Normal signed values.

+n u Unsigned, positive values.

phys Physical address (actual hardware address).

pstr Packed string (adr len means unpacked string).

virt Virtual address (address used by software).

word wxxx 16-bit value.

xt Execution token.

decimal (--) Set the number base to 10.

d# number (-- n) Interpret the next number in decimal; base is
unchanged.

hex (--) Set the number base to 16.

h# number (-- n) Interpret the next number in hex; base is unchanged.

.d (n --) Display n in decimal without changing base.

.h (n --) Display n in hex without changing base.

. (n --) Display a number in the current base.

.s (--) Display contents of data stack.

showstack (--) Execute .s automatically before each ok prompt.

-rot (n1 n2 n3 -- n3 n1 n2) Inversely rotate three stack
items.

>r (n --) Move a stack item to the
return stack.

?dup (n -- n n | 0) Duplicate the top stack item if
non-zero.

2drop (n1 n2 --) Remove two items from the
stack.

2dup (n1 n2 -- n1 n2 n1 n2) Duplicate two stack items.

2over (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) Copy second two stack items.

2swap (n1 n2 n3 n4 -- n3 n4 n1 n2) Exchange two pairs of stack
items.

clear (??? --) Empty the stack.

depth (??? -- ??? +n) Return the number of items
on the stack.

drop (n --) Remove the top item from the
stack.

dup (n -- n n) Duplicate the top stack item.

over (n1 n2 -- n1 n2 n1) Copy the second stack item to
the top of the stack.

Arithmetic Functions

pick (??? +n -- ??? n2) Copy +n-th stack item
(1 pick = over).

r> (-- n) Move a return stack item to
the stack.

r@ (-- n) Copy the top of the return
stack to the stack.

roll (??? +n -- ?) Rotate +n stack items
(2 roll = rot).

rot (n1 n2 n3 -- n2 n3 n1) Rotate three stack items.

swap (n1 n2 -- n2 n1) Exchange the top two stack
items.

tuck (n1 n2 -- n2 n1 n2) Copy the top stack item below
the second item.

* (n1 n2 -- n3) Multiply n1 * n2.

+ (n1 n2 -- n3) Add n1 + n2.

- (n1 n2 -- n3) Subtract n1 - n2

/ (n1 n2 -- quot) Divide n1 / n2; remainder is
discarded.

lshift (n1 +n -- n2) Left-shift n1 by +n bits.

rshift (n1 +n -- n2) Right-shift n1 by +n bits.

>>a (n1 +n -- n2) Arithmetic right-shift n1 by
+n bits.

abs (n -- u) Absolute value.

and (n1 n2 -- n3) Bitwise logical AND.

bounds (startadr len -- endadr startadr) Convert startadr len to
endadr startadr for do loop.

bljoin (b.low b2 b3 b.hi -- long) Join four bytes to form a 32-bit
value.

bwjoin (b.low b.hi -- word) Join two bytes to form a 16-bit
value.

lbsplit (long -- b.low b2 b3 b.hi) Split a 32-bit value into four
bytes.

lwsplit (long -- w.low w.hi) Split a 32-bit value into two 16-
bit words.

max (n1 n2 -- n3) n3 is maximum of n1 and n2.

min (n1 n2 -- n3) n3 is minimum of n1 and n2.

mod (n1 n2 -- rem) Remainder of n1 / n2.

negate (n1 -- n2) Change the sign of n1.

invert (n1 -- n2) Bitwise ones complement.

or (n1 n2 -- n3) Bitwise logical OR.

wbsplit (word -- b.low b.hi) Split 16-bit value into two
bytes.

wljoin (w.low w.hi -- long) Join two 16-bit values to form
a 32-bit value.

xor (n1 n2 -- n3) Bitwise exclusive OR.

Memory Access Commands

! (n adr32 --) Store a number at adr32, must be 32-bit
aligned.

+! (n adr32 --) Add n to the number stored at adr32,
must be 32-bit aligned.

@ (adr32 -- n) Fetch a number from adr32, must be 32-
bit aligned.

c! (n adr --) Store low byte of n at adr.

c@ (adr -- byte) Fetch a byte from adr.

cpeek (adr -- false | byte true) Fetch the byte at adr. Return the data and
true if the access was successful. Return
false if a read access error occurred.
(Also lpeek , wpeek .)

cpoke (byte adr -- okay?) Store the byte to adr. Return true if the
access was successful. Return false if a
write access error occurred.
(Also lpoke , wpoke .)

comp (adr1 adr2 len -- n) Compare two byte arrays, n = 0 if arrays
are identical, n = 1 if first byte that is
different is greater in array#1, n = -1
otherwise.

dump (adr len --) Display len bytes of memory starting at
adr.

fill (adr size byte --) Set size bytes of memory to byte.

l! (n adr32 --) Store a 32-bit number at adr32.

l@ (adr32 -- long) Fetch a 32-bit number from adr32.

move (adr1 adr2 u --) Copy u bytes from adr1 to adr2, handle
overlap properly.

w! (n adr16 --) Store a 16-bit number at adr16, must be
16-bit aligned.

w@ (adr16 -- word) Fetch a 16-bit number from adr16, must
be 16-bit aligned.

Memory Mapping Commands

Defining Words

alloc-mem (size -- virt) Allocate and map size bytes of
available memory; return the
virtual address. Unmap with
free-mem .

free-mem (virt size --) Free memory allocated by
alloc-mem .

free-virtual (virt size --) Undo mappings created with
memmap.

map? (virt --) Display memory map
information for the virtual
address.

memmap (phys space size -- virt) Map a region of physical
addresses; return the allocated
virtual address. Unmap with
free-virtual .

obio (-- space) Specify the device address
space for mapping.

obmem (-- space) Specify the onboard memory
address space for mapping.

pgmap! (pmentry virt --) Store a new page map entry
for the virtual address.

pgmap? (virt --) Display the decoded page map
entry corresponding to the
virtual address.

pgmap@ (virt -- pmentry) Return the page map entry for
the virtual address.

pagesize (-- size) Return the size of a page
(often 4K).

sbus (-- space) Specify the SBus address
space for mapping.

: name (--)
Usage: (??? -- ?)

Start creating a new colon
definition.

; (--) Finish creating a new colon
definition.

buffer : name (size --)
Usage: (-- adr64)

Create a named array in temporary
storage.

constant name (n --)
Usage: (-- n)

Define a constant (for example,
3 constant bar).

create name (--)
Usage: (-- adr16)

Generic defining word.

defer name (--)
Usage: (??? -- ?)

Define forward reference or
execution vector.

value name (n --)
Usage: (-- n)

Create a changeable, named 32-bit
quantity.

variable name (--)
Usage: (-- adr16)

Define a variable.

Dictionary Searching Commands

Dictionary Compilation Commands

Controlling Text Input

’ name (-- xt) Find the named word in the
dictionary. (Returns the execution
token. Use outside definitions.)

[’] name (-- xt) Similar to ’ but is used inside
definitions.

.calls (xt --) Display a list of all words that call
the word whose execution token is
xt.

$find (adr len --
adr len false | xt n)

Find a word. n = 0 if not found,
n = 1 if immediate, n = -1
otherwise.

see thisword (--) Decompile the named command.

(see) (xt --) Decompile the word indicated by
the execution token.

sifting ccc (--) Display names of all dictionary
entries containing the sequence of
characters. ccc contains no spaces.

words (--) Display visible words in the
dictionary.

, (n --) Place a number in the
dictionary.

c, (byte --) Place a byte in the dictionary.

w, (word --) Place a 16-bit number in the
dictionary.

l, (long --) Place a 32-bit number in the
dictionary.

allot (n --) Allocate n bytes in the
dictionary.

forget name (--) Remove word from dictionary
and all subsequent words.

here (-- adr) Address of top of dictionary.

to name (n --) Install a new action in a defer

word or value .

patch new-word
old-word word-to-patch

(--) Replace old-word with
new-word in word-to-patch .

(patch) (new-n
old-n xt --)

Replace old-n with new-n in
word indicated by xt.

(ccc) (--) Begin a comment.

\ rest-of-line (--) Skip the rest of the line.

ascii ccc (-- char) Get numerical value of first ASCII character of
next word.

key (-- char) Read a character from the assigned input
device’s keyboard.

Displaying Text Output

Manipulating Text Strings

Redirecting I/O

Comparison Commands

if-else-then Commands

key? (-- flag) True if a key has been typed on the input
device’s keyboard.

cr (--) Terminate a line on the display and go to the next line.

emit (char --) Display the character.

type (adr +n --) Display n characters.

" ccc" (-- adr len) Collect an input stream string, either interpreted
or compiled.

." ccc" (--) Compile a string for later display.

bl (-- char) ASCII code for the space character; decimal 32.

count (pstr -- adr +n) Unpack a packed string.

p"
ccc"

(-- pstr) Collect a string from the input stream; store as a
packed string.

input (device --) Select device (ttya , ttyb , keyboard , or
" device-specifier") for subsequent input.

io (device --) Select device for subsequent input and output.

output (device --) Select device (ttya , ttyb , screen , or
" device-specifier") for subsequent output.

< (n1 n2 -- flag) True if n1 < n2.

<= (n1 n2 -- flag) True if n1 <= n2.

<> (n1 n2 -- flag) True if n1 <> n2.

= (n1 n2 -- flag) True if n1 = n2.

> (n1 n2 -- flag) True if n1 > n2.

>= (n1 n2 -- flag) True if n1 >= n2.

betwee

n

(n min max -- flag) True if min <= n <= max.

u< (u1 u2 -- flag) True if u1 < u2, unsigned.

u<= (u1 u2 -- flag) True if u1 <= u2, unsigned.

u> (u1 u2 -- flag) True if u1 > u2, unsigned.

u>= (u1 u2 -- flag) True if u1 >= u2, unsigned.

within (n min max -- flag) True if min <= n < max.

else (--) Execute the following code if if failed.

if (flag --) Execute the following code if flag is true.

then (--) Terminate if ...else ...then .

begin (Conditional) Loop Commands

do (Counted) Loop Commands

case Statement

(value)

case

2 of ." it was two" endof

0 of ." it was zero" endof

." it was " dup . (optional default clause)

endcase

Cache Manipulation Commands

Alternate Address Space Access Commands

again (--) End a begin ...again infinite loop.

begin (--) Begin a begin ...while ...repeat , begin ...until , or
begin ...again loop.

repeat (--) End a begin ...while ...repeat loop.

until (flag --) Continue executing a begin ...until loop until flag is
true.

while (flag --) Continue executing a begin ...while ...repeat loop
while flag is true.

+loop (n --) End a do...+loop construct; add n to loop index
and return to do (if n < 0, index goes from start to
end inclusive).

?do (end start --) Begin ?do ...loop to be executed 0 or more times.
Index goes from start to end-1 inclusive. If end =
start, loop is not executed.

do (end start --) Begin a do...loop . Index goes from start to end-1
inclusive. Example:

10 0 do i . loop (prints 0 1 2...d e f).

i (-- n) Loop index.

j (-- n) Loop index for next enclosing loop.

leave (--) Exit from do...loop .

loop (--) End of do...loop .

clear-cache (--) Invalidate all cache entries.

cache-off (--) Disable the cache.

cache-on (--) Enable the cache.

flush-cache (--) Write back any pending data from the cache.

spacec! (byte adr asi --) Store the byte at asi and address.

spacec@ (adr asi -- byte) Fetch the byte from asi and address.

spaced! (n1 n2 adr asi --) Store the two values at asi and address.
Order is implementation-dependent.

spaced@ (adr asi -- n1 n2) Fetch the two values from asi and address.
Order is implementation-dependent.

spacel! (long adr asi --) Store the 32-bit word at asi and address.

l,
Multiprocessor Commands

Program Execution Control Commands

spacel@ (adr asi -- long) Fetch the 32-bit word from asi and address.

spacew! (word adr asi --) Store the 16-bit word at asi and address.

spacew@ (adr asi -- word) Fetch the 16-bit word from asi and address.

spacex! (x adr asi --) Store the 64-bit word at asi and address.

spacex@ (adr asi -- x) Fetch the 64-bit word from asi and address.

switch-cpu (cpu# --) Switch to indicated CPU.

abort (--) Abort current execution and interpret keyboard
commands.

abort " ccc" (abort? --) If flag is true, abort and display message.

eval (adr len --) Interpret Forth source from an array.

execute (xt--) Execute the word whose execution token is on
the stack.

exit (--) Return from the current word. (Cannot be used
in counted loops.)

quit (--) Same as abort , but leave stack intact.

 1995, Sun Microsystems, Inc.—Printed in the United States of America.

Sun, Sun Microsystems, the Sun logo, and OpenBoot are trademarks or registered trademarks of Sun
Microsystems, Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC Internationa
Inc. in the United States and other countries.THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

	Using the NVRAMRC Editor
	OpenBoot 3.x Quick Reference

