

COHERENT

Device Driver Kit

Release 4.2

Copyright  1993

Mark Williams Company

60 Revere Drive

Northbrook, Illinois 60062

Telephone: (708) 291-6700

Mark Williams Company makes no warranty of any kind with respect to this material and

disclaims any implied warranties of merchantability or fitness for any particular purpose.

The information contained herein is subject to change without notice.

Printed in U.S.A.

Copyright  1982, 1993 by Mark Williams Company.
Portions copyright  1988 by INETCO Systems, Ltd.

All rights reserved.

This publication conveys information that is the property of Mark Williams Company. It shall not be
copied, reproduced or duplicated in whole or in part without the express written permission of Mark
Williams Company. Mark Williams Company makes no warranty of any kind with respect to this
material and disclaims any implied warranties of merchantability or fitness for any particular purpose.

COHERENT is a trademark of Mark Williams Company. UNIX is a trademark of Unix Systems
Laboratories. All other products are trademarks or registered trademarks of the respective holders.

Revision 6 Printing 5 4 3 2 1

Published by Mark Williams Company, 60 Revere Drive, Northbrook, IL 60062.

Sales: Phone: (800) MARK-WMS
FAX: (708) 291-6750
E-mail: uunet!mwc!sales

sales@mwc.com
Technical Support:

Phone: (708) 291-6700
FAX: (708) 291-6750
E-mail: uunet!mwc!support

support@mwc.com
BIX: join mwc
CompuServ: 76256,427

Printed in the U.S.A.

Table of Contents

Introduction . 1
Changes From Earlier Releases. 1
The Kit . 1
Installing the Device Driver Kit . 1
Using This Manual . 1
Bibliography . 2

The COHERENT Kernel. 3
Processes and Scheduling . 3

Devices . 3
Buffer Cache. 4

Interrupts . 4
Device Drivers . 4

Communication With an Application . 5
Communication With the Kernel . 5

Rebuilding the Kernel . 6
Debugging Program Crashes . 7
Where To Go From Here . 9

Writing a Device Driver. 11
Types of Device Driver . 11
Planning the Device Driver . 12

Defensive Programming . 12
Testing the Hardware. 12
Major Device Number . 12
Naming Conventions . 13
Errors. 13

Coding Requirements . 13
The Internal-Kernel Interface . 14

Interface to System Calls . 14
Timing . 16
Sleeping and Waking . 16
Error Handling . 16
Memory Management . 17

Where To Go From Here . 18
Example of a Block Driver . 19

Preliminaries. 19
Header Files . 19
Manifest Constants . 19
Function Declarations . 20
Macros . 20
Global and Static Variables . 21

Load Routine . 21
Unload Routine . 23
Reset the Controller . 23
Open Routine . 24
Read Routine . 25
Write Routine . 25
ioctl Routine . 25
Watch for Interrupts . 26
Block Function . 26
Dequeue a Request . 27
Send Data to the Disk . 28
Receive Data from the Disk . 28
Abandon a Request . 29
Start a Read/Write Operation. 29
Interrupt Handler . 30
Defer Service of an Interrupt . 30

i

ii The COHERENT System

Check for an Error . 31
Attempt to Recover from an Error . 32
Release the Current I/O Buffer . 33
Indicate the Drive Is Not Busy . 33
Indicate Whether Data Have Been Requested . 33
Report a Timeout, First Version . 34
Report a Timeout, Second Version . 34
Wait Until the Controller Is Freed . 34
Wait for Controller to Initiate Request . 34
The CON Structure . 35
Where To Go From Here . 35

Example of a Character Driver . 37
Preliminaries. 37

Header Files . 37
Manifest Constants . 37
Macros . 38
Local Functions . 38
Global Variables. 38
Static Variables . 39

The Load Routine . 39
The Unload Routine . 41
The Open Routine. 41
The Close Routine . 45
The Read Routine . 46
The Timeout Routine . 46
The Write Routine. 47
The ioctl Routine . 47
Turn Off the Break Level. 50
Read Parameters . 50
Start Processing. 52
The Poll Routine. 52
Wake Up Sleeping Devices. 53
Suppress Interrupts During Chip Sensing . 56
Add a Port Information to IRQ0 List . 56
Service an Interrupt . 57
Rebuild Links for Active Devices . 57
The Break Routine . 58
Handle an Interrupt . 58
Handle Timer Interrupts . 60
Set Polling Rate on a Port . 60
Handle Polling . 61
Write to UART . 63
Interrupt Handler for Comtrol-Type Port Groups . 63
Interrupt Handler for Arnet-Type Port Groups . 64
Interrupt Handler for GTEK-Type Port Groups . 65
Interrupt Handler for DigiBoard-Type Port Groups . 65
The CON Structure . 65
Where To Go From Here . 66

Introduction to the Lexicon. 67
adjmsg() Clip a message . 69
allocb() Allocate a message block. 69
altclk_in(). Install polling function . 69
altclk_out() Uninstall polling function . 70
ASSERT() Debug an expression . 70
backq() Get a pointer to the preceding queue . 70
bcanput() Test whether a priority band has room for a message. 71
bcanputnext() Test whether a priority band has room for a message. 71
bclaim() Claim a buffer . 72
bcopy() Copy data between locations within the kernel 72
bdone() Block I/O completed . 72
bflush() Flush buffer cache . 72

CONTENTS

The COHERENT System iii

block Invoke a driver block interface . 73
bread() Read into buffer cache . 73
brelease() Release a buffer . 73
bsync() Flush modified buffers . 73
buf. Buffer cache . 73
bufcall(). Call a function when a buffer becomes available. 74
busyWait() Busy-wait the system, pending some event. 74
busyWait2() Busy-wait the system, pending some event. 75
bwrite() Write buffer to disk . 75
bzero(). Initialize a block of memory to zero . 75
canput(). Test whether a queue has room for a message . 75
canputnext() Test whether a queue has room for a message . 76
chpoll Entry point for the polling routine . 76
close. Close a device . 77
clrivec() Clear interrupt vector . 79
clrq() Clear character queue . 79
cltgetq() Get a char from a character queue. 79
cltputq() Put a character on a character queue . 79
cmn_err() Handle an error . 79
con Structure of a device driver . 80
copyb() Duplicate a message block . 83
copyin() Copy data into a driver buffer from a user buffer 84
copymsg(). Duplicate a message . 84
copyout() Copy data into a user buffer from a driver buffer 84
copyreq Structure for a request for a STREAMS transparent ioctl copy 85
copyresp Structure for responding to STREAMS transparent ioctl copy 85
datab Structure for a STREAMS data block . 86
datamsg(). Test whether a message type is a data type. 86
ddi_base_data() Get base data on per-process basis . 86
ddi_cpu_data(). Get global data on per-processor basis . 87
ddi_global_data() Get global data . 87
ddi_proc_data() Get global data on a per-process basis . 87
DDI/DKI data structures . 88
DDI/DKI kernel routines . 88
defend() Execute deferred functions . 91
defer() Defer function execution. 91
device driver . 91
device numbers . 96
devmsg() Print a message from a device driver. 96
dmago() Enable DMA transfers . 97
dmain() Copy from system global memory to kernel data. 97
dmaoff(). Disable DMA transfers . 97
dmaon(). Prepare for DMA transfer . 97
dmaout() Copy from kernel data to system global memory. 97
dmareq() Request block I/O, avoiding DMA straddles . 98
drv_getparm() Retrieve information about the kernel state . 98
drv_hztousec() Convert clock ticks into microseconds. 99
drv_priv() Check if a user has privileged credentials. 99
drv_setparm() Set an internal kernel variable . 99
drv_usectohz() Convert microseconds to clock ticks . 100
dupb(). Duplicate a message block . 100
dupmsg() Duplicate a message . 101
enableok() Enable a queue to be serviced . 101
entry-point routines Routines for managing requests to the driver 101
errors List of error messages . 102
esballoc() Allocate a message block using a driver-supplied buffer 103
esbbcall() Call a function upon allocation of a buffer . 103
etoimajor() Convert external major-device number to internal. 104
fdisk() Hard-disk partitioning . 104
flushband(). Flush messages in a given priority band . 104
flushq() Flush the messages on a queue . 104

CONTENTS

iv The COHERENT System

free_rtn Structure for STREAMS message-free routine 105
freeb() Free a message block. 105
freemsg() Free a message . 106
freerbuf() Free a buffer header used for raw I/O . 106
freezestr(). Freeze a stream . 106
getDmaMem() Request virtual address of physical memory . 107
getemajor() Get an external major-device number . 107
geteminor() Get the external minor-device number . 107
getmajor() Get the internal major-device number. 108
getminor() Get internal minor-device number . 108
getPhysMem() Request reserved physical memory. 108
getq() Get the next message from a queue . 109
getrbuf() Allocate a buffer header for raw I/O . 109
getubd(). Get a byte from user data space . 110
getusd() Get a short from user data . 110
getuwd() Get a word from user data space . 110
getuwi() Get a word from user code space . 111
halt Shut down a device upon system shut-down. 111
inb() Read a byte from an eight-bit I/O port . 111
init Initialize a device . 111
inl() Read a 32-bit value from an I/O port . 112
insq() Insert a message into a queue . 112
internal data structures . 113
internal kernel routines . 113
intr Process an interrupt . 115
inw(). Read a 16-bit word from an I/O port . 115
io Manage communication with a device . 115
iocblk STREAMS ioctl structure . 116
ioctl Control a character device. 116
iogetc() Get a character from I/O segment . 118
iomapAnd(). 118
iomapOr(). Clear bits in the I/O privilege bitmap . 118
ioputc() Put a character into I/O segment . 118
ioread() Read from I/O segment . 119
ioreq() Re-queue I/O request through block routine. 119
iovec. DDI/DKI data-storage structure for scatter/gather I/O 119
iowrite() Write to I/O segment. 119
itimeout() Execute a function after a given length of time. 120
itoemajor() Convert internal to external major number. 120
kalloc() Allocate kernel memory . 121
kernel variables Variables set within COHERENT kernel . 121
kfree() Free kernel memory . 123
kiopriv(). Write a bit into the I/O privilege bitmap . 124
kmem_alloc(). Allocate space from kernel free memory. 124
kmem_free() Free previously allocated kernel memory . 124
kmem_zalloc() Allocate space from kernel free memory. 125
kucopy() Kernel-to-user data copy. 125
linkb(). Concatenate two message blocks. 125
linkblk Structure for a STREAMS multiplexor link . 126
lkinfo DDI/DKI structure for a lock . 126
load Routine to execute upon loading the driver into memory. 126
lock() Lock a gate. 126
LOCK() Acquire a basic lock . 127
LOCK_ALLOC() Allocate a basic lock . 127
LOCK_DEALLOC() Deallocate a basic lock . 128
locked() See if a gate is locked. 128
major() Extract major-device number . 128
makedevice() Make a device number . 129
map_pv() Map physical to virtual addresses . 129
MAPIO(). Return global address . 129
mapPhysUser() Overlay user data with memory-mapped hardware 129

CONTENTS

The COHERENT System v

mdevice. Describe drivers that can be linked into kernel 130
messages Types of STREAMS messages . 131
minor() Extract minor-device number . 132
mmap. Check virtual mapping for a memory-mapped device 132
module_info Information about a STREAMS driver or module 133
msgb Structure of a STREAMS message block . 133
msgdsize() Get the number of bytes of data that a message holds 134
msgpullup() Copy message data into a new message. 134
mtune. Define tunable kernel variables. 135
noenable() Stop scheduling of a queue service routine . 135
nondsig() Non-default signal pending . 136
nonedev() Illegal device request . 136
nulldev() Ignored device request . 136
open. Open a device . 136
OTHERQ() Get the other queue . 138
outb() Output a byte to an I/O port . 139
outl() Write a long integer to an I/O port . 139
outw() Output a short integer (word) to an I/O port . 139
P2P() Convert system global to physical address . 139
panic() Fatal system error . 140
pcmsg() Test if a message type indicates high priority. 140
phalloc() Create a pollhead structure . 140
phfree() Free a pollhead structure . 141
physiock() Request and validate raw I/O. 141
poll Poll the device . 142
pollhead Structure for a STREAMS poll head . 142
pollopen(). Initiate driver polled event . 143
pollwake() Terminate driver polled event . 143
pollwakeup() Inform polling process that an event has occurred 143
power Routine to execute if power fails . 143
print. Print a message on the system´s console . 144
printf() Formatted print . 144
proc_ref() Identify a process . 144
proc_signal() Send a signal to a process. 145
pullupmsg() Concatenate bytes in a message . 145
put Receive a message from a queue . 145
put() Call a put procedure . 146
putbq() Place a message at the head of a queue . 146
putctl() Put a control message onto a queue . 147
putctl1() Enqueue a control message and one-byte parameter 147
putnext() Send a message to the next queue . 148
putnextctl(). Send a control message to a queue . 148
putnextctl1() Send a control message and a parameter to a queue 148
putq() Put a message onto a queue. 149
putubd() Store a byte into user data space. 149
putusd() Store a short to user data . 149
putuwd() Store a word into user data space . 149
putuwi() Put a word into user code space . 150
pxcopy(). Copy from physical or system global memory to kernel data. 150
qenable() Enable a queue . 150
qinit Structure to initialize a STREAMS queue . 150
qprocsoff() Turn off a driver or module . 151
qprocson() Turn on a driver or module . 151
qreply() Reply to a message . 152
qsize() Count the messages on a queue . 152
queue Structure of a STREAMS queue . 152
race condition . 153
RD() Get a pointer to a read queue . 154
read Read data from a device . 154
read_t0() Read the system clock t0 . 155
repinsb() Read bytes from a port . 155

CONTENTS

vi The COHERENT System

repinsd() Read double (32-bit) words from a port . 155
repinsw() Read a word from a port . 155
repoutsb() Write bytes to a port . 156
repoutsd() Write double (32-bit) words to a port . 156
repoutsw() Write words to a port . 156
rmvb(). Remove a block from a message . 157
rmvq() Remove a message from a queue . 157
RW_ALLOC() Create a read/write lock . 157
RW_DEALLOC() Deallocate a read/write lock . 158
RW_RDLOCK(). Acquire a read/write lock in read mode . 158
RW_TRYRDLOCK() Try to acquire a read/write lock in read mode 159
RW_TRYWRLOCK() Try to acquire a read/write lock in write mode. 159
RW_UNLOCK(). Release a read/write lock . 160
RW_WRLOCK() Acquire a read/write lock in write mode . 160
salloc() Allocate a memory segment . 160
SAMESTR(). Check type of next queue . 161
sdevice Configure drivers included within kernel . 161
sendsig() Send a signal . 162
set_user_error() Set an error code in the user space . 162
setivec() Set an interrupt vector . 163
sigdump(). Generate core dump . 163
signals List recognized signals . 163
size Return the size of a block device . 163
SLEEP_ALLOC() Create a sleep lock . 164
SLEEP_DEALLOC() Deallocate a sleep lock . 164
SLEEP_LOCK() Acquire a sleep lock . 165
SLEEP_LOCK_SIG(). Acquire a sleep lock . 165
SLEEP_LOCKAVAIL() Query whether a sleep lock is available . 166
SLEEP_LOCKOWNED(). . . See if the caller holds a given sleep lock. 166
SLEEP_TRYLOCK() Try to acquire a sleep lock. 166
SLEEP_UNLOCK(). Release a sleep lock. 166
sphi() Disable interrupts. 167
spl() Adjust interrupt mask . 167
splbase() Block no interrupts. 167
spldisk() Block disk-device interrupts . 167
splhi() Block STREAMS interrupts . 168
splo() Enable interrupts . 168
splstr() Block STREAMS interrupts . 168
spltimeout() Block STREAMS interrupts . 169
splx() Reset an interrupt-priority level . 169
srv. Service queued messages . 169
start. Initialize a device at system start-up. 170
strategy. Perform block I/O. 170
STREAMS . 171
streamtab Initialize a STREAMS driver or module . 171
strlog() Submit messages to the log driver . 172
stroptions Stream-head options . 172
strqget(). Get information about a priority band. 174
strqset(). Modify a priority band . 174
stune Set values of tunable kernel variables . 175
super() Verify super-user . 175
SV_ALLOC() Create a synchronization variable . 175
SV_BROADCAST() Awaken processes sleeping on a synchronization variable 175
SV_DEALLOC() Deallocate a synchronization variable . 176
SV_SIGNAL() Awaken one process sleeping on a synchronization variable. 176
SV_WAIT() Sleep on a synchronization variable . 176
SV_WAIT_SIG() Sleep on a synchronization variable . 177
technical information. 178
testb() Check for an available buffer . 178
time Routine to execute when a timeout occurs . 178
timeout() Defer function execution. 178

CONTENTS

The COHERENT System vii

trace. COHERENT kernel traceback procedure . 179
TRYLOCK() Acquire a basic lock . 179
ttclose() Close tty . 180
ttflush() Flush a tty . 180
tthup() tty hangup . 180
ttin(). Pass character to tty input queue . 180
ttinp() See if tty input queue has room for more input 180
ttioctl() Perform tty I/O control. 181
ttopen() Open a tty . 181
ttout() Get next character from tty output queue . 181
ttoutp() See if tty input queue has data available . 181
ttread() Read from tty . 181
ttread0() Read from tty . 182
ttsetgrp() Set tty process group. 182
ttsignal() Send tty signal . 182
ttstart() Start tty output . 182
ttwrite() Write to tty . 183
ttwrite0() Write to tty . 183
uio. Structure to organize scatter/gather I/O requests 183
uiomove() Use a uio structure to copy data . 184
ukcopy() User to kernel data copy . 185
uload Routine to execute upon unloading the driver from memory. 185
unbufcall() Cancel a request to bufcall(). 185
unfreezestr() Unfreeze a stream. 185
unlinkb() Remove a block from the head of a message . 186
unlock(). Unlock a gate . 186
UNLOCK() Release a basic lock . 186
unmap_pv() Dissociate virtual addresses from physical addresses. 186
untimeout() Cancel execution of a previously scheduled function 187
uproc Structure that defines a process . 187
ureadc(). Copy a character to space that uio describes. 187
uwritec() Copy character from space described by uio structure 188
vtop() Translate virtual address to physical address 188
wakeup() Wakeup processes sleeping on an event. 188
WR() Get a pointer to the write queue . 189
write. Write data to a device . 189
x_sleep() Wait for event or signal . 190
xpcopy(). Copy from kernel data to physical or system global memory. 191

Index . 192

CONTENTS

Introduction

This manual documents version 4.2 of the COHERENT Device-Driver Kit. This kit is designed to help you write
device drivers for COHERENT release 4.2. It describes the contents of the kit, introduces the COHERENT kernel,
gives advice on how to go about writing a device driver, gives examples of device drivers, and documents all of the
kernel’s accessible functions in Lexicon format.

Before you continue, please read the following carefully:

This kit will not teach you how to write a device driver. It is to be used only by persons who are
technically knowledgeable. Due to the highly specialized nature of device drivers, this product is
not eligible for technical support from Mark Williams Company.

If you discover a bug in the product or you have a suggestion on how it can be improved, please contact Mark
Williams Company. If you run into a difficulty with the hardware for which you are writing the driver, please
consult that hardware’s technical-reference manual or contact its manufacturer.

Further, a bug in a device driver can inflict great damage on an operating system and its files. You should expect
that during development, you will damage the contents of your hard disk at least once. Therefore, we implore you
to practice defensive programming in designing and testing your device driver, to protect irreplacable files from
damage or destruction. This manual will give you suggestions on how to do this most easily.

Changes From Earlier Releases
Release 4.2 completely changes the COHERENT Device-Driver Kit:

• Tools for modifying and relinking the COHERENT kernel are now included within the COHERENT system itself.

• Release 4.2 introduces the COHERENT implementation of the UNIX Device Driver Interface/Driver-Kernel
Interface (DDI/DKI), and STREAMS. We now discourage programmers from using internal kernel calls within
their drivers unless absolutely necessary.

The Kit
The COHERENT Device Driver Kit consists of the following:

• Source code for most COHERENT device drivers.

• Configuration files for the device drivers.

• This manual.

Installing the Device Driver Kit
The COHERENT Device Driver Kit requires that you are currently running a production copy of COHERENT release
4.2.

To install the COHERENT Device Driver Kit, log in as the superuser root. Then type the command:

/etc/install -c Drv_420 /dev/fha0 1

for a 5.25-inch floppy-disk drive, or

/etc/install -c Drv_420 /dev/fva0 1

for a 3.5-inch floppy-disk drive.

The installation program will prompt you to insert the write-protected floppy disk into the device you named on the
command line. After the installation completes, place your distribution disk in a safe place, away from heat or
magnetic fields.

Using This Manual
This manual consists of six sections:

1

2 Introduction

1. The introduction — the section you are reading now.

2. A sketch of the COHERENT kernel, and how it works.

3. Writing a device driver using internal kernel calls. This chapter describes methods that must be used to write
block drivers.

4. Example of a block driver.

5. Example of a character driver.

6. The Lexicon. This gives an entry for each DDI/DKI, STREAMS, or internal-kernel function or macro. It also
contains overview articles, which introduce classes of functions or macros, and articles that summarize
technical information. Note that you can use the command man to view these articles; and you can view their
calling conventions by invoking the command help.

As noted above, this manual will not teach you how to write a device driver. If you are seeking a tutorial, we
suggest you look at one of the volumes listed below. We hope, however, that you will find the tutorials a helpful
guide to the COHERENT kernel and resources, and the Lexicon a useful summary.

Bibliography
The following reference manuals discuss the writing of UNIX device drivers, the Intel 80386 microprocessor,
STREAMS, and related topics.

Intel Corporation: 386 EX Programmer’s Reference Manual. Santa Clara, Ca.: Intel Corporation, 1990 (part
230985-002).

Campbell, J.: C Programmers Guide to Serial Communication. Indianapolis: Howard Sams & Company, 1989 (ISBN
0-67222-584-0).

Crawford, J.; Gelsinger, P.: Programming the 80386. SYBEX Incorporated, 1987 (ISBN 0-89588-381-3).

Plauger, P.: Evaluating device controllers. Embedded Systems Programming, March 1991, pp 87-92.

Comer, D.: Operating System Design: The XINU Approach. Englewood Cliffs, NJ: Prentice Hall, Incorporated, 1984
(ISBN 0-13-637539-1).

Egan, J.; Teixeira, T.: Writing A UNIX Device Driver. Englewood Cliffs, NJ: John Wiley and Sons, Incorporated, 1988
(ISBN 0-471-62859-X).

UNIX System Laboratories, Incorporated: Device-Driver Interface/Driver-Kernel Interface Reference Manual for Intel
Processors. Englewood Cliffs, NJ: Prentice-Hall, Incorportaed, 1992.

AT&T: UNIX System V STREAMS Primer. Englewood Cliffs, NJ: Prentice-Hall, Incorporated, 1987.

AT&T: UNIX System V STEAMS Programmer’s Guide. Englewood Cliffs, NJ: Prentice-Hall, Incorporated, 1987.

UNIX System Laboratories, Incorporated: UNIX System V Release 4 Programmer’s Guide: STREAMS. Englewood
Cliffs, NJ: Prentice-Hall, Incorporated, 1990.

Ritchie, D.: A stream input-output system, in Unix Research System, Volume II: Papers (ed. 10). Murray Hill, NJ:
Computing Research Center, AT&T Bell Laboratories, 1990.

TUTORIALS

The COHERENT Kernel

This section sketches the COHERENT kernel. It also discusses defensive programming practices, how to rebuild the
kernel to include a newly written driver, and how to interpret a dump from a failed driver.

The kernel is the program that permanently resides in memory to control the moment-to-moment operation of
COHERENT. It works by controlling processes and devices. The following sub-sections introduce each.

Processes and Scheduling

A process is a program that is being executed. The kernel ‘‘slices’’ the processor’s time amongst all processes,
which creates the illusion that COHERENT is running many programs simultaneously.

As you can see, managing processes — that is, seeing that each process receives its share of the processor’s time —
is one of the kernel’s main tasks. To do this, the kernel creates two queues whose entries describe every process
that the kernel has been asked to execute. One, the ready queue, describes every process that is ready to be
processed further by the microprocessor. The other, the suspended queue, describes every process that is waiting
for something to happen; for example, a word-processing program that is awaiting a keystroke is placed on the
suspended queue.

The kernel selects a process from the ready queue, then executes it either until it has reached a stopping point or
until it has exhausted the slice of time allotted to it. If the process has exhausted its slice of time, the kernel
moves it to the end of the ready queue. If, however, the process is awaiting an event, the kernel moves it to the
suspended queue. A process on the suspended queue is said to be sleeping. In either case, the kernel saves the
current state of the process, then selects the next process from the ready queue and executes it.

When an external event occurs (e.g., the user presses a key), the kernel searches the suspended queue for a
process that is awaiting that event. If it finds one, the kernel moves it to the ready queue, where it waits its turn to
be executed further. This continues until all processes have run to completion.

Before release 4.2.12 of COHERENT, the kernel selected processes from the ready queue sequentially — that is, it
executed each process in turn, regardless of that process’s demands upon the system. With this method of
scheduling processes, running a computation-intensive program under COHERENT (e.g., a compiler) would degrade
the system’s response to user input from the keyboard to the point where the system was nearly useless.

Beginning with release 4.2.12 of COHERENT, the scheduler has been redesigned to maximize the number of
processes executed. The scheduler now gives processes that make light demands on the system (e.g., a user’s
input from a keyboard) a higher priority than it gives processes that make heavy demands on the system (e.g.,
image processing or compiling). The new scheduler now permits a user to compile a program in the background or
run a tape backup, yet continue to type input from the console or from a terminal with no noticeable degradation
of response to the keyboard. The compile will take slightly longer than it would have otherwise, but the overall
usefulness of the system is greatly increased.

In addition to managing processes, the kernel gives timeout functions, deferred functions, and device drivers
sequential, uninterrupted access to the CPU. The kernel intersperses the slices of time it assigns to user processes
amongst the demands of these lower-level routines. Any time the kernel is about to give the CPU to a user process,
such as after completing a system call, it first checks if any timeouts or deferred functions are waiting to be called;
if there are, it executes them first.

Devices
A device is a piece of hardware with which a process must communicate, e.g., physical memory, a hard-disk drive,
a floppy-disk drive, or a serial port. Note that, unlike under MS-DOS, COHERENT does not permit a program to
access hardware directly: the COHERENT kernel manages all transfers of data between a process and a device.

Devices come in two types: character-special and block-special. A character-special device is one with which
COHERENT exchanges data one character at a time. This class of devices includes serial and parallel ports and the
console. A block-special device is one with which COHERENT exchanges data one block at a time. COHERENT

defines a block as being 512 bytes (one-half kilobyte). This class of devices includes the hard disk and the floppy
disk. The size of a block is defined by constant BSIZE in header <sys/buf.h>.

3

4 Kernel Internals

Note that the COHERENT system, unlike most editions of UNIX, allows a device driver to be accessed in either block-
special or character-special mode. For example, under COHERENT both hard disks and floppy disks can be
accessed in either character or block mode. If a device can be accessed in either mode, its character mode is
sometimes called the raw device (shown by the fact that its name begins or ends with the letter ‘r’), whereas its
block mode is sometimes called the cooked device. This will be detailed below.

The kernel uses the structure IO to manage communication with a device. It is defined in the header file
<sys/io.h>, and includes the following fields:

io_seek Number of bytes from the beginning of the file or device where the driver should begin to read.
This is, of course, is meaningless for devices for devices like serial ports. In the case of disk drives,
this number must indicate the block to be read, i.e., the number must be evenly divisible by
constant BSIZE, which gives the size of a COHERENT block. If this is not true, an error has
occurred.

io_ioc Number of bytes to read or write. When the data movement is completed, this should be set to the
number of bytes that remain to be read or written. If it is not reset to zero, an error has occurred.

io_base Offset of data to be transferred in the user memory space. This is converted to a physical or
virtual memory address before performing the read.

io_flag Flags. See header file <sys/io.h> for the flags recognized by COHERENT. IONDLY indicates that
the request is non-blocking.

Buffer Cache

A buffer cache is an area of RAM that holds data being written to or read from a block-special device. The kernel
gives each block-special device its own buffer cache. The kernel, in turn, assigns to each buffer cache a BUF
structure, which the kernel uses to manipulate that buffer cache. It is defined in the header file <sys/buf.h>, and
includes the following fields:

b_dev A dev_t structure that describes the device being buffered. The internal kernel macros major()
and minor() translate this structure into the device’s major and minor numbers.

b_req Type of I/O request, either BREAD or BWRITE.

b_bno The number of the starting block.

b_paddr The system global (DMA) address for the data.

b_count The number of bytes to read or write.

b_resid The number of bytes remaining to be transferred. A value of zero indicates that all data
transferred correctly, i.e., that an error did not occur.

Interrupts
Most devices gain the attention of the kernel by sending an interrupt, which is a hardware signal by which the
device indicates that it needs attention.

The kernel assigns a unique pointer, or interrupt vector, to each device that uses interrupts. A device’s interrupt
vector points to a function, or interrupt handler, that is designed to service the device. The kernel stores its table of
interrupt vectors at the beginning of main memory.

When COHERENT receives the interrupt from a device, it saves the state of the process that is being executed. It
then reads the table of interrupt vectors and finds the vector for the interrupt it has just received; then jumps to
the handler to which the interrupt vector points, and executes it. Executing the interrupt handler may require
awakening some sleeping processes.

When the interrupt handler has finished its work, the kernel reloads the saved state of the interrupted process into
the CPU, and resumes processing it as if nothing had happened.

Device Drivers
A device driver is the software that the kernel uses to communicate with a device. Each device must have its own
driver.

A driver stands between the kernel and the physical hardware:

TUTORIALS

Kernel Internals 5

Device:
I/O ports ← device ← COHERENT

memory mapped I/O → driver → kernel
DMA

As the above diagram shows, the driver receives input from the hardware and writes output to it; and it receives
input from the kernel and writes output to it.

Communication With an Application

A user-level application communicates with a driver via a special file called a device file or a special file. A driver
can have any number of special files. Its suite of special files can access different devices of the same type (for
example, different floppy-disk drives or different partitions on a hard disk); or can access the same device in
different modes (for example, a tape device can be accessed in either rewind or non-rewind mode). A special file is
created with the command mknod. Most device files are kept in directory /dev; if you execute the command ls -l
on /dev, you will see a set of listings that appear something like the following:

1 2 3 4 5 6 7 8 9
brw------- 1 sys sys 11 0 Fri Apr 27 16:56 at0a
brw------- 2 sys sys 11 1 Fri Apr 27 16:56 at0b
brw------- 1 sys sys 11 2 Fri Apr 27 16:56 at0c
brw------- 2 sys sys 11 3 Fri Apr 27 16:56 at0d
brw------- 1 sys sys 11 4 Fri Apr 27 16:56 at1a
brw------- 1 sys sys 11 5 Fri Apr 27 16:56 at1b
brw------- 1 sys sys 11 6 Fri Apr 27 16:56 at1c
brw------- 1 sys sys 11 7 Fri Apr 27 16:56 at1d
crw-rw-rw- 1 bin bin 5 0 Fri Apr 27 16:56 com1r
crw-rw-rw- 3 bin bin 6 8 Sat Aug 18 12:57 com2
crw-rw-rw- 3 bin bin 6 8 Sat Aug 18 12:57 com2l
crw-rw-rw- 1 bin bin 6 0 Fri Apr 27 16:56 com2r

The listing consists of nine fields, as follows:

1. Permissions. The first character in the permissions field indicates what type of device this is: b indicates a
block-special (cooked) device, and c indicates a character-special (raw) device.

2 Number of links to the file.

3 The login identifier of the user who owns the file.

4 The group identifier of the user who owns the file.

5 Major-device number. This is a unique number that identifies the device driver to the kernel. The kernel can
handle up to 32 devices at any given time, numbered zero through 31. The Lexicon article device drivers
gives a table of all device drivers current recogized by the COHERENT system, and the major-device number of
each.

6 Minor-device number. In addition to a type and a major-device number, each device file has a minor-device
number. This allows COHERENT to distinguish among a number of devices of the same type. For example,
this table shows that major number 11 indicates the AT hard disk. The above listing shows ten device files
with this major-device number 11, five for device at0 (which supports drive 0), and five for at1 (which
supports drive 1). Files ending in a through d each support one partition on the drive; the file ending in x
supports that drive’s partition table. Each of these device files has a unique minor device number, to allow
the kernel to tell them apart.

7 Date last modified.

8 Time last modified.

9 Name of file.

Communication With the Kernel

The kernel communicates with the driver through entry points within the driver. If a user application invokes a
system call for a given device (e.g., open() or close(), the kernel in turn invokes the appropriate entry point within
the driver.

TUTORIALS

6 Kernel Internals

The method by which entry points are defined within a driver varies, depending upon whether the driver uses the
DDI/DKI interface, or the internal-kernel interface. For details, see the entry for entry points within this manual’s
Lexicon.

Rebuilding the Kernel
The following walks you through the processing of adding a new driver. We will add the driver foo, which drives
the popular ‘‘widget’’ device.

1. To begin, log in as the superuser root.

2. Create a directory to hold the driver’s sources and object. Every driver must have its own directory under
directory /etc/conf; and the sources must be held in directory src in that driver’s directory. In this case,
create directory /etc/conf/foo; then create directory /etc/conf/foo/src.

3. Copy the sources for the driver into its source directory; in this case, copy them into /etc/conf/foo/src.

4. Compile the driver. This should create one object file that has the suffix .o. Copy this file in the driver’s home
directory, and name it Driver.o. In this case, the object for the driver should be in file
/etc/conf/foo/Driver.o.

In some rare cases, a driver compile into more than one object. Use the command ar to store the objects into
one archive called Driver.a and store the archive in the driver’s home directory. The COHERENT commands
that build the new kernel know how to handle archives correctly.

You may wish to add a Makefile for your driver, so that it will be recompiled, as needed, whenever the
command idmkcoh is run. For a sample Makefile, see the various src subdirectories under /etc/conf.

5. Add an entry to file /etc/conf/mdevice for the new driver. This file is a little more complex than sdevice; in
particular, it distinguishes between STREAMS-style drivers and ‘‘old-style’’ COHERENT drivers. In most cases,
you can simply copy an entry for an existing driver of the same type, and modify it slightly. In this case, the
entry for foo should read as follows:

full func misc code block char minor minor dmacpu
name flags flags prefix major major min max chanid
foo - CGo foo 15 15 0 255 -1-1

In almost every case, the full name and the code prefix are identical. The code prefix also names the directory
that holds the driver’s object. Function flags are always always a hyphen, and miscellaneous flags almost
always CGo. The block- and character-major numbers again are almost always identical. The major number
is usually assigned by the creator of the device driver. In future releases of the kernel, these will be assigned
dynamically by the kernel itself; poorly written drivers that depend upon the driver having a magic major-
device number will no longer work. Finally, the last four columns for non-STREAMS drivers are almost always
0, 255, -1, and -1, respectively.

6. Add an entry to file /etc/conf/sdevice for this driver. sdevice, names the drivers to be included in the
kernel. The entries for practically every entry are identical; you need to note only that the second column
marks whether to include the driver in the kernel. In this case, the entry for the driver foo should read as
follows:

foo Y 0 0 0 0 0x0 0x0 0x00x0

For details on what each column means, read the comments in file /etc/conf/sdevice.

7. If the driver has tunable variables, set them in file Space.c, which should be stored in the driver’s home
directory. As it happens, foo does not need a Space.c file. For examples of such files, look in the various
sub-directories of /etc/conf. If the driver has tunable variables, you must a line for each to file
/etc/conf/mtune and (optionally) to /etc/conf/stune.

For example, suppose that the driver foo uses an array of foo_info structures, and that the number of these
used is tunable. Then Space.c might contain these lines:

#include "conf.h"
#include <sys/foo.h> /* defines struct foo_info */

...
extern int num_foo_info = NUM_FOO_INFO;
extern struct foo_info foo_table[NUM_FOO_INFO];

TUTORIALS

Kernel Internals 7

/etc/conf/mtune sets the range of legal values and the default value for NUM_FOO_INFO. If you want to set
NUM_FOO_INFO to some value other than the default, then pop an entry for that variable into
/etc/conf/stune.

In mtune and stune, the name given is not that of the tunable variable, but of an enumeration constant used
to initialize that variable. idmkcoh automatically generates the header that defines this constant as needed.

8. Type the command /etc/conf/bin/idmkcoh to build a new kernel. If necessary, move the new kernel into
the root directory.

9. Save the old kernel and link the newly build kernel to /autoboot. You want save the old kernel, just in case
the new one doesn’t work. For directions on how to boot a kernel other than /autoboot, see entry for booting
in the COHERENT Lexicon.

10. Back up your files! With a new driver in your kernel, it’s best to play it safe.

11. Reboot your system to invoke the new kernel. If all goes well, you will now be enjoying the services of the new
device driver.

Because of space restrictions in the boot procedure, the newly generated kernel object (e.g., /testcoh) does not
contain a complete symbol table: values for some symbols instead are stored in the ASCII .sym file (e.g.,
/testcoh.sym). The debugger db can load symbols from a .sym file if you use its command-line option -a. To force
a specific symbol to be included within the kernel object (notably, to make the symbol patchable within the
generated kernel), add the symbol’s name to a -I option that is output by the file /etc/conf/install_conf/keeplist.

Debugging Program Crashes
The following describes the COHERENT system’s run-time environment. If your program dies and generates a
register dump of the following form on the system console, this information will help you interpret what appears on
the console.

When a program dies an untimely death, it dumps information about the contents of registers and memory onto
the console device. The registers shown are the 386/486 family registers. All registers that begin with ‘e’ and that
are three characters long are 32-bit registers. Refer to any 386/486 hardware/programming documents for further
details on register specifics.

Register eip is the instruction pointer. This contains the user program’s address at the time that the fault or
violation occurred. Register uesp is the user-stack pointer. cmd specifies the command that faulted.

The following gives a sample dump of registers:

eax=32 ebx=408080 ecx=40541E edx=0
esi=0 edi=8BF84589 ebp=7FFFF694 esp=FFFFFFE4
cs=B ds=13 es=13 ss=13
err #14 eip=1C34F uesp=7FFFF664 cmd=my_cmd
efl=13282 cr2=8BF84589 sig=11 trap_ip=FFC0079F
trapcode=4 User Trap
segmentation violation -- core dumped

Note that the format differs a little from that shown above. The dump also gives a traceback readout of addresses
in the kernel; the addresses shown in the backtrace can be looked up file kernel.sym, where kernel names the
kernel that you were running when the dump occurred. This is discussed below in more detail.

The following gives the memory map for iBCS2 under COHERENT:

0 - 3fffff program text (fixed size)
400000 - 13fffff program data (grows upward)

7FC00000 - 7fffffff program stack (grows downward)
FFC00000 - ffffffff kernel

Examination of this dump uncovers the following clues about what killed your program:

• Error 14 indicates a page fault. The address that generated the fault is in register cr2.

• From the fact that cr2 is an invalid address that matches edi, you can surmise that the program attempted to
move a block or string to an illegal address.

• The base pointer ebp points into user stack, as expected.

TUTORIALS

8 Kernel Internals

• esp, the stack pointer, points into the kernel stack (the top four kilobytes), also as expected.

• The lower two bits for all the segment registers (cs-ss) are set, so the program was in user mode. If all had
had their lower bits set, the dump probably would indicate a panic.

Header file <sys/reg.h> defines the error numbers as follows:

SIDIV 0 Divide overflow
SISST 1 Single step
SINMI 2 NMI (parity)
SIBPT 3 Breakpoint
SIOVF 4 Overflow
SIBND 5 Bound
SIOP 6 Invalid opcode
SIXNP 7 Processor extension not available
SIDBL 8 Double exception
SIXS 9 Processor extension segment overrun
SITS 10 Invalid task state segment
SINP 11 Segment not present
SISS 12 Stack segment overrun/not present
SIGP 13 General protection
SIPF 14 Page fault
SISYS 32 System call
SIRAN 33 Random interrupt
SIOSYS34 System call
SIDEV 64 Device interrupt

Register eip points into user text space. To see what the kernel was doing at the time of the crash, you must
check the eip address and any backtrace addresses against the known kernel text addresses. Most symbols
for any kernel are in its associated .sym file. You should sort this before you look up addresses; then you can
look up the address with grep or a text editor. Some symbols remain within the kernel executable. You can
use the command nm -n to read these. The entry points within the CON structure usually are defined as
static, but may be located using the command /etc/conf/bin/drvldump.

• Register uesp is a valid user-stack value. Note that it is below ebp. This is a normal consequence of iBCS2
calling conventions.

• cmd matches the program you are debugging, indicating that it is indeed that command and not something it
calls.

• You can pick apart the flag register efl with your i386 reference manual.

• The signal number sig tells you what signal, if any, killed the process. Header file signal.h defines signal
numbers as follows:

TUTORIALS

Kernel Internals 9

SIGHUP 1 Hangup
SIGINT 2 Interrupt
SIGQUIT 3 Quit
SIGILL 4 Illegal instruction
SIGTRAP 5 Trace trap
SIGIOT 6 IOT instruction
SIGEMT 7 Emulator trap
SIGFPE 8 floating point exception
SIGKILL 9 Kill
SIGBUS 10 Bus error
SIGSEGV 11 Segmentation violation
SIGSYS 12 Bad argument to system call
SIGPIPE 13 Write to pipe with no readers
SIGALRM 14 Alarm
SIGTERM 15 Software termination signal
SIGUSR1 16 User signal 1
SIGUSR2 17 User signal 2
SIGCLD 18 Death of a child
SIGCHLD 18 Death of a child
SIGPWR 19 Restart
SIGWINCH 20 Window change
SIGPOLL 22 Polled event in stream

• trap_ip is in kernel text space, as expected. This will not tell you much unless you are debugging the kernel.

• The trap code can safely be ignored.

Where To Go From Here
The next section describes in more detail the structure of a device driver. It emphasizes the internal-kernel
interface, which is that used by practically all of the drivers shipped with COHERENT 4.2. The following two
sections give examples of drivers for, respectively, a block device and character device.

See the entry device driver in this manual’s Lexicon for a description of what device drivers are available with the
device-driver kit, and of the articles available in the Lexicon.

TUTORIALS

10 Kernel Internals

TUTORIALS

Writing a Device Driver

This section discusses how to go about writing a device driver.

Types of Device Driver
Beginning with release 4.2, COHERENT offers two methods for interfacing a driver with the kernel: the internal-
kernel (IK) interface and the DDI/DKI interface. Each consists of functions that the driver can call, predefined
constants, types, etc. Under COHERENT 4.2, the structures that support the calling functions can be either from
the IK interface or the DDI/DKI. This represents a transition from the IK method toward the DDI/DKI and
STREAMS, which is the direction of future development.

The following describes the differences between these interfaces.

Internal Kernel Interface
This type of driver uses the routines internal to the COHERENT kernel. Practically all of the drivers
included in the Driver Kit use this interface.

DDI/DKI Interface
The source code for drivers loop and dump use this interface. All new STREAMS drivers must use this
interface. This is the preferred interface for new character drivers.

New block drivers must use the basic features of this interface; however, the DDI/DKI interface is preferred for new
character drivers.

When you begin to write a driver for COHERENT, you should pick carefully between these strategies:

• The internal-kernel interface is proven and works; however, note that this does not conform to published UNIX

definitions, and a driver written in this interface is less portable to another operating system.

• The DDI/DKI interface attempts compatibility with UNIX System V Release 4; however, the COHERENT

implementation lacks some features present in true UNIX. We expect that the degree of compatibility between
COHERENT’s DDI/DKi interface and System V Release 4 will increase with ongoing development of COHERENT

internals, including the memory manager and the file system.

STREAMS is a flexible and powerful method of programming character drivers. The COHERENT implementation of
STREAMS was developed simultaneously with its implementation of the DDI/DKI, and therefore the two methods of
writing drivers show a high degree of overlap. As shipped with COHERENT 4.2, STREAMS does not yet have line
discipline or TLI modules available. All STREAMS development should be done with the DDI/DKI interface.

Sets of routines from the DDI/DKI can be combined with those from the internal-kernel interface. In some cases,
the DDI/DKI offers the better method of performing a given task; in others, the internal-kernel interface offers the
better (or, more likely, the only) method to perform a task. If you are importing a driver from UNIX System V
Release 4, then you should use the DDI/DKI routines primarily. Likewise, you should use them primarily if you
are writing a driver that you wish to export to UNIX. Note, too, that as COHERENT evolves toward the standard of
System V Release 4, the DDI/DKI interface will grow in importance.

The sources included with release 4.2.05 of the device-driver kit are in the internal-kernel format rather than
DDI/DKI. It was simply not practical to recast these drivers in the DDI/DKI mold at the present time; however, we
are supplying information regarding DDI/DKI interfaces to inform developers of the future direction of COHERENT.
In the development of new drivers, DDI/DKI facilities should be used wherever possible for greatest compatibility,
e.g., with future releases of COHERENT.

To summarize, all else being equal, the DDI/DKI is preferred over the internal-kernel interface. The Lexicon entries
themselves will alert you of the alternate ways of performing a given task, to help you decide which to use.

The best way to judge which interface you should use is to read the sources included with the COHERENT Device
Driver Kit:

asy (/etc/conf/asy/src)
This driver manipulates non-intelligent serial ports. It is an example of a non-STREAMS character driver.

11

12 Writing a Device Driver

at (/etc/conf/at/src)
This driver manipulates the AT hard disk. It gives the best demonstration of writing a block driver, with
regard to compatibility with UNIX System V Release 4.

hai154x (/etc/conf/hai/src)
This driver manipulates SCSI devices. It demonstrates how to use first-party DMA.

ss (/etc/conf/ss/src)
This driver manipulates the Seagate SCSI disk. It demonstrates how to use memory-mapped I/O.

fd (/etc/conf/fd/src)
This driver manipulates the floppy disks. It demonstrates how to perform DMA via the Intel controllers.

Beyond this, you must use your best judgement as you gain experience in working with COHERENT.

Planning the Device Driver
This section discusses how to plan a device driver. We strongly urge you to read this section carefully: it will help
you avoid many of the pitfalls that plague developers of device drivers.

Defensive Programming

To begin, you must assume that you will damage your file systems at least once during development of your driver.
To avoid damaging irreplacable files, we suggest that you do the following.

First, perform a full backup of your system before you begin to test and debug your driver. See the Lexicon entry
for backups describes how to back up to floppy disk; the entry for tape describes how to back up to tape.

Second, you should create a COHERENT system that can be run from a floppy disk. One attractive feature of the
COHERENT system is that a stripped down version is small enough to be run from a high-density floppy disk drive.
You can then incorporate your device driver into the kernel that is run from your floppy-disk version of COHERENT;
if something goes wrong, the files on your hard disk should be protected from damage. See the Lexicon entry for
booting for directions on how to build a bootable floppy disk. Also, you can run the script /etc/conf/bin/Floppy
(which is included with the Driver Kit) to build a bootable floppy disk.

Finally, as you plan your driver, you must bear in mind the fact that the driver stands between the kernel and the
device. It receives input from and writes output to the kernel; it receives input from and writes output to the
device. Because the driver is linked into the kernel, it in effect is part of the kernel. Therefore, when you write a
driver you must think like a kernel programmer: you must always bear in mind the context in which a driver
operates. Always ask yourself: Is this function or structure available to me in this context? If it is not, how can I
make it available?

Testing the Hardware

Before you begin to write a driver, be sure to test the hardware. This will involve writing a program at the user
level that lets you access the hardware via a device driver. When this is done, you should take the user manual
and, as thoroughly as you have time and patience for, test every feature described in the manual and confirm that
the hardware works as documented. Our experience in both writing and using technical documentation leads us
to conclude that, try as one might, it is practically impossible to write an error-free manual.

You will save yourself much time and agony in the debugging phase if you test the hardware ahead of time. We
also suggest that you alert the manufacturer to any errors you discover in the manual: this will earn you the
gratitude of the manufacturer and of your fellow users.

Major Device Number

Once you have tested and confirmed that the hardware works as described (or noted all the places where the
hardware’s behavior varies from the documentation), you can begin to write your driver.

The first step is to select a major device number for the device you will be supporting. The entry for device drivers
in this manual’s Lexicon lists the major device numbers that are currently used under the COHERENT system. In
addition, header file <sys/devices.h> contains symbolic constants for all assigned major numbers. Select one that
is unused and assign it to your driver.

TUTORIALS

Writing a Device Driver 13

Naming Conventions

The next step is to devise some naming conventions for your driver. The conventions will govern both how you
structure your driver, and how you name it to the COHERENT system. It is common practice to use the first two
letters of the name of the configuration table to indicate the device. You can, however, use a prefix of up to eight
characters; it is best to be brief but unambituous.

To create a device file for a file, append the minor device number to the device name. If a driver can support more
than one device, they can be distinguished by an alphabetic suffix. For example, COHERENT’s hard-disk driver is
called at. The COHERENT system supports two drives, so there are two minor numbers, at0 and at1. Finally, each
drive can have four partitions, each of which is accessed via a different device file, plus one for the partition table.
Thus, each drive has five device files: at0a, at0b, at0c, at0d, at0x, at1a, at1b, at1c, at1d, and at1x.

To avoid inadvertent name-space collisions, prefix with the name of the device the names of functions, variables,
and arrays within your device driver, and the constants, types, etc., defined within associated header files.

Errors

To report an error to the calling process, call function set_user_error() with the appropriate error code. For a list of
legal error codes, see the entry for the header file <errno.h> in the COHERENT manual’s Lexicon.

Coding Requirements
The following summarizes the coding requirements for device drivers that use the internal-kernel or DDI/DKI
interfaces.

To begin, the coding requirements for the internal-kernel interface:

1. Put ‘C’ in the miscellaneous flags in the file /etc/conf/mdevice.

2. Do not define symbol _DDI_DKI in the driver’s source file.

3. Place driver’s entry points in a CON structure. This structure is described below. The functions themselves
may be declared as static.

4. There is no distinction between internal and external major- and minor-device numbers. A device number
(dev_t) is a 16-bit object. Use internal-kernel routine minor(), q.v., to obtain the minor-device number.

5. Either include <sys/coherent.h>, or explicitly define symbol _KERNEL to be one, before any other #include
directives in the driver source.

The coding requirements for the DDI/DKI interface are as follows:

1. Do not put a ‘C’ into the miscellaneous-flags field in file /etc/conf/mdevice (q.v.).

2. Insert the directive

#define _DDI_DKI 1

in the driver’s source file, before any #include directives.

3. Put an entry into the function-flags field in /etc/conf/mdevice for each of the driver’s entry points; do not
put them into a CON structure.

4. A device number (dev_t) is a 32-bit object. There is some discussion in the literature of internal vs. external
numbering for device numbers and for the major and minor parts of the device number as well. As of
COHERENT 4.2.05, only external numbers are of interest to the writer of device drivers. Thus, when a dev_t is
passed to a driver’s entry point, it is an external device number. When major numbers are entered into file
/etc/conf/mdevice, they are external major numbers. Unit numbers and device features are decoded from
the external minor number, which is obtained from the external device number by calling the DDI/DKI
routine geteminor().

5. Define symbol _KERNEL to be one in the driver source, before any #include directives.

The rest of this section emphasizes the internal-kernel interface to the COHERENT, as this interface is used by
practically every driver that is now shipped with COHERENT 4.2. The bibliography given at the beginning of this
manual lists several excellent books that describe the DDI/DKI and STREAMS, and give extended examples of how
to code uses these interfaces. Note that these interfaces will become increasingly important as COHERENT evolves
toward the standard set by UNIX System V Release 4.

TUTORIALS

14 Writing a Device Driver

The Internal-Kernel Interface
This section describes the internal-kernel interface between a device driver and the COHERENT kernel.

The COHERENT kernel contains numerous functions that perform the basic work of driving a device. Some are
ordinary kernel system calls, which a driver can call just like any user-level application. Others are internal to the
kernel and can be called only by drivers and other internal kernel processes. The following introduces some of the
more frequently used calls and routines. Each is described in more detail either in this manual’s Lexicon, or in the
Lexicon that comes in the manual for the COHERENT system.

Interface to System Calls

Each driver that uses the internal-kernel interface contains a CON structure. This structure contains pointers to
the functions that the kernel is to execute when an application invokes the system calls open(), close(), read(),
write(), ioctl(), or poll(). CON includes the following fields:

c_flag This field’s bits give the ways in which this device can be accessed, as follows:

DFBLK Block-special device
DFCHR Character-special device
DFTAP Tape device
DFPOL Accessible via COHERENT system call poll()

c_mind
This field gives the device’s major-device number. This number is an index to the driver’s place in the
kernel’s table of drivers. This number must be in the range of zero through 31, and must be a symbolic
constant found in file <sys/devices.h>.

c_open This field points to the routine within the device driver that is executed whenever COHERENT opens the
device. This function is always called with two arguments: the first is a dev_t that indicates the device
being accessed, and the second is an integer that indicates the mode in which it is being opened. The
mode can be IPW (write mode), IPR (read mode), or IRW | IRP. If an error occurs during execution of this
function, it should set field u_error within the process’s UPROC structure to an appropriate value.

c_close This field points to the routine that is executed whenever COHERENT closes the device. This function takes
the same arguments as the open function.

c_block
This field points to the routine within the device driver that is executed when the kernel reads a file in
block mode. This function is called with a pointer to the structure BUF, which contains the following
fields:

b_dev This field is of type dev_t, which is a structure that describes the device being buffered.
The kernel macros major() and minor() translate this structure into the device’s major
and minor numbers.

b_req Type of I/O request, either BREAD or BWRITE.
b_bno This givesn number of the starting block.
b_paddr This field gives the system-global (DMA) address for the data.
b_count This field gives number of bytes to read or write.
b_resid This field gives the number of bytes that remain to be transferred. A value of zero

indicates that all data transferred correctly, i.e., that an error did not occur.

The driver function that performs block transfers of data should first perform the I/O transfer, then set
field b_resid to the appropriate number and call kernel function bdone() to clean up after itself.

Note that the function that performs block transfer must never sleep or access a process’s uproc structure.
This is because this function is asynchronous and therefore not pegged to a particular process.

c_read This field points to the driver’s routine that is called when the kernel wishes to read data from that driver’s
device. It takes two arguments: the first argument is a dev_t that indicates the device to read; the second
points to the IO structure for that device. This structure contains the following fields:

io_seek This field gives the number of bytes from the beginning of the file or device whence reading
should begin. This is, of course, is meaningless for devices for devices like serial ports. In
the case of disk drives, this number must indicate the block to be read, i.e., the number
must be evenly divisible by constant BSIZE, which gives the size of a COHERENT block. If

TUTORIALS

Writing a Device Driver 15

this is not true, an error has occurred.
io_ioc The number of bytes to read or write. When the read is completed, this should be set to

the number of bytes that remain to be read or written. If it is not reset to zero, then an
error has occurred.

io_base The offset of data to be transferred in the user memory space. This is converted to a
physical or virtual memory address before performing the read.

io_flag Flags. See header file <sys/io.h> for the flags that COHERENT recognizes. IONDLY
indicates that the request is non-blocking.

Unlike a block transfer, the read function does not return until I/O is complete. Your driver can use the
kernel functions x_sleep() and wakeup() to surrender the processor to another process while the read is
being performed. It can also use the kernel function ioputc() to send characters to the user process and to
update counter io_ioc.

c_write This field points to the function that the kernel invokes when it wishes to write to this device. It behaves
exactly the same as the function pointed to by field c_read, except that the direction of data transfer is
reversed. Your driver can use kernel function iogetc() is used to fetch characters from the user process
and to update counter io_ioc.

c_ioctl This field points to the function that the kernel executes when it wishes to exert I/O control over a device.
This function is called to perform non-standard manipulations of a device, e.g., format a disk, rewind a
tape, or change the speed of a serial port.

The kernel always calls this function with three arguments: the first argument is a dev_t that identifies the
device to be manipulated; the second is an integer that indicates the command to be executed; the third
points to a character array that can hold additional information, if any, that the command may need.

This function, by its nature, uses a considerable amount of device-specific information. The header files
<sys/tty.h>, <sys/mtioctl.h>, and <sys/lpioctl.h> define codes for, respectively, teletypewriter devices
(i.e., terminals), magnetic-tape devices, and line printers.

c_power
This field points to the routine to be executed should power fail on the system. This field is not yet used
by COHERENT.

c_timer
This field points to the routine that the kernel executes when a device driver requests periodic scheduling.
To request that the timeout routine for device dev be called once per second, set drvl[major(dev).d_time to
a nonzero value. The external variable drvl is declared in header file con.h; macro major() is defined in
header file stat.h.

The value in field d_time is not altered by the kernel’s clock routines. To stop invocations of the timeout
routine, store zero in drvl[major(dev)].d_time. dev is a dev_t that indicates which device is being timed
out.

c_load This field points to the routine that is executed when this device driver is loaded. This performs all tasks
necessary to prepare the device and the driver to exchange information. If the driver is linked into the
kernel, then this routine is executed when COHERENT is booted.

Although COHERENT does not currently support loadable drivers, you should still write a load routine for
driver startup and driver detachment from the kernel. This will spare you the labor of modifying your
driver once loadable drivers are enabled.

c_uload
This field points to the driver’s function that the kernel invokes when the driver is unloaded from memory.
Although COHERENT does not support loadable drivers, you should still write an unload routine for driver
startup and driver detachment from the kernel. This will spare you the labor of modifying your driver once
loadable drivers are enabled.

c_poll This field points to a function that can be accessed by commands or functions that poll the device. The
driver’s polling function is always called with three arguments. The first argument is a dev_t that
indicates the device to be polled. The second is an integer whose bits flag which polling tasks are to be
performed, as follows:

TUTORIALS

16 Writing a Device Driver

POLLIN Input data is available
POLLPRI Priority message is available
POLLOUT Output can be sent
POLLERR A fatal error has occurred
POLLHUP A hangup condition exists
POLLNVAL fd does not access an open stream

These are defined in the header file <sys/poll.h>. The third argument is an integer that gives the number
of millseconds by which the response should be delayed. Note that the COHERENT clock timer runs at 100
Hz rather than the approximately 18 Hz clock used by MS-DOS.

The kernel functions pollopen() and pollwake(), respectively, initiate and terminate a polling event. For
more information on these functions, see their entries in this manual’s Lexicon.

Timing

Sometimes a driver must delay for a period of time while doing something in the kernel. For example, you may
want to wait within a device driver for no more than given period of time; if that period of time elapses, you assume
that a timeout has occurred in the chain of desired events. If the delay is a given number of clock ticks, use kernel
routine timeout() to call a given function after the specified number of ticks. Interrupts must be enabled for this
to work; granularity is 0.01 sec (10 milliseconds) because that is the current length of a clock tick.

Kernel function read_t0() helps you to compute intervals of less than one tick. This function, which takes no
arguments and returns an int, reads channel 0 (t0) of the programmable interval timer (PIT), which drives the
system clock. A system clock tick is the time it takes timer t0 to decrease from 11,932 to zero. You can read the
timer any time, whether interrupts are masked or not, and get a number between 11,932 and zero. Each unit
therefore represents a little less than a microsecond. Overhead per call to read_t0() is about five to ten
microseconds, depending on your CPU and clock. The kernel functions busyWait() and busyWait2() are useful for
waiting briefly. They can return early from a wait if an awaited condition has been specified and is met. Their
timing is independent of CPU speed.

Because CPU speeds among supported equipment vary by at least an order of magnitude, we strongly encourage all
fine-timing loops to use read_t0() rather than simply counting down to zero using some empirically chosen loop
count.

Sleeping and Waking

The driver will constantly call the kernel functions x_sleep() and wakeup() to synchronize your device driver with
events in the operating system. x_sleep() moves the driver process to the suspended queue and sets a unique
condition under which the process will awaken; wakeup() wakes up the process associated with that event.

For example, when a driver attempts to read a floppy disk, it may take several seconds for the floppy disk to begin
to spin fast enough to be read. This may be a relatively brief period in real time, but the machine may be able to
do much work during those few seconds. Thus, the floppy disk driver’s read routine will begin to spin up the disk,
then sleep until the floppy-disk drive signals that the disk is spinning fast enough to be read. The process will
then awaken and begin to read; in the meantime, the COHERENT system will have been able to work productively.
When you write you driver, you should look out for such situations and use x_sleep() and wakeup() to exploit
them.

Note, however, that calling x_sleep() at the wrong time will trigger a ‘‘race condition’’, which under the wrong
conditions could cause the device to hang. The entries for x_sleep() and race condition in this manual’s Lexicon
discuss when you should use the sleep mechanism, and when you should not. In brief, x_sleep() is available only
when the active process can be associated with entry into the driver — that is, during the functions that are
invoked via system calls open(), close(), read(), write(), ioctl(), and poll(). If a driver sleeps when it is not
associated with a process, the kernel will never be able to awaken it. Thus, a driver must not sleep sleep during
the routines invoked by the kernel routines load(), unload(), or block() or during the functions invoked by kernel
routines defer() or timeout().

Error Handling

When the kernel needs to tell a process that an error condition has occurred, it calls function set_user_error() with
the appropriate error code.

Please note that like sleeping and some other situation, your driver can set the user error status only when user
control is valid. A driver can sleep or call set_user_error() only from within driver functions invoked through the
system calls open(), close(), read(), write(), ioctl(), and poll(), as described above. In particular, information

TUTORIALS

Writing a Device Driver 17

specific to the calling process is not available to the driver functions invoked via the kernel routines load(),
unload(), block(), defer(), or timeout().

Memory Management

This subsection describes how the kernel manages memory, and suggest how your driver should use memory-
management to best advantage.

COHERENT divides all of the memory that is available to the kernel into several pools. The two most commonly
used of these are the kalloc() pool and the sysmem pool.

The kalloc() pool acts as the kernel’s heap, from which the kernel allocates and de-allocates memory for most
small, temporary structures. Use the functions kalloc() and kfree() to allocate and free memory from this pool.
These functions in the Lexicon to this manual.

The sysmem pool is a large collection of four-kilobyte ‘‘clicks’’ (memory pages). When new processes are created,
the memory they need comes from this pool. Applications can use the functions malloc() and free() to obtain and
free memory.

The kernel uses three modes of memory access: physical memory, virtual memory, and system-global memory.

Physical-memory addresses are the addresses set directly onto the address bus to access memory. Some
peripheral equipment, such as video boards, communicate with the CPU through reads and writes within some
specific range of physical-memory addresses. This arrangement is also called memory-mapped I/O. Devices that
perform direct-memory access (DMA), including the usual AT-compatible floppy-disk controller, also use physical-
memory addresses to obtain information on the source and destination of a DMA transfer. A physical memory
address occupies four bytes, and is properly kept in an object of type paddr_t.

Virtual-memory addresses are those used by programs that run under COHERENT. Paging hardware allows the
operating system to remap each four-kilobyte page of physical memory to any region of virtual memory that is on a
four-kilobyte boundary. The kernel maintains tables that give the correspondences between pages of physical and
virtual memory. When a context switch occurs (i.e., when one user process is shifted to the ready queue and
another is selected from the ready queue for execution), the kernel updates these tables to unmap pages of memory
for the old process, and to map pages of memory into virtual addresses for the new process. Virtual-memory
addresses occupy four bytes, and are properly stored in type vaddr_t.

System global memory provides a third way of viewing memory resources. Consider a device driver that supports
raw I/O to a block device. The term raw implies that the user process supplies an I/O buffer of arbitrary length.
This introduces a problem: when the device driver is ready to transfer data between the user buffer and the I/O
device, the user buffer may not be mapped into virtual memory. A system global address is a 32-bit object that
retains access to the buffer, even when it is paged out of virtual memory.

Only a few operations are valid on system-global addresses:

• Add or subtract an offset.

• Apply macro P2P() to obtain the corresponding physical address.

• Appear as the second argument of kernel routine dmain() or dmaout().

• Appear as the second argument (destination) in a call to kernel routine xpcopy()

• Appear as the first argument (source) in a call to kernel routine pxcopy().

In the last two cases, the final argument in the function call must be manifest constant SEG_386_KD|SEG_VIRT.
For example:

char src[BSIZE];
char dest[BSIZE];

/* copy from kernel data to system global buffer */
xpcopy(src, bp->b_paddr, BSIZE, SEG_386_KD|SEG_VIRT);

/* copy from system global buffer to kernel data */
pxcopy(bp->b_paddr, dest, BSIZE, SEG_386_KD|SEG_VIRT);

To get a system global address, use macro MAPIO(). This function takes two arguments, the segment table address
(obtained from the segment-reference structure [SR]), and the offset within the segment.

TUTORIALS

18 Writing a Device Driver

For objects in the kernel kalloc pool, use allocp() as the SR. For objects in user space for the *current* process,
the SR is u.u_segl[xxx], where xxx is the segment index, e.g., SIPDATA or SISTACK. The user stack segment grows
down, so the lower limit of the stack segment is computed differently than for the other user segments. See the
example, below.

If your buffer has virtual address v, do the following. If v is in kalloc pool, use the following:

sgAddr = MAPIO(allocp.sr_segp->s_vmem, v - allocp.sr_base)

If v is in user data, then:

sgAddr = MAPIO(u.u_segl[SIPDATA].sr_segp->s_vmem,
v - u.u_segl[SIPDATA].sr_base)

If v is in user stack:

sgAddr = MAPIO(u.u_segl[SISTACK].sr_segp->s_vmem,
v - u.u_segl[SISTACK].sr_base - u.u_segl[SISTACK].sr_size)

For devices that support block I/O, a block routine takes a single argument, a pointer to a BUF structure. The
field b_paddr of this BUF structure is a system global address.

Finally, please note that drivers that use the DDI/DDK interface will not use kalloc() or kfree(). They will use
statically allocated structures sized by tunable parameters, or they will use the specialized resource-allocation
routines that the DDK provides.

Where To Go From Here
The next two sections give, respectively, an example driver for a block device and an example driver for a character
device. Each uses the internal-kernel interface. We suggest that you study these examples carefully before you
attempt to write a driver on your own. Finally, the Lexicon in this manual describes the functions and macros
introduced in this section.

TUTORIALS

Example of a Block Driver

This section gives an example driver for a block device: the COHERENT driver for the AT hard disk. This driver is
described in the article at in the COHERENT Lexicon. The source is kept in directory /etc/conf/at/src/at.c.

In the following, code appears in monospaced font; comments appear in Roman.

Preliminaries
The following code prefaces the driver.

Header Files

at uses the following header files. Because header files have changed drastically for COHERENT 4.2, you should
note carefully the suite included here:

#include <sys/cmn_err.h>
#include <sys/inline.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <stdlib.h>

#include <kernel/typed.h>
#include <sys/coherent.h>
#include <sys/uproc.h>
#include <sys/fdisk.h>
#include <sys/hdioctl.h>
#include <sys/buf.h>
#include <sys/con.h>
#include <sys/devices.h>

Manifest Constants

at uses the following gives manifest constants and macros:

#define LOCAL

#define HDBASE 0x01F0 /* Port base */
#define SOFTLIM 6 /* (7) num of retries before diag */
#define HARDLIM 8 /* number of retries before fail */
#define BADLIM 100 /* num to stop recov if flagged bad */

#define BIT(n) (1 << (n))

#define CMOSA 0x70 /* write cmos address to this port */
#define CMOSD 0x71 /* read cmos data through this port */

/*
* I/O Port Addresses
*/
#define DATA_REG (HDBASE + 0) /* data (r/w) */
#define AUX_REG (HDBASE + 1) /* error(r), write precomp cyl/4 (w) */
#define NSEC_REG (HDBASE + 2) /* sector count (r/w) */
#define SEC_REG (HDBASE + 3) /* sector number (r/w) */
#define LCYL_REG (HDBASE + 4) /* low cylinder (r/w) */
#define HCYL_REG (HDBASE + 5) /* high cylinder (r/w) */
#define HDRV_REG (HDBASE + 6) /* drive/head (r/w) (D <<4)+(1 << H) */
#define CSR_REG (HDBASE + 7) /* status (r), command (w) */
#define HF_REG (HDBASE + 0x206) /* Usually 0x3F6 */

19

20 Block Driver

/*
* Error from AUX_REG (r)
*/
#define DAM_ERR BIT(0) /* data address mark not found */
#define TR0_ERR BIT(1) /* track 000 not found */
#define ABT_ERR BIT(2) /* aborted command */
#define ID_ERR BIT(4) /* id not found */
#define ECC_ERR BIT(6) /* data ecc error */
#define BAD_ERR BIT(7) /* bad block detect */

/*
* Status from CSR_REG (r)
*/
#define ERR_ST BIT(0) /* error occurred */
#define INDEX_ST BIT(1) /* index pulse */
#define SOFT_ST BIT(2) /* soft (corrected) ECC error */
#define DRQ_ST BIT(3) /* data request */
#define SKC_ST BIT(4) /* seek complete */
#define WFLT_ST BIT(5) /* improper drive operation */
#define RDY_ST BIT(6) /* drive is ready */
#define BSY_ST BIT(7) /* controller is busy */

/*
* Commands to CSR_REG (w)
*/
#define RESTORE(rate) (0x10 +(rate)) /* X */
#define SEEK(rate) (0x70 +(rate)) /* X */
#define READ_CMD (0x20) /* X */
#define WRITE_CMD (0x30) /* X */
#define FORMAT_CMD (0x50) /* X */
#define VERIFY_CMD (0x40) /* X */
#define DIAGNOSE_CMD (0x90) /* X */
#define SETPARM_CMD (0x91) /* X */

/*
* Device States.
*/
#define SIDLE 0 /* controller idle */
#define SRETRY 1 /* seeking */
#define SREAD 2 /* reading */
#define SWRITE 3 /* writing */

Function Declarations

The following declares the functions used in the driver.

/*
* Forward Referenced Functions.
*/
LOCAL void atreset ();
LOCAL int atdequeue ();
LOCAL void atstart ();
LOCAL void atdefer ();
LOCAL int aterror ();
LOCAL void atrecov ();
LOCAL void atdone ();

Macros

at uses the following macros:

#define NOTBUSY() ((inb (ATSREG) & BSY_ST) == 0)
#define DATAREQUESTED() ((inb (ATSREG) & DRQ_ST) != 0)
#define ATDRQ() (DATAREQUESTED () ? 1 : atdrq ())
#define ATBSYW(u) (NOTBUSY () ? 1 : myatbsyw (u))

TUTORIALS

Block Driver 21

Global and Static Variables

at uses the following global and static variables:

extern typed_space boot_gift;
extern short at_drive_ct;

The following are used throughout the driver:

ATSECS
This is number of seconds to wait for an expected interrupt.

ATSREG
This must be 3F6 for most new IDE drives; or 1F7 for Perstor controllers and some old IDE drives. Either
value works with most drives.

atparm This holds drive parameters. If initialized to zero, the driver will try to use values it read from the BIOS
during real-mode startup.

extern unsigned ATSECS;
extern unsigned ATSREG;
extern struct hdparm_s atparm [];

The next line gives the global variable that holds the partition parameters, as copied from the disk. There are
N_ATDRV * NPARTN positions for the user partitions, plus N_ATDRV additional partitions to span each drive.

When aligning partitions on cylinder boundaries, the optimal partition size is 14,280 blocks (2 * 3 * 4 * 5 * 7 * 17);
whereas an acceptable partition size is 7,140 blocks (3 * 4 * 5 * 7 * 17).

static struct fdisk_s pparm [N_ATDRV * NPARTN + N_ATDRV];

The following structure at holds information about the disk controller. There exists one copy of this structure for
each AT controller.

static struct at {
BUF *at_actf; /* Link to first */
BUF *at_actl; /* Link to last */
paddr_t at_addr; /* Source/Dest virtual address */
daddr_t at_bno; /* Block # on disk */
unsigned at_nsec; /* # of sectors on current transfer */
unsigned at_drv;
unsigned at_head;
unsigned at_cyl;
unsigned at_sec;
unsigned at_partn;
unsigned char at_dtype [N_ATDRV]; /* drive type, 0 if unused */
unsigned char at_tries;
unsigned char at_state;
unsigned at_totalsec;

} at;

Finally, this last variable holds the template of the message to be displayed when an AT drive times out.

static char timeout_msg [] = "at%d: TO\n";

Load Routine
atload() is the routine that the kernel executes when this driver is loaded. Under COHERENT 4.2, it is executed
once, when the kernel is booted.

This function resets the controller, grabs the interrupt vector, and sets up the drive characteristics.

LOCAL void
atload ()
{

unsigned int u;
struct hdparm_s * dp;
struct { unsigned short off, seg; } p;

TUTORIALS

22 Block Driver

if (at_drive_ct <= 0)
return;

/* Flag drives 0, 1 as present or not. */
at.at_dtype [0] = 1;
at.at_dtype [1] = at_drive_ct > 1 ? 1 : 0;

/* Obtain Drive Characteristics. */
for (u = 0, dp = atparm; u < at_drive_ct; ++ dp, ++ u) {

struct hdparm_s int_dp;
unsigned short ncyl = _CHAR2_TO_USHORT (dp->ncyl);

if (ncyl == 0) {
/*
* Not patched.
*
* If tertiary boot sent us parameters,
* Use "fifo" routines to fetch them.
* This only gives us ncyl, nhead, and nspt.
* Make educated guesses for other parameters:
* Set landc to ncyl, wpcc to -1.
* Set ctrl to 0 or 8 depending on head count.
*
* Follow INT 0x41/46 to get drive static BIOS drive
* parameters, if any.
*
* If there were no parameters from tertiary boot,
* or if INT 0x4? nhead and nspt match tboot parms,
* use "INT" parameters (will give better match on
* wpcc, landc, and ctrl fields, which tboot can’t
* give us).
*/

FIFO * ffp;
typed_space * tp;
int found, parm_int;

if (F_NULL != (ffp = fifo_open (& boot_gift, 0))) {
for (found = 0; ! found && (tp = fifo_read (ffp));) {

BIOS_DISK * bdp = (BIOS_DISK *)tp->ts_data;
if ((T_BIOS_DISK == tp->ts_type) &&

(u == bdp->dp_drive)) {
found = 1;
_NUM_TO_CHAR2(dp->ncyl,

bdp->dp_cylinders);
dp->nhead = bdp->dp_heads;
dp->nspt = bdp->dp_sectors;
_NUM_TO_CHAR2(dp->wpcc, 0xffff);
_NUM_TO_CHAR2(dp->landc,

bdp->dp_cylinders);
if (dp->nhead > 8)

dp->ctrl |= 8;
}

}
fifo_close (ffp);

}

if (u == 0)
parm_int = 0x41;

else /* (u == 1) */
parm_int = 0x46;

pxcopy ((paddr_t)(parm_int * 4), & p, sizeof p, SEL_386_KD);
pxcopy ((paddr_t)(p.seg <<4L)+ p.off,

& int_dp, sizeof (int_dp), SEL_386_KD);

TUTORIALS

Block Driver 23

if (! found || (dp->nhead == int_dp.nhead &&
dp->nspt == int_dp.nspt)) {

* dp = int_dp;
printf ("Using INT 0x%x", parm_int);

} else
printf ("Using INT 0x13(08)");

} else {
printf ("Using patched");
/*
* Avoid incomplete patching.
*/

if (at.at_dtype [u] == 0)
at.at_dtype [u] = 1;

if (dp->nspt == 0)
dp->nspt = 17;

}

#if VERBOSE > 0
printf (" drive %d parameters\n", u);

cmn_err (CE_CONT,
"at%d: ncyl=%d nhead=%d wpcc=%d eccl=%d ctrl=%d landc=%d "
"nspt=%d\n", u, _CHAR2_TO_USHORT (dp->ncyl), dp->nhead,
_CHAR2_TO_USHORT (dp->wpcc), dp->eccl, dp->ctrl,
_CHAR2_TO_USHORT (dp->landc), dp->nspt);

#endif
}

/* Initialize Drive Size. */
for (u = 0, dp = atparm; u < at_drive_ct; ++ dp, ++ u) {

if (at.at_dtype [u] == 0)
continue;

pparm [N_ATDRV * NPARTN + u].p_size =
(long) _CHAR2_TO_USHORT (dp->ncyl) * dp->nhead *

dp->nspt;
}

/* Initialize Drive Controller. */
atreset ();

}

Unload Routine
Function atunload() is called when this driver is unloaded from memory — or would be, if COHERENT 4.2
supported loadable drivers.

LOCAL void
atunload ()
{
}

Reset the Controller
Function atreset() resets the hard-disk controller and defines drive characteristics.

LOCAL void
atreset ()
{

int u;
struct hdparm_s * dp;

TUTORIALS

24 Block Driver

/* Reset controller for a minimum of 4.8 microseconds. */
outb (HF_REG, 4);
for (u = 100; -- u != 0;)

/* DO NOTHING */ ;
outb (HF_REG, atparm [0].ctrl & 0x0F);
ATBSYW (0);

/*
* Some IDE drives always timeout on initial reset.
* So don’t report first timeout.
*/

static one_bad;

if (one_bad)
printf ("at: hd controller reset timeout\n");

else
one_bad = 1;

}

/* Initialize drive parameters. */
for (u = 0, dp = atparm; u < at_drive_ct; ++ dp, ++ u) {

if (at.at_dtype [u] == 0)
continue;

ATBSYW (u);

/* Set drive characteristics. */
outb (HF_REG, dp->ctrl);
outb (HDRV_REG, 0xA0 + (u << 4) + dp->nhead - 1);

outb (AUX_REG, _CHAR2_TO_USHORT (dp->wpcc) / 4);
outb (NSEC_REG, dp->nspt);
outb (SEC_REG, 0x01);
outb (LCYL_REG, dp->ncyl [0]);
outb (HCYL_REG, dp->ncyl [1]);
outb (CSR_REG, SETPARM_CMD);
ATBSYW (u);

/* Restore heads. */
outb (CSR_REG, RESTORE (0));
ATBSYW (u);

}
}

Open Routine
Function atopen() is called when a user’s application invokes the system call open() for an AT device. A pointer to
this function appears in field c_open of the CON structure at the end of this driver.

This function validating the minor device (that is, ensures that the user is attempting to open a devices that exists),
and updates the paritition table if necessary.

LOCAL void
atopen (dev, mode)
dev_t dev;
{

int d; /* drive */
int p; /* partition */

p = minor (dev) % (N_ATDRV * NPARTN);
if (minor (dev) & SDEV) {

d = minor (dev) % N_ATDRV;
p += N_ATDRV * NPARTN;

} else
d = minor (dev) / NPARTN;

TUTORIALS

Block Driver 25

if (d >= N_ATDRV || at.at_dtype [d] == 0) {
printf ("atopen: drive %d not present ", d);
set_user_error (ENXIO);
return;

}
if (minor (dev) & SDEV)

return;

/* If partition not defined read partition characteristics. */
if (pparm [p].p_size == 0)

fdisk (makedev (major (dev), SDEV + d), & pparm [d * NPARTN]);

/* Ensure partition lies within drive boundaries and is non-zero size. */
if (pparm [p].p_base + pparm [p].p_size >

pparm [d + N_ATDRV * NPARTN].p_size) {
printf ("atopen: p_size too big ");
set_user_error (EINVAL);

} else if (pparm [p].p_size == 0) {
printf ("atopen: p_size zero ");
set_user_error (ENODEV);

}
}

Read Routine
Function atread() is called when a user’s application invokes the system call read() for an AT device. A pointer to
this function appears in field c_read of the CON structure at the end of this driver. This function simply invokes
the common code for processing raw I/O.

LOCAL void
atread (dev, iop)
dev_t dev;
IO *iop;
{

ioreq (NULL, iop, dev, BREAD, BFRAW | BFBLK | BFIOC);
}

Write Routine
Function atwrite() is called when a user’s application invokes the system call write() for an AT device. A pointer to
this function appears in field c_write of the CON structure at the end of this driver. This function simply invokes
the common code for processing raw I/O.

LOCAL void
atwrite (dev, iop)
dev_t dev;
IO *iop;
{

ioreq (NULL, iop, dev, BWRITE, BFRAW | BFBLK | BFIOC);
}

ioctl Routine
Function atioctl() is called when a user’s application invokes the system call ioctl() for an AT device. A pointer to
this function appears in field c_ioctl of the CON structure at the end of this driver. This function validates the
minor device and updates the paritition table if necessary.

LOCAL void
atioctl (dev, cmd, vec)
dev_t dev;
int cmd;
char *vec;
{

int d;

TUTORIALS

26 Block Driver

/* Identify drive number. */
if (minor (dev) & SDEV)

d = minor (dev) % N_ATDRV;
else

d = minor (dev) / NPARTN;

/* Identify input / output request. */
switch (cmd) {
case HDGETA:

/* Get hard disk attributes. */
kucopy (atparm + d, vec, sizeof (atparm [0]));
break;

case HDSETA:
/* Set hard disk attributes. */
ukcopy (vec, atparm + d, sizeof (atparm [0]));
at.at_dtype [d] = 1; /* set drive type nonzero */
pparm [N_ATDRV * NPARTN + d].p_size =

(long) _CHAR2_TO_USHORT (atparm [d].ncyl) *
atparm [d].nhead * atparm [d].nspt;

atreset ();
break;

default:
set_user_error (EINVAL);
break;

}
}

Watch for Interrupts
Function atwatch() watches for interrupts. If drvl[AT_MAJOR] is greater than zero, this function decrements it. If
it decrements to zero, it simulates a hardware interrupt.

LOCAL void
atwatch()
{

BUF * bp = at.at_actf;
int s;

s = sphi ();
if (-- drvl [AT_MAJOR].d_time > 0) {

spl (s);
return;

}

/* Reset hard disk controller, cancel request. */
atreset ();
if (at.at_tries ++ < SOFTLIM) {

atstart ();
} else {

printf ("at%d%c: bno=%lu head=%u cyl=%u nsec=%u tsec=%d "
"dsec=%d <Watchdog Timeout>\n", at.at_drv,
(bp->b_dev & SDEV) ? ’x’ : at.at_partn % NPARTN + ’a’,
bp->b_bno, at.at_head, at.at_cyl, at.at_nsec,
at.at_totalsec, inb (NSEC_REG));

at.at_actf->b_flag |= BFERR;
atdone (at.at_actf);

}
spl (s);

}

Block Function

TUTORIALS

Block Driver 27

Function atblock() queues a block to the disk. It also ensures that the transfer is within the disk partition.

LOCAL void
atblock (bp)
BUF * bp;
{

struct fdisk_s * pp;
int partn = minor (bp->b_dev) % (N_ATDRV * NPARTN);
int s;

bp->b_resid = bp->b_count;
if (minor (bp->b_dev) & SDEV)

partn += N_ATDRV * NPARTN;
pp = pparm + partn;

/* Check for read at end of partition. */
if (bp->b_req == BREAD && bp->b_bno == pp->p_size) {

bdone (bp);
return;

}

/* Range check disk region. */
if (bp->b_bno + (bp->b_count / BSIZE) > pp->p_size ||

bp->b_count % BSIZE != 0 || bp->b_count == 0) {
bp->b_flag |= BFERR;
bdone (bp);
return;

}

s = sphi ();
bp->b_actf = NULL;
if (at.at_actf == NULL)

at.at_actf = bp;
else

at.at_actl->b_actf = bp;
at.at_actl = bp;
spl (s);

if (at.at_state == SIDLE)
if (atdequeue ())

atstart ();
}

Dequeue a Request
Function atdequeue() obtains the next request for disk I/O.

LOCAL int
atdequeue ()
{

BUF * bp;
struct fdisk_s * pp;
struct hdparm_s * dp;
unsigned int nspt;
ldiv_t addr;
unsigned short secs;
unsigned short newsec;

at.at_tries = 0;
if ((bp = at.at_actf) == NULL)

return 0;

TUTORIALS

28 Block Driver

at.at_partn = minor (bp->b_dev) % (N_ATDRV * NPARTN);
if (minor (bp->b_dev) & SDEV) {

at.at_partn += N_ATDRV * NPARTN;
at.at_drv = minor (bp->b_dev) % N_ATDRV;

} else
at.at_drv = minor (bp->b_dev) / NPARTN;

nspt = atparm [at.at_drv].nspt;
at.at_addr = bp->b_paddr;
pp = pparm + at.at_partn;
at.at_bno = pp->p_base + bp->b_bno;

dp = atparm + at.at_drv;
addr = ldiv (at.at_bno, dp->nspt);
at.at_sec = addr.rem + 1;
addr = ldiv (addr.quot, dp->nhead);
at.at_cyl = addr.quot;
at.at_head = addr.rem;

The following code was added to the driver for COHERENT 4.2, to speed I/O on the AT disk. The following explains
how this speed-up works.

It is unclear why, but IDE writes appear always to lose a revolution, even though reads work comfortably. This
may be caused by IDE drives trying to maintain the synchronous semantics of the write, or it may be due to the
COHERENT kernel’s not making the read time and the slack being taken up by track-buffering.

In either case, COHERENT gains a vast improvement in throughput for writes and a modest gain for reads by
looking ahead in the request chain and coalescing separate requests to consecutive blocks into a single multi-
sector request.

newsec = secs = bp->b_count / BSIZE;
while (bp->b_actf != NULL && bp->b_actf->b_bno == bp->b_bno + secs &&

bp->b_actf->b_req == bp->b_req &&
bp->b_actf->b_dev == bp->b_dev) {
/*
* Take care to bound the length of the combined request to a
* single byte count of sectors.
*/

bp = bp->b_actf;

if (newsec + (secs = bp->b_count / BSIZE) > 256)
break;

newsec += secs;
}
at.at_totalsec = at.at_nsec = newsec;
return 1;

}

Send Data to the Disk
Function atsend() actually moves data onto the disk.

LOCAL void
atsend (addr)
paddr_t addr;
{

addr = P2P (addr);
repoutsw (DATA_REG, (unsigned short *) __PTOV (addr), BSIZE / 2);

}

Receive Data from the Disk
Function atrecv() actually receives data from the disk.

TUTORIALS

Block Driver 29

LOCAL void
atrecv (addr)
paddr_t addr;
{

addr = P2P (addr);
repinsw (DATA_REG, (unsigned short *) __PTOV (addr), BSIZE / 2);

}

Abandon a Request
Function atabandon() abandons a request for disk I/O.

LOCAL void
atabandon ()
{

buf_t *bp;

/* Abandon this operation. */
while ((bp = at.at_actf) != NULL) {

at.at_actf = bp->b_actf;
bp->b_flag |= BFERR;
bdone (bp);

}
at.at_state = SIDLE;

}

Start a Read/Write Operation
Function atstart() starts or restarts the next disk read/write operation.

LOCAL void
atstart ()
{

struct hdparm_s * dp;

/* Check for repeated access to most recently identified bad track. */
ATBSYW (at.at_drv);
dp = atparm + at.at_drv;
outb (HF_REG, dp->ctrl);
outb (HDRV_REG, (at.at_drv << 4) + at.at_head + 0xA0);

outb (NSEC_REG, at.at_nsec);
outb (SEC_REG, at.at_sec);
outb (LCYL_REG, at.at_cyl);
outb (HCYL_REG, at.at_cyl >> 8);

if (inb (NSEC_REG) != (at.at_nsec & 0xFF)) {
/*
* If we get here, things are confused. We should reset the
* controller and retry whatever operation we want to start
* now.
*/

drvl [AT_MAJOR].d_time = 1;
return;

}

TUTORIALS

30 Block Driver

if (at.at_actf->b_req == BWRITE) {
outb (CSR_REG, WRITE_CMD);
while (ATDRQ () == 0) {

atabandon ();
return;

}
atsend (at.at_addr);
at.at_state = SWRITE;

} else {
outb (CSR_REG, READ_CMD);
at.at_state = SREAD;

}

drvl [AT_MAJOR].d_time = ATSECS;
}

Interrupt Handler
Function atintr() handles interrupts. It clears the interrupt, and defers its processing until a more suitable time.

void
atintr ()
{

(void) inb (CSR_REG); /* clears controller interrupt */
atdefer ();

}

Defer Service of an Interrupt
Function atdefer() actually services the hard-disk interrupt. It transfers the required data, and updates the state
of the device.

LOCAL void
atdefer ()
{

BUF * bp = at.at_actf;
switch (at.at_state) {
case SRETRY:

atstart ();
break;

case SREAD:
/* Check for I/O error before waiting for data. */
if (aterror ()) {

atrecov ();
break;

}

/* Wait for data, or forever. */
if (ATDRQ () == 0) {

atabandon ();
break;

}

/* Read data block.*/
atrecv (at.at_addr);

/* Check for I/O error after reading data. */
if (aterror ()) {

atrecov ();
break;

}

TUTORIALS

Block Driver 31

/*
* Every time we transfer a block, bump the timeout to prevent
* very large multisector transfers from timing out due to
* sheer considerations of volume.
*/

drvl [AT_MAJOR].d_time = ATSECS * 2;

at.at_addr += BSIZE;
bp->b_resid -= BSIZE;
at.at_tries = 0;
at.at_bno ++;

/*
* Check for end of transfer (total, or simply part of a large
* combined request).
*/

if (-- at.at_nsec == 0)
atdone (bp);

else if (bp->b_resid == 0) {
at.at_addr = (at.at_actf = bp->b_actf)->b_paddr;
bdone (bp);

}
break;

case SWRITE:
/* Check for I/O error. */
if (aterror ()) {

atrecov ();
break;

}

/* bump timeout again, for reasons given above. */
drvl [AT_MAJOR].d_time = ATSECS * 2;

at.at_addr += BSIZE;
bp->b_resid -= BSIZE;
at.at_tries = 0;
at.at_bno ++;

/*
* Check for end of transfer, either the real end or the end
* of a block boundary in a combined transfer.
*/

if (-- at.at_nsec == 0) {
atdone (bp);
break;

} else if (bp->b_resid == 0)
at.at_addr = bp->b_actf->b_paddr;

/* Wait for ability to send data, or forever. */
while (ATDRQ () == 0) {

atabandon ();
break;

}

/* Send data block. */
atsend (at.at_addr);
if (bp->b_resid == 0) {

at.at_actf = bp->b_actf;
bdone (bp);

}
}

}

Check for an Error

TUTORIALS

32 Block Driver

Function aterror() checks for drive error. If it finds an error, it increments the error count and prints a message
that reports the error. It returns zero if it did not find an error, and one if it did.

LOCAL int
aterror ()
{

BUF * bp = at.at_actf;
int csr;
int aux;

if ((csr = inb (ATSREG)) & (ERR_ST | WFLT_ST)) {
aux = inb (AUX_REG);

if (aux & BAD_ERR) {
at.at_tries = BADLIM;

} else if (++ at.at_tries < SOFTLIM)
return 1;

printf ("at%d%c: bno =%lu head =%u cyl =%u",
at.at_drv,
(bp->b_dev & SDEV) ? ’x’ : at.at_partn % NPARTN + ’a’,
(bp->b_count / BSIZE) + bp->b_bno - at.at_nsec,
at.at_head, at.at_cyl);

if ((csr & (RDY_ST | WFLT_ST)) != RDY_ST)
printf (" csr =%x", csr);

if (aux & (DAM_ERR | TR0_ERR | ID_ERR | ECC_ERR | ABT_ERR))
printf (" aux =%x", aux);

if (aux & BAD_ERR)
printf (" <Block Flagged Bad>");

if (at.at_tries < HARDLIM)
printf (" retrying...");

printf ("\n");
return 1;

}
return 0;

}

Attempt to Recover from an Error
Function atrecov() attempts to recover from a reported error.

LOCAL void
atrecov ()
{

BUF * bp = at.at_actf;
int cmd = SEEK (0);
int cyl = at.at_cyl;

switch (at.at_tries) {
case 1:
case 2:

/* Move in 1 cylinder, then retry operation */
if (--cyl < 0)

cyl += 2;
break;

case 3:
case 4:

/* Move out 1 cylinder, then retry operation */
if (++ cyl >= _CHAR2_TO_USHORT (atparm [at.at_drv].ncyl))

cyl -= 2;
break;

TUTORIALS

Block Driver 33

case 5:
case 6:

/* Seek to cylinder 0, then retry operation */
cyl = 0;
break;

default:
/* Restore drive, then retry operation */
cmd = RESTORE (0);
cyl = 0;
break;

}

/* Retry operation [after repositioning head] */
if (at.at_tries < HARDLIM) {

drvl [AT_MAJOR].d_time = cmd == RESTORE (0) ? ATSECS * 2 :
ATSECS;

outb (LCYL_REG, cyl);
outb (HCYL_REG, cyl >> 8);
outb (HDRV_REG, (at.at_drv << 4) + 0xA0);
outb (CSR_REG, cmd);
at.at_state = SRETRY;

} else {

/* Give up on block. */
bp->b_flag |= BFERR;
atdone (bp);

}
}

Release the Current I/O Buffer
Function atdone() releases the current I/O buffer.

LOCAL void
atdone (bp)
BUF * bp;
{

at.at_actf = bp->b_actf;
drvl [AT_MAJOR].d_time = 0;
at.at_state = SIDLE;

if (atdequeue ())
atstart ();

bdone (bp);
}

Indicate the Drive Is Not Busy
Function notBusy() indicates that the drive is not busy. See macro NOTBUSY(), defined above.

int
notBusy ()
{

return NOTBUSY ();
}

Indicate Whether Data Have Been Requested
Function dataRequested() indicates whether data have been requested. See macro DATAREQUESTED(), defined
above.

TUTORIALS

34 Block Driver

int
dataRequested ()
{

return DATAREQUESTED ();
}

Report a Timeout, First Version
Function _report_timeout() actually prints the message that reports that an I/O operation has timed out.

static int report_scheduled;
static int report_drv;
LOCAL void
_report_timeout ()
{

printf (timeout_msg, report_drv);
report_scheduled = 0;

}

Report a Timeout, Second Version
Function report_timeout() manages the task of reporting that an I/O request has timed out.

LOCAL void
report_timeout (unit)
int unit;
{

short s = sphi();
if (report_scheduled == 0) {

report_scheduled = 1;
spl(s);

report_drv = unit;
defer (_report_timeout);

} else
spl (s);

}

Wait Until the Controller Is Freed
Function myatbsyw() waits while the controller is busy. It returns zero if the driver timed out while executing this
I/O task; or a non-zero value if it did not.

int
myatbsyw (unit)
int unit;
{

if (busyWait (notBusy, ATSECS * HZ))
return 1;

report_timeout (unit);
return 0;

}

Wait for Controller to Initiate Request
Function atdrq() waits for the controller to initiate a request. It returns zero if the driver timed out while waiting;
or one if it did not.

int
atdrq ()
{

if (busyWait (dataRequested, ATSECS /* * HZ */))
return 1;

report_timeout (at.at_drv);
return 0;

}

TUTORIALS

Block Driver 35

The CON Structure
Finally, the following gives the CON structure for this driver. This structure contains pointers to the functions to
be invoked by the kernel’s system calls. For details on this structure, see the entry for CON in this manual’s
Lexicon.

CON atcon = {
DFBLK | DFCHR, /* Flags */
AT_MAJOR, /* Major index */
atopen, /* Open */
NULL, /* Close */
atblock, /* Block */
atread, /* Read */
atwrite, /* Write */
atioctl, /* Ioctl */
NULL, /* Powerfail */
atwatch, /* Timeout */
atload, /* Load */
atunload /* Unload */

};

Where To Go From Here
The following section gives an example of a driver for a character device. The kernel functions invoked in this
driver are described in this manual’s Lexicon.

TUTORIALS

36 Block Driver

TUTORIALS

Example of a Character Driver

This section gives an example driver for a character device: the COHERENT driver for the 8250-style asynchronous
ports. It is described in the article asy in the COHERENT Lexicon.

In this driver, the minor-device number is a bit map that describes the features of the port, as follows:

0x80 1 for NO modem control, ‘l’ (lower-case ‘‘el’’)
0x40 1 for polled operation (no IRQ service), ‘p’
0x20 1 for RTS/CTS flow control, ‘f’
0x1F The channel number - 0 through 31

Character-device line discipline, which includes such operations as processing backspaces entered and echoing
input characters, is performed in the tty module in COHERENT 4.2. Source code is provided in the 4.2 Device-
Driver Kit. Future releases of COHERENT will use a STREAMS-based line discipline.

Preliminaries
The following prefaces the body of the driver.

Header Files

asy begins by including the following header files.

#include <sys/errno.h>
#include <sys/stat.h>
#include <termio.h>
#include <poll.h>

#include <sys/coherent.h>
#include <kernel/trace.h>
#include <sys/uproc.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/con.h>
#include <sys/devices.h>
#include <sys/sched.h>
#include <sys/asy.h>
#include <sys/ins8250.h>
#include <sys/poll_clk.h>

Manifest Constants

The following gives manifest constants used throughout the driver.

#define IEN_USE_MSI (IE_RxI | IE_TxI | IE_LSI | IE_MSI)
#define IEN_NO_MSI (IE_RxI | IE_TxI | IE_LSI)

#define CTLQ 0021
#define CTLS 0023

#define NUM_IRQ 16 /* PC allows irq numbers 0..15 */
#define BPB 8 /* 8 bits per byte */
#define DTRTMOUT 3 /* DTR seconds for close */
#define LOOP_LIMIT 100 /* safety valve on irq loops */

37

38 Character Driver

/*
* For rawin silo (see poll_clk.h), use last element of si_buf to count
* the number of characters in the silo.
*/
#define SILO_CHAR_COUNT si_buf[SI_BUFSIZ-1]
#define SILO_HIGH_MARK (SI_BUFSIZ-SI_BUFSIZ/4)
#define SILO_LOW_MARK (SI_BUFSIZ/4)
#define MAX_SILO_INDEX (SI_BUFSIZ-2)
#define MAX_SILO_CHARS (SI_BUFSIZ-1)

Macros

asy uses the following macros:

#define RAWIN_FLUSH(in_silo) { \
in_silo->si_ox = in_silo->si_ix; \
in_silo->SILO_CHAR_COUNT = 0; }

#define RAWOUT_FLUSH(out_silo) { out_silo->si_ox = out_silo->si_ix; }
#define channel(dev) (dev & 0x1F)
#define IEN ((a0->a_nms)?IEN_NO_MSI:IEN_USE_MSI)

#define NW_OUTSILO 1 /* bits in need_wake[] entries */

typedef void (* VPTR)(); /* pointer to function returning void */
typedef int (* FPTR)(); /* pointer to function returning int */

Local Functions

The following declares the functions used locally.

void asy_putchar();

/* Configuration functions (local) */
static void cinit();

/* Support functions (local) */
static void add_irq();
static void asy_irq();
static int asy_send();
static void asybreak();
static void asyclock();
static void asycycle();
static void asydump();
static int asyintr();
static void asyparam();
static void asysph();
static void asyspr();
static void asystart();
static void endbrk();
static void irqdummy();
static void upd_irq1();

static int p1(),p2(),p3(),p4();

extern int albaud[], alp_rate[];

Global Variables

asy uses the following global variables: When the command asypatch patches the asy driver for your system’s
configuration of ports, it checks whether its internal value for ASY_VERSION matches this driver’s value. This
prevents the patch utility and the driver from getting out of synch.

TUTORIALS

Character Driver 39

int ASY_VER = ASY_VERSION;
int ASY_HPCL = 1;
int ASY_NUM = 0;
int ASYGP_NUM = 0;
asy0_t asy0[MAX_ASY] = {

{ 0 }
};
asy_gp_t asy_gp[MAX_ASYGP] = {

{ 0 }
};

Static Variables

asy uses the following static variables.

static asy1_t * asy1; /* unused entries have type US_NONE */
static short dummy_port; /* used only during driver startup */
static int poll_divisor; /* set by asyspr(), read by asyclk() */
static char pptbl [MAX_ASY]; /* channel numbers of polled ports */
static int ppnum; /* number of channels in pptbl */

Variables irq0[x] and irq1[x] are lists for IRQ number x. irq0[] has nodes that may possibly cause an IRQ. irq1[]
contains nodes for active devices. Whenever a device becomes active or inactive, irq1 is rebuilt from irq0.

nodespace is an array of the nodes that are available. nextnode points to the next free node. Nodes are taken
from node space only when the driver is loaded.

static FPTR ptbl [PT_MAX] = { asyintr,p1,p2,p3,p4 };
static struct irqnode *irq0[NUM_IRQ], *irq1[NUM_IRQ];
static struct irqnode nodespace[MAX_ASY];
static char need_wake[MAX_ASY];
static char nextnode;
static int initialized; /* for asy_putchar() */

The Load Routine
The first function is asyload(). The kernel invokes this function when the driver is loaded into memory. Because
COHERENT 4.2 does not support loadable drivers, this function is executed only when the kernel boots.

Field c_load in the CON structure contains a pointer to this function.

static void
asyload()
{

int s, chan;
asy0_t *a0;
asy1_t *a1;
TTY *tp;
short port;
char irq;
char speed;
char g;
char sense_ct = 0;

/* Allocate space for asy structs. Possible error return. */
asy1 = (asy1_t *)kalloc(ASY_NUM * sizeof(asy1_t));
if (asy1 == 0) {

printf("asyload: can’t allocate space for %d async devices\n",
ASY_NUM);

return;
}
kclear(asy1, ASY_NUM*sizeof(asy1_t));

TUTORIALS

40 Character Driver

/*
* For each non-null port:
* sense chip type
* write baud rate to sgtty/termio structs
* disable port interrupts
* hang up port
* set default baud rate (also resets UART)
* hook "start" function into line discipline module
* hook "param" function into line discipline module
* hook CS into line discipline module
* if port uses irq
* if not in a port group
* add to irq list
*/

for (chan = 0; chan < ASY_NUM; chan++) {
a0 = asy0 + chan;
a1 = asy1 + chan;
tp = &a1->a_tty;
speed = a0->a_speed;
tp->t_sgttyb.sg_ispeed = tp->t_sgttyb.sg_ospeed = speed;
tp->t_dispeed = tp->t_dospeed = speed;
port = a0->a_port;

/*
* A port address of zero means a skipped entry in the table.
* In this case a1->a_ut keeps its initial value of US_NONE.
*/

if (port) {
dummy_port = port;

/*
* uart_sense() prints port info.
* Do this four times per line.
*/

a1->a_ut = uart_sense(port);
sense_ct++;
if ((sense_ct & 1) == 0)

putchar(’\n’);
else

putchar(’\t’);

s = sphi();
outb(port+MCR, 0);
outb(port+LCR, LC_DLAB);
outb(port+DLL, albaud[speed]);
outb(port+DLH, albaud[speed] >> 8);
outb(port+LCR, LC_CS8);
tp->t_start = asystart;
/* leave tp->t_param at 0 */
tp->t_ddp = (char *) chan;
spl(s);

if (a0->a_irqno && a0->a_asy_gp == NO_ASYGP)
add_irq (a0->a_irqno, asyintr, chan);

}
}

if (sense_ct & 1)
putchar(’\n’);

/* for each port group, add group to irq list */
for (g = 0 ; g < ASYGP_NUM ; g ++)

add_irq (asy_gp [g].irq, ptbl [asy_gp [g].gp_type], g);

TUTORIALS

Character Driver 41

/* Attach irq routines. */
for (irq = 0 ; irq < NUM_IRQ ; irq ++) {

if (irq0 [irq])
setivec (irq, asy_irq);

}
}

The Unload Routine
The kernel invokes function asyunload() when asy is unloaded from memory. As COHERENT 4.2 does not support
loadable drivers, this function is never invoked.

Field c_uload in the CON structure contains a pointer to this function.

static void
asyunload()
{

char chan, irq;

/*
* for each channel:
* disable UART interrupts
* hangup port
* cancel timer
*/

for (chan = 0; chan < ASY_NUM; chan++) {
asy0_t * a0 = asy0 + chan;
asy1_t * a1 = asy1 + chan;
short port = a0->a_port;
TTY *tp = &a1->a_tty;

outb(port+IER, 0);
outb(port+MCR, 0);
timeout (tp->t_rawtim, 0, NULL, 0);

}

/* for each irq, detach irq routine if one was attached */
for (irq = 0 ; irq < NUM_IRQ ; irq ++)

if (irq0 [irq])
clrivec(irq);

/* deallocate dynamic storage */
if (asy1)

kfree (asy1);
}

The Open Routine
The kernel invokes function asyopen() when a user application invokes the system call open() to open a serial port.

Field c_open in the CON structure contains a pointer to this function.

static void
asyopen(dev, mode)
dev_t dev;
int mode;
{

int s;
char msr, mcr;
char chan = channel(dev);
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
short port = a0->a_port;

TUTORIALS

42 Character Driver

/* chip not found */
if (a1->a_ut == US_NONE) {

set_user_error (ENXIO);
goto bad_open;

}

if ((tp->t_flags & T_EXCL) != 0 && ! super()) {
set_user_error (ENODEV);
goto bad_open;

}

/* Can’t open for hardware flow control if modem status
* interrupts are disallowed.
*/

if (a0->a_nms && (dev & CFLOW) != 0) {
set_user_error (ENXIO);
goto bad_open;

}

/* Can’t open a polled port if another driver is using polling. */
if (dev & CPOLL && poll_owner & ~ POLL_ASY) {

set_user_error (EBUSY);
goto bad_open;

}

/* Can’t have both com[13] or both com[24] IRQ at once. */
if (!(dev & CPOLL) && a0->a_ixc) {

struct irqnode *np = irq1[a0->a_irqno];
while (np) {

if (np->func != ptbl[0] || np->arg != chan) {
set_user_error (EBUSY);
goto bad_open;

}
np = np->next_actv;

}
}

/* If port already in use, are new and old open modes compatible? */
if (a1->a_in_use) {

int oldmode = 0, newmode = 0; /* mctl:1 irq:2 flow:4 */

if (a1->a_modc)
oldmode += 1;

if (a1->a_irq)
oldmode += 2;

if (a1->a_flc)
oldmode += 4;

if ((dev & NMODC) == 0)
newmode += 1;

if ((dev & CPOLL) == 0)
newmode += 2;

if (dev & CFLOW)
newmode += 4;

if (oldmode != newmode) {
set_user_error (EBUSY);
goto bad_open;

}
}

At this point, sleep if another process is opening or closing the port. This can happen if:

• Another process is trying a first open and awaiting CD.

• Another process is closing the port after losing CD.

TUTORIALS

Character Driver 43

• A remote process opened the port, spawned a daemon, and disconnected, yet the daemon ignored SIGHUP
and is improperly keeping the port open.

Do not try to set tp->t_flags before this sleep! During the sleep, ttclose() may be called and clear the flags.

while (a1->a_in_use &&
(a1->a_hcls || ((dev & NMODC) == 0 &&

(inb (port + MSR) & MS_RLSD) == 0))) {

if (x_sleep ((char *) & tp->t_open, pritty, slpriSigCatch,
"asyblk") == PROCESS_SIGNALLED) {

set_user_error (EINTR);
goto bad_open;

}
}

/* If channel not in use, mark it as such. */
if (a1->a_in_use == 0) {

/* Save modes for this open attempt to avoid future conflicts.
* Then start asycycle() for this port.
*/

if (dev & NMODC) {
tp->t_flags &= ~T_MODC;
a1->a_modc = 0;

} else {
tp->t_flags |= T_MODC;
a1->a_modc = 1;

}

if (dev & CPOLL)
a1->a_irq = 0;

else
a1->a_irq = 1;

if (dev & CFLOW) {
tp->t_flags |= T_CFLOW;
a1->a_flc = 1;

} else {
tp->t_flags &= ~T_CFLOW;
a1->a_flc = 0;

}
}
a1->a_in_use++;

/* From here, error exit is bad_open_u. */
if (tp->t_open == 0) { /* not already open */

silo_t * in_silo = &a1->a_in;

if (!(dev & CPOLL)) {
upd_irq1(a0->a_irqno);
a1->a_has_irq = 1;

}

/* Need to start cycling to scan for CD. */
asycycle(chan);

s = sphi();
/* Raise basic modem control lines even if modem
* control hasn’t been specified.
* MC_OUT2 turns on NON-open-collector IRQ line from the UART.
* since we can’t have two UART’s on same IRQ with MC_OUT2 on
*/

mcr = MC_RTS | MC_DTR;

TUTORIALS

44 Character Driver

if (dev & CPOLL) {
outb(port+MCR, mcr);

} else {
outb(port+MCR, mcr | a0->a_outs);
outb(port+IER, IEN);

}

if ((dev & NMODC) == 0) { /* want modem control? */
tp->t_flags |= T_HOPEN | T_STOP;
for (;;) { /* wait for carrier */

msr = inb(port+MSR);
/* If carrier detect present
* if port not already open
* break out of loop and finish first open
* else
* do second (or third, etc.) open
*/

if (msr & MS_RLSD)
break;

/* wait for carrier */
if (x_sleep ((char *) & tp->t_open, pritty,

slpriSigCatch, "need CD")
== PROCESS_SIGNALLED) {

outb(port + MCR, 0);
outb(port + IER, 0);

set_user_error (EINTR);
tp->t_flags &= ~(T_HOPEN | T_STOP);
spl(s);
goto bad_open_u;

}
}

/* Mark that we are no longer hanging in open.
* Allow output over the port unless hardware flow
* control says not to.
*/

tp->t_flags &= ~T_HOPEN;
tp->t_flags &= ~T_STOP;
if (!(tp->t_flags & T_CFLOW) || (msr & MS_CTS))

a1->a_ohlt = 0;
else

a1->a_ohlt = 1;

/* Awaken any other opens on same device. */
wakeup((char *)(&tp->t_open));

}
ttopen(tp); /* stty inits */
tp->t_flags |= T_CARR;
if (ASY_HPCL)

tp->t_flags |= T_HPCL;

asyparam(tp); /* gimmick: do this while t_open is zero */

/* TO DO: flush UART input register(s) */
spl(s);

/* Turn on polling for the port. */
if (dev & CPOLL) {

a1->a_poll = 1;
asyspr();

}
} /* end of first-open case */

TUTORIALS

Character Driver 45

tp->t_open++;
ttsetgrp(tp, dev, mode);
return;

bad_open_u:
a1->a_in_use--;
wakeup((char *)(&tp->t_open));

bad_open:
return;

}

The Close Routine
The kernel invokes function asyclose() when a user application invokes the system call close() to close a serial
port.

Field c_close in the CON structure contains a pointer to this function.

static void
asyclose(dev, mode)
dev_t dev;
int mode;
{

int chan = channel(dev);
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
int flags, maj;
int s;
short port = a0->a_port;
char lsr;

if (--tp->t_open)
goto not_last_close;

s = sphi();

a1->a_hcls = 1; /* disallow reopen till done closing */
flags = tp->t_flags; /* save flags - ttclose() zeroes them */
ttclose(tp);

/* Wait for output silo and UART xmit buffer to empty.
* Allow signal to break the sleep.
*/

for (;;) {
int chipEmpty = 0, siloEmpty = 0;

lsr = inb(port + LSR);
chipEmpty = (lsr & LS_TxIDLE);
siloEmpty = (out_silo->si_ix == out_silo->si_ox);

if (chipEmpty && siloEmpty)
break;

need_wake[chan] |= NW_OUTSILO;
if (x_sleep ((char *) out_silo, pritty, slpriSigCatch,

"asyclose") == PROCESS_SIGNALLED) {
RAWOUT_FLUSH(out_silo);
break;

}
}
need_wake[chan] &= ~NW_OUTSILO;

TUTORIALS

46 Character Driver

/* If not hanging in open */
if ((flags & T_HOPEN) == 0) {

/* Disable interrupts. */
outb(port+IER, 0);
outb(port+MCR, inb(port+MCR) & ~MC_OUTS);

}

/* If hupcls */
if (flags & T_HPCL) {

/* Hangup port - drop DTR and RTS. */
outb(port+MCR, inb(port+MCR) & MC_OUTS);

/* Hold dtr low for timeout */
maj = major(dev);
drvl[maj].d_time = 1;

x_sleep ((char *) & drvl [maj].d_time, pritty, slpriNoSig,
"drop DTR");

drvl[maj].d_time = 0;
}

a1->a_poll = 0;
asyspr();
RAWIN_FLUSH(in_silo);
a1->a_hcls = 0; /* allow reopen - done closing */
wakeup((char *)(&tp->t_open));
spl(s);
a1->a_in_use--;

if (!(dev & CPOLL))
upd_irq1(a0->a_irqno);

return;

not_last_close:
a1->a_in_use--;
wakeup((char *)(&tp->t_open));
return;

}

The Read Routine
The kernel invokes function asyread() when a user application invokes the system call read() to read data from a
serial port.

Field c_read in the CON structure contains a pointer to this function.

static void
asyread(dev, iop)
dev_t dev;
register IO * iop;
{

int chan = channel(dev);
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
ttread(tp, iop);

}

The Timeout Routine
The kernel invokes function asytimer() when a timeout occurs.

Field c_timer in the CON structure contains a pointer to this function.

TUTORIALS

Character Driver 47

static void
asytimer(dev)
dev_t dev;
{

if (++drvl[major(dev)].d_time > DTRTMOUT)
wakeup((char *)&drvl[major(dev)].d_time);

}

The Write Routine
The kernel invokes function asywrite() when a user application invokes the system call write() to write data to this
port.

Field c_write in the CON structure contains a pointer to this function.

static void
asywrite(dev, iop)
dev_t dev;
register IO * iop;
{

int chan = channel(dev);
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
short port = a0->a_port;
register int c;

/* Treat user writes through tty driver. */
if (iop->io_seg != IOSYS) {

ttwrite(tp, iop);
return;

}

/* Treat kernel writes by blocking on transmit buffer. */
while ((c = iogetc(iop)) >= 0) {

/* Wait until transmit buffer is empty.
* Check twice to prevent critical race with interrupt handler.
*/

for (;;) {
if (inb(port+LSR) & LS_TxRDY)

if (inb(port+LSR) & LS_TxRDY)
break;

}

/* Output the next character. */
outb(port+DREG, c);

}
}

The ioctl Routine
The kernel invokes function asyioctl() when a user application invokes the system call ioctl() to manipulate a
serial device.

Field c_open in the CON structure contains a pointer to this function.

TUTORIALS

48 Character Driver

static void
asyioctl(dev, com, vec)
dev_t dev;
int com;
struct sgttyb *vec;
{

int chan = channel(dev);
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
int s;
int temp;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
short port = a0->a_port;
unsigned char msr, mcr, lcr, ier;
char do_ttioctl = 0;
char do_asyparam = 0;

s = sphi();
ier = inb(port+IER);
mcr = inb(port+MCR); /* get current MCR register status */
lcr = inb(port+LCR); /* get current LCR register status */

/* If command will drain output, do the drain now
* before calling ttioctl().
* Don’t do this for 286 kernel: we’re running out of code space.
*/

switch(com) {

case TCSETAW:
case TCSETAF:
case TCSBRK:
case TIOCSETP:

/* Wait for output silo and UART xmit buffer to empty.
* Allow signal to break the sleep.
*/

for (;;) {
if (! ttoutp (tp) &&

out_silo->si_ix == out_silo->si_ox &&
(inb (port + LSR) & LS_TxIDLE) != 0)

break;
need_wake[chan] |= NW_OUTSILO;

if (x_sleep ((char *) out_silo, pritty, slpriSigCatch,
"asydrain") == PROCESS_SIGNALLED)

break;
}
need_wake [chan] &= ~NW_OUTSILO;

}

switch(com) {
case TIOCSBRK: /* set BREAK */

outb (port + LCR, lcr | LC_SBRK);
break;

case TIOCCBRK: /* clear BREAK */
outb (port + LCR, lcr & ~ LC_SBRK);
break;

case TIOCSDTR: /* set DTR */
outb (port + MCR, mcr | MC_DTR);
break;

TUTORIALS

Character Driver 49

case TIOCCDTR: /* clear DTR */
outb (port + MCR, mcr & ~ MC_DTR);
break;

case TIOCSRTS: /* set RTS */
outb (port + MCR, mcr | MC_RTS);
break;

case TIOCCRTS: /* clear RTS */
outb (port + MCR, mcr & ~ MC_RTS);
break;

case TIOCRSPEED: /* set "raw" I/O speed divisor */
outb (port + LCR, lcr | LC_DLAB); /* set speed latch bit */
outb (port + DLL, (unsigned) vec);
outb (port + DLH, (unsigned) vec >> 8);
outb (port + LCR, lcr); /* reset latch bit */
break;

case TIOCWORDL: /* set word length and stop bits */
outb (port + LCR, ((lcr & ~ 0x7) | ((unsigned) vec & 0x7)));
break;

case TIOCRMSR: /* get CTS/DSR/RI/RLSD (MSR) */
msr = inb (port + MSR);
temp = msr >> 4;
kucopy (& temp, (unsigned *) vec, sizeof (unsigned));
break;

case TIOCFLUSH: /* Flush silos here, queues in tty.c */
RAWIN_FLUSH (in_silo);
RAWOUT_FLUSH (out_silo);
do_ttioctl = 1;
break;

/* If port parameters change, plan to call asyparam().
* Need to check now before structs are updated.
*/

case TCSETA:
case TCSETAW:
case TCSETAF:

{
struct termio trm;

ukcopy (vec, & trm, sizeof (struct termio));
if (trm.c_cflag != tp->t_termio.c_cflag)

do_asyparam = 1;
}
do_ttioctl = 1;
break;

case TIOCSETP:
case TIOCSETN:

{
struct sgttyb sg;

ukcopy(vec, &sg, sizeof(struct sgttyb));
if (sg.sg_ispeed != tp->t_sgttyb.sg_ispeed ||

((sg.sg_flags ^ tp->t_sgttyb.sg_flags) & ANYP) != 0)
do_asyparam = 1;

}
do_ttioctl = 1;
break;

TUTORIALS

50 Character Driver

default:
do_ttioctl = 1;

}

outb (port + IER, ier);
if (do_ttioctl)

ttioctl (tp, com, vec);
spl (s);
if (do_asyparam)

asyparam (tp);

/* Things to be done after calling ttioctl(). */
switch(com) {
case TCSBRK:

/* Send 0.25 second break:
* 1. Turn on break level.
* 2. Set timer to turn off break level 0.25 sec later.
* 3. Sleep till timer expires.
* 4. Turn off break level.
*/

outb (port + LCR, lcr | LC_SBRK);
a1->a_brk = 1;
timeout (& tp->t_sbrk, HZ / 4, endbrk, chan);

while (a1->a_brk)
x_sleep (a1, pritty, slpriNoSig, "asybreak");

outb (port + LCR, lcr & ~ LC_SBRK);
}

}

Turn Off the Break Level
Function endbrk() turns off the break level. Called from a timeout after the function ioctl(fd, TCSBRK, 0).

void
endbrk(chan)
int chan;
{

asy1_t *a1 = asy1 + chan;
a1->a_brk = 0;
wakeup (a1);

}

Read Parameters
Function asyparam() reads parameters from the port.

static void
asyparam(tp)
TTY * tp;
{

int chan = (int)tp->t_ddp;
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
short port = a0->a_port;
int s;
int write_baud=1, write_lcr=1;
unsigned char mcr, newlcr, speed, oldSpeed;
unsigned short cflag = tp->t_termio.c_cflag;

TUTORIALS

Character Driver 51

speed = cflag & CBAUD;
switch (cflag & CSIZE) {
case CS5: newlcr = LC_CS5; break;
case CS6: newlcr = LC_CS6; break;
case CS7: newlcr = LC_CS7; break;
case CS8: newlcr = LC_CS8; break;
}

if (cflag & CSTOPB)
newlcr |= LC_STOPB;

if (cflag & PARENB) {
newlcr |= LC_PARENB;
if ((cflag & PARODD) == 0)

newlcr |= LC_PAREVEN;
}

/* Don’t bang on the UART needlessly.
* Writing baud rate resets the port, which loses characters.
* You want this on first open, NOT on later opens.
*/

oldSpeed = a0->a_speed;

if (speed == oldSpeed && tp->t_open) {
write_baud = 0;
if (newlcr == a1->a_lcr) {

write_lcr = 0;
}

}
a0->a_speed = speed;
a1->a_lcr = newlcr;

if (write_lcr) {
char ier_save;
s = sphi();
ier_save = inb(port+IER);

if (write_baud) {
if (speed) {

short divisor = albaud [speed];

if (oldSpeed == 0) {
/* if previous baud rate was zero,
* need to go off hook. */

mcr = inb(port+MCR) | (MC_RTS | MC_DTR);
outb(port+MCR, mcr);

}

outb(port+LCR, LC_DLAB);
outb(port+DLL, divisor);
outb(port+DLH, divisor >> 8);

} else {
/* Baud rate of zero means hang up. */
mcr = inb(port+MCR) & ~(MC_RTS | MC_DTR);
outb(port+MCR, mcr);

}
}

outb(port+LCR, newlcr);
if (a1->a_ut == US_16550A)

outb(port+FCR, FC_ENABLE | FC_Rx_RST | FC_Rx_08);
outb(port+IER, ier_save);
spl(s);

}

TUTORIALS

52 Character Driver

if (write_baud)
asyspr ();

}

Start Processing
Function asystart() starts processing of data.

static void
asystart(tp)
TTY * tp;
{

int chan = (int)tp->t_ddp;
asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
short port = a0->a_port;
int s;
int need_xmit = 1; /* True if should start sending data now. */
silo_t *out_silo = &a1->a_out;
char lsr;

/* Read line status register AFTER disabling interrupts. */
s = sphi ();
lsr = inb (port + LSR);

/* Process break indication.
* NOTE: Break indication cleared when line status register was read.
*/

if (lsr & LS_BREAK)
defer (asybreak, chan);

/* If no output data, it may be time to finish closing the port;
* but won’t need another xmit interrupt.
*/

if (out_silo->si_ix == out_silo->si_ox) {
if (need_wake[chan] & NW_OUTSILO) {

need_wake[chan] &= ~NW_OUTSILO;
wakeup((char *)out_silo);

}
need_xmit = 0;

}

/* Do nothing if output is stopped. */
if (tp->t_flags & T_STOP)

need_xmit = 0;
if (a1->a_ohlt)

need_xmit = 0;

/* Start data transmission by writing to UART xmit reg. */
if ((lsr & LS_TxRDY) && need_xmit) {

int xmit_count;
xmit_count = (a1->a_ut == US_16550A)?16:1;
asy_send(out_silo, port+DREG, xmit_count);

}
spl(s);

}

The Poll Routine
The kernel invokes function asypoll() when a user application invokes the system call poll() to poll a serial port.

Field c_poll in the CON structure contains a pointer to this function.

TUTORIALS

Character Driver 53

static int
asypoll(dev, ev, msec)
dev_t dev;
int ev;
int msec;
{

int chan = channel(dev);
asy1_t *a1 = asy1 + chan;
TTY *tp = & a1->a_tty;
return ttpoll(tp, ev, msec);

}

Wake Up Sleeping Devices
Function asycycle() wakes up of any sleeping ports at regular intervals.

static void
asycycle(chan)
int chan;
{

asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
short port = a0->a_port;
int s;
char msr, mcr;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
int n, ch;
int do_start = 1;
unsigned char iir;

/* Check Carrier Detect (RLSD).
* Modem status interrupts were not enabled due to 8250 hardware bug.
* Enabling modem status and receive interrupts may cause lockup
* on older parts.
*/

if (tp->t_flags & T_MODC) {
/* Get status */
msr = inb(port+MSR);

/* Carrier changed. */
if ((msr & MS_RLSD) && !(tp->t_flags & T_CARR)) {

/* Carrier is on - wakeup open. */
s = sphi();
tp->t_flags |= T_CARR;
spl(s);
wakeup((char *)(&tp->t_open));

}

if (!(msr & MS_RLSD) && (tp->t_flags & T_CARR)) {
s = sphi();
RAWIN_FLUSH(in_silo);
RAWOUT_FLUSH(out_silo);
tp->t_flags &= ~T_CARR;
spl(s);
tthup(tp);

}
}

TUTORIALS

54 Character Driver

/* Empty raw input buffer.
* The line discipline module (tty.c) will set T_ISTOP true when the
* tt input queue is nearly full (tp->t_iq.cq_cc >= IHILIM), and make
* T_ISTOP false when it’s ready for more input.
* When T_ISTOP is true, ttin() simply discards the character passed.
*/

if (!(tp->t_flags & T_ISTOP)) {
while (in_silo->SILO_CHAR_COUNT > 0) {

s = sphi();
ttin(tp, in_silo->si_buf[in_silo->si_ox]);
if (in_silo->si_ox < MAX_SILO_INDEX)

in_silo->si_ox++;
else

in_silo->si_ox = 0;
in_silo->SILO_CHAR_COUNT--;
spl(s);

}
}

/* Hardware flow control.
* Check CTS to see if we need to halt output.
* (MS_INTR should have done this - repeat code here to be sure)
* Check input silo to see if we need to raise RTS.
*/

if (tp->t_flags & T_CFLOW) {
/* Get status */
msr = inb(port+MSR);
s = sphi();
if (msr & MS_CTS)

a1->a_ohlt = 0;
else

a1->a_ohlt = 1;
spl(s);

/* If using hardware flow control, see if we need to drop RTS. */
if ((tp->t_flags & T_CFLOW)
&& (in_silo->SILO_CHAR_COUNT > SILO_HIGH_MARK)) {

s = sphi();
mcr = inb(port+MCR);
if (mcr & MC_RTS) {

outb(port+MCR, mcr & ~MC_RTS);
}
spl(s);

}

/* If input silo below low mark, assert RTS */
if (in_silo->SILO_CHAR_COUNT <= SILO_LOW_MARK) {

s = sphi();
mcr = inb(port+MCR);

if ((mcr & MC_RTS) == 0) {
outb(port+MCR, mcr | MC_RTS);

}
spl(s);

}
}

/* Calculate free output slot count. */
n = sizeof(out_silo->si_buf) - 1;
n += out_silo->si_ox - out_silo->si_ix;
n %= sizeof(out_silo->si_buf);

TUTORIALS

Character Driver 55

/* Fill raw output buffer */
for (;;) {

if (--n < 0)
break;

s = sphi();
ch = ttout(tp);
spl(s);
if (ch < 0)

break;

s = sphi();
out_silo->si_buf[out_silo->si_ix] = ch;
if (out_silo->si_ix >= sizeof(out_silo->si_buf) - 1)

out_silo->si_ix = 0;
else

out_silo->si_ix++;
spl(s);

}

/* if port has an interrupt pending (probably missed an irq)
* the following two loops should not be merged
* - need ALL port irq’s inactive at once
* for each port on this irq line (use irq1 for this)
* disable interrupts (clear IER)
* for each port on this irq line
* restore interrupts
*/

if (a1->a_has_irq && ((iir = inb (port + IIR)) & 1) == 0) {
struct irqnode *ip;
asy_gp_t *gp;
int s;
short p;
char c, slot;

do_start = 0;
s = sphi ();
ip = irq1 [a0->a_irqno];

while(ip) {
if (ip->func == asyintr) {

p = ip->arg;
outb (p + IER, 0);

} else {
gp = asy_gp + ip->arg;
for (slot = 0; slot < MAX_SLOTS; slot++) {

if ((c = gp->chan_list [slot]) <
MAX_ASY) {

p = asy0 [c].a_port;
outb (p + IER, 0);

}
}

}
ip = ip->next_actv;

}

TUTORIALS

56 Character Driver

/* Now, all ports on the offending irq line have irq off. */
ip = irq1 [a0->a_irqno];
while (ip) {

if (ip->func == asyintr) {
p = ip->arg;
outb (p + IER, IEN);

} else {
gp = asy_gp + ip->arg;
for (slot = 0; slot < MAX_SLOTS; slot++) {

if ((c = gp->chan_list [slot]) <
MAX_ASY){

p = asy0 [c].a_port;
outb (p + IER, IEN);

}
}

}
ip = ip->next_actv;

}
spl (s);

}

if (do_start)
ttstart (tp);

/* Schedule next cycle. */
if (a1->a_in_use)

timeout (& tp->t_rawtim, HZ / 10, asycycle, chan);
}

Suppress Interrupts During Chip Sensing
Function irqdummy() suppresses interrupts that may occur during chip sensing.

static void
irqdummy()
{

/* Try to clear all pending interrupts. */
inb(dummy_port+IIR);
inb(dummy_port+LSR);
inb(dummy_port+MSR);
inb(dummy_port+DREG);

}

Add a Port Information to IRQ0 List
Function add_irq() adds information about a port to the irq0 list.

static void
add_irq(irq, func, arg)
int irq;
int (*func)();
int arg;
{

struct irqnode * np;

/* Sanity check */
if (irq <= 0 || irq >= NUM_IRQ)

return;

TUTORIALS

Character Driver 57

if (nextnode < MAX_ASY) {
np = nodespace + nextnode++;
np->func = func;
np->arg = arg;
np->next = irq0[irq];
irq0[irq] = np;

} else {
printf("asy: too many irq nodes (%d)\n", nextnode);

}
}

Service an Interrupt
Function asy_irq() services an async interrupt.

static void
asy_irq (level)
int level;
{

struct irqnode *ip = irq1 [level];
int doit;

do {
struct irqnode * here = ip;

doit = 0;

while (here != NULL) {
doit |= (* here->func) (here->arg);
here = here->next_actv;

}
} while (doit);

}

Rebuild Links for Active Devices
Function upd_irq1() rebuild the links for active devices.

static void
upd_irq1(irq)
int irq;
{

struct irqnode *np;
asy1_t *a1;
int chan;
int s;

/* Sanity check */
if (irq <= 0 || irq >= NUM_IRQ)

return;

/* For each node in the irq0 list
* if node is for irq status port
* for each channel using the status port
* if channel in use, in irq mode
* add node to irq1 list
* skip rest of channels for this node
* else - node is for simple UART
* if channel in use, in irq mode
* add node to irq1 list
*/

TUTORIALS

58 Character Driver

s = sphi();
np = irq0[irq];
irq1[irq] = 0;
while (np) {

if (np->func != asyintr) {
char ix, loop = 1;
asy_gp_t *gp = asy_gp + np->arg;

for (ix = 0; ix < MAX_SLOTS && loop; ix++) {
if ((chan = gp->chan_list[ix]) < MAX_ASY) {

a1 = asy1 + chan;
if (a1->a_in_use && a1->a_irq) {

np->next_actv = irq1[irq];
irq1[irq] = np;
loop = 0;

}
}

}

} else {
a1 = asy1 + np->arg;
if (a1->a_in_use && a1->a_irq) {

np->next_actv = irq1[irq];
irq1[irq] = np;

}
}
np = np->next;

}
spl(s);

}

The Break Routine
Function asybreak() breaks connection with a port.

static void
asybreak(chan)
int chan;
{

int s;
asy1_t *a1 = asy1 + chan;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
TTY *tp = &a1->a_tty;

s = sphi();
RAWIN_FLUSH(in_silo);
RAWOUT_FLUSH(out_silo);
spl(s);
ttsignal(tp, SIGINT);

}

Handle an Interrupt
Function asyintr() handles an interrupt for a single channel.

TUTORIALS

Character Driver 59

static int
asyintr(chan)
int chan;
{

asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
int c, xmit_count;
int ret = 0;
short port = a0->a_port;
unsigned char msr, lsr;

if (chan >= MAX_ASY) {
printf("asy: irq on channel %d\n", chan);
return 0;

}

rescan:
switch (inb(port+IIR) & 0x07) {
case LS_INTR:

ret = 1;
lsr = inb(port + LSR);
if (lsr & LS_BREAK)

defer(asybreak, chan);
goto rescan;

case Rx_INTR:
ret = 1;
c = inb(port+DREG);
if (tp->t_open == 0)

goto rescan;

/* Must recognize XOFF quickly to avoid transmit overrun.
* Recognize XON here as well to avoid race conditions.
*/

if (_IS_IXON_MODE (tp)) {
/* XON */
if (_IS_START_CHAR (tp, c) ||

(_IS_IXANY_MODE (tp) &&
(tp->t_flags & T_STOP) != 0)) {

tp->t_flags &= ~(T_STOP | T_XSTOP);
goto rescan;

}

/* XOFF */
if (_IS_STOP_CHAR (tp, c)) {

tp->t_flags |= T_STOP;
goto rescan;

}
}

/* Save char in raw input buffer. */
if (in_silo->SILO_CHAR_COUNT < MAX_SILO_CHARS) {

in_silo->si_buf[in_silo->si_ix] = c;
if (in_silo->si_ix < MAX_SILO_INDEX)

in_silo->si_ix ++;
else

in_silo->si_ix = 0;
in_silo->SILO_CHAR_COUNT ++;

}

TUTORIALS

60 Character Driver

/* If using hardware flow control, see if we need to drop RTS. */
if ((tp->t_flags & T_CFLOW) != 0 &&

in_silo->SILO_CHAR_COUNT > SILO_HIGH_MARK) {
unsigned char mcr = inb (port + MCR);
if (mcr & MC_RTS) {

outb(port+MCR, mcr & ~MC_RTS);
}

}
goto rescan;

case Tx_INTR:
ret = 1;
/* Do nothing if output is stopped. */
if (tp->t_flags & T_STOP) {

goto rescan;
}
if (a1->a_ohlt)

goto rescan;

/* Transmit next char in raw output buffer. */
xmit_count = (a1->a_ut == US_16550A)?16:1;
asy_send(out_silo, port+DREG, xmit_count);
goto rescan;

case MS_INTR:
ret = 1;
/* Get status (and clear interrupt). */
msr = inb(port+MSR);

/* Hardware flow control.
* Check CTS to see if we need to halt output.
*/

if (tp->t_flags & T_CFLOW) {
if (msr & MS_CTS)

a1->a_ohlt = 0;
else

a1->a_ohlt = 1;
}
goto rescan;

default:
return ret;

} /* endswitch */
}

Handle Timer Interrupts
Function asyclk() is called every time T0 interrupts. If it returns zero, asy performs the usual system timer
routines. It polls all pollable ports.

static int
asyclk()
{

static int count;
int ix;

for (ix = 0; ix < ppnum; ix++)
asysph(pptbl[ix]);

count++;
if (count >= poll_divisor)

count = 0;
return count;

}

Set Polling Rate on a Port

TUTORIALS

Character Driver 61

Function asyspr() sets the polling rate on a port. asy calls it when a port is opened, closed, or changes speed. It
sets the polling rate only as fast as needed, and shuts off polling whenever possible. It updates the links in irq1[0],
which lists the polled-mode ports.

static void
asyspr()
{

asy0_t *a0;
asy1_t *a1;
int chan;
int s;
int ix, max_rate, port_rate;

/* Rebuild table of pollable ports. */
s = sphi();
ppnum = 0;
for (chan = 0; chan < ASY_NUM; chan++) {

a1 = asy1 + chan;
if (a1->a_poll)

pptbl[ppnum++] = chan;
}
spl(s);

/* If another driver has the polling clock, do nothing. */
if (poll_owner & ~ POLL_ASY)

return;

/* Find highest valid polling rate in units of HZ/10.
* If using FIFO chip, can poll at 1/16 the usual rate.
*/

max_rate = 0;
for (ix = 0; ix < ppnum; ix++) {

chan = pptbl[ix];
a0 = asy0 + chan;
a1 = asy1 + chan;
port_rate = alp_rate[a0->a_speed];
if (a1->a_ut == US_16550A) {

port_rate /= 16;
if (port_rate % HZ)

port_rate += HZ - (port_rate % HZ);
}

if (max_rate < port_rate)
max_rate = port_rate;

}

/* if max_rate is not current rate, adjust the system clock */
if (max_rate != poll_rate) {

poll_rate = max_rate;
poll_divisor = poll_rate/HZ; /* used in asyclk() */
altclk_out(); /* stop previous polling */
poll_owner &= ~ POLL_ASY;

if (poll_rate) { /* resume polling at new rate if needed */
poll_owner |= POLL_ASY;
altclk_in(poll_rate, asyclk);

}
}

}

Handle Polling
Function asysph() handles the polling of serial ports.

TUTORIALS

62 Character Driver

static void
asysph(chan)
int chan;
{

asy0_t *a0 = asy0 + chan;
asy1_t *a1 = asy1 + chan;
TTY *tp = &a1->a_tty;
silo_t *out_silo = &a1->a_out;
silo_t *in_silo = &a1->a_in;
int c, xmit_count;
short port = a0->a_port;
char lsr;

/* Check for received break first.
* This status is wiped out on reading the LSR.
*/

lsr = inb(port + LSR);
if (lsr & LS_BREAK)

defer(asybreak, chan);

/* Handle all incoming characters. */
for (;;) {

lsr = inb(port + LSR);
if ((lsr & LS_RxRDY) == 0)

break;
c = inb(port+DREG);
if (tp->t_open == 0)

continue;

/* Must recognize XOFF quickly to avoid transmit overrun.
* Recognize XON here as well to avoid race conditions.
*/

if (_IS_IXON_MODE (tp)) {
/* XOFF */
if (_IS_STOP_CHAR (tp, c)) {

tp->t_flags |= T_STOP;
continue;

}

/* XON */
if (_IS_START_CHAR (tp, c)) {

tp->t_flags &= ~T_STOP;
continue;

}
}

/* Save char in raw input buffer. */
if (in_silo->SILO_CHAR_COUNT < MAX_SILO_CHARS) {

in_silo->si_buf[in_silo->si_ix] = c;
if (in_silo->si_ix < MAX_SILO_INDEX)

in_silo->si_ix++;
else

in_silo->si_ix = 0;
in_silo->SILO_CHAR_COUNT++;

}

/* If using hardware flow control, see if we need to drop RTS. */
if ((tp->t_flags & T_CFLOW)

&& (in_silo->SILO_CHAR_COUNT > SILO_HIGH_MARK)) {
unsigned char mcr = inb(port+MCR);
if (mcr & MC_RTS) {

outb(port+MCR, mcr & ~MC_RTS);
}

}
}

TUTORIALS

Character Driver 63

/* Handle outgoing characters. Do nothing if output is stopped. */
lsr = inb(port + LSR);
if ((lsr & LS_TxRDY)
&& !(tp->t_flags & T_STOP)
&& !(a1->a_ohlt)) {

/* Transmit next char in raw output buffer. */
xmit_count = (a1->a_ut == US_16550A)?16:1;
asy_send(out_silo, port+DREG, xmit_count);

}

/* Hardware flow control.
* Check CTS to see if we need to halt output.
*/

if (tp->t_flags & T_CFLOW) {
if (inb(port+MSR) & MS_CTS)

a1->a_ohlt = 0;
else

a1->a_ohlt = 1;
}

}

Write to UART
Function asy_send() write to the xmit data register of the UART. Assume all checking about whether it’s time to
send has been done already. This function is called by time-critical IRQ and polling routines!

Argument rawout is the output silo for the TTY structure that supplies data to the port. dreg is the I/O address of
the UART xmit data register. xmit_count is the maximum number of characters we can write (16 for FIFO parts).

static int
asy_send(rawout, dreg, xmit_count)
register silo_t *rawout;
int dreg, xmit_count;
{

/* Transmit next chars in raw output buffer. */
for (;(rawout->si_ix != rawout->si_ox) && xmit_count; xmit_count--) {

outb(dreg, rawout->si_buf[rawout->si_ox]);
/* Adjust raw output buffer output index. */
if (++rawout->si_ox >= sizeof(rawout->si_buf))

rawout->si_ox = 0;
}
return xmit_count;

}

Interrupt Handler for Comtrol-Type Port Groups
Function p1() is the interrupt handler for Comtrol-type port groups. The status register has one in bit positions for
interrupting ports.

static int
p1(g)
int g;
{

asy_gp_t *gp = asy_gp + g;
short port = gp->stat_port;
unsigned char status, index, chan;
int safety = LOOP_LIMIT;
int ret = 0;

TUTORIALS

64 Character Driver

/* while any port is active
* call simple interrupt handler for active channel
*/

while (status = inb(port)) {
ret = 1;
index = 0;
if (status & 0xf0) {

status &= 0xf0;
index +=4;

} else
status &= 0x0f;

if (status & 0xcc) {
status &= 0xcc;
index +=2;

} else
status &= 0x33;

if (status & 0xaa)
index++;

chan = gp->chan_list[index];
asyintr(chan);

if (safety-- == 0) {
printf("asy: p1 runaway - status %x\n", status);
break;

}
}
return ret;

}

Interrupt Handler for Arnet-Type Port Groups
Function p2() is the interrupt handler for Arnet-type port groups. The status register has zero in bit positions for
interrupting ports.

static int
p2(g)
int g;
{

asy_gp_t *gp = asy_gp + g;
short port = gp->stat_port;
unsigned char status, index, chan;
int safety = LOOP_LIMIT;
int ret = 0;

/* while any port is active
* call simple interrupt handler for active channel
*/

while (status = ~inb(port)) {
ret = 1;
index = 0;
if (status & 0xf0) {

status &= 0xf0;
index +=4;

} else
status &= 0x0f;

if (status & 0xcc) {
status &= 0xcc;
index +=2;

} else
status &= 0x33;

TUTORIALS

Character Driver 65

if (status & 0xaa)
index++;

chan = gp->chan_list[index];
asyintr(chan);
if (safety-- == 0) {

printf("asy: p2 runaway - status %x\n", status);
break;

}
}
return ret;

}

Interrupt Handler for GTEK-Type Port Groups
Function p3() is the interrupt handler for GTEK-type port groups.

static int
p3(g)
int g;
{

asy_gp_t *gp = asy_gp + g;
short port = gp->stat_port;
unsigned char index, chan;

/* Call simple interrupt handler for active channel. */
index = inb(port) & 7;
chan = gp->chan_list[index];
return asyintr(chan);

}

Interrupt Handler for DigiBoard-Type Port Groups
Function p4() is the interrupt handler for DigiBoard-type port groups.

static int
p4(g)
int g;
{

asy_gp_t *gp = asy_gp + g;
short port = gp->stat_port;
unsigned char index, chan;
int ret = 0;
int safety = LOOP_LIMIT;

/* Status register has slot number for active port,
* or 0xFF if no port is active.
*/

for (;;) {
index = inb(port);
if (index == 0xFF)

break;

if (safety-- == 0) {
printf("asy: p4 runaway - status %x\n", index);
break;

}

ret = 1;
chan = gp->chan_list[index&0xF];
asyintr(chan);

}
return ret;

}

The CON Structure

TUTORIALS

66 Character Driver

Finally, the CON structure holds pointers to the driver’s functions that are invoked by the kernel.

CON asycon = {
DFCHR|DFPOL, /* Flags */
ASY_MAJOR, /* Major index */
asyopen, /* Open */
asyclose, /* Close */
NULL, /* Block */
asyread, /* Read */
asywrite, /* Write */
asyioctl, /* Ioctl */
NULL, /* Powerfail */
asytimer, /* Timeout */
asyload, /* Load */
asyunload, /* Unload */
asypoll /* Poll */

};

Where To Go From Here
The Lexicon describes the functions invoked within this driver. The previous section gives an example of a driver
for a block device.

TUTORIALS

Introduction to the Lexicon

The following section describes the functions and macros that are currently used in COHERENT device drivers.
These include internal kernel routines, DDI/DKI routines, and STREAMS routines.

The root article is this Lexicon the one entitled device driver. If you are unfamiliar with how a Lexicon works, you
should read this article first. It introduces the Overview articles, and discusses the families of articles in the
Lexicon.

67

68 Lexicon

TUTORIALS

adjmsg() — DDI/DKI Kernel Routine
Clip a message
#include<sys/stream.h>
int adjmsg(msgptr, length)
mblk_t *msgptr;
int length;

adjmsg() trims length bytes from from the message to which msgptr points. If length is greater than zero, adjmsg()
trims the beginning of the message; if it is less than zero, adjmsg() trims the end.

If all goes well, adjmsg() returns one. It fails and returns zero if either of the following conditions occurs:

1. The absolute value of length exceeds the number of bytes to which msgptr points.

2. length spans more than one message block, but the message’s blocks are not all of the same type.

See Also
DDI/DKI kernel routines, msgb

Notes
adjmsg() has base or interrupt level. It does not sleep. An application can hold driver-defined basic locks,
read/write locks, and sleep locks across calls to this function.

If length exceeds the amount of data in a message block, adjmsg() sets the block’s read and write pointers equal to
each other to indicate that the block contains no data. It does not free the block.

allocb() — DDI/DKI Kernel Routine
Allocate a message block
#include <sys/types.h>
#include <sys/stream.h>
mblk_t *allocb(size, priority)
int size; uint_t priority;

allocb() allocates a STREAMS message block that is size bytes long.

priority gives the message’s priority, as follows:

BPRI_LO Low priority. Use this for routine allocation of data.
BPRI_MED Medium priority. Use this to allocate blocks that are not critical, but are not data either.
BPRI_HI High priority. Use this for allocations that must succeed; note, however, that the DDI/DKI does

not guarantee success.

Note that some implementations ignore priority.

If all goes well, allocb() returns a pointer to the allocated message block; otherwise, it returns NULL.

See Also
DDI/DKI kernel routines, freeb(), msgb

Notes
allocb() has base or interrupt level. It does not sleep.

An application can hold driver-defined basic locks, read/write locks, and sleep locks across calls to this function.

altclk_in() — Internal Kernel Routine
Install polling function
int altclk_in(hz, fn)
int hz, (*fn)();

altclk_in() increases the system clock rate from the value set by manifest constant HZ (at present, 100 Hertz) to hz.
fn points to the function to be called whenever the clock interrupt occurs. hz must be an integral multiple of HZ;
therefore, the rate of clock interrupts will be increased by a factor of hz/HZ. fn is an int-valued function that must
return zero every hz/HZ’th time it is called, nonzero the rest of the time. The zero value returned from fn tells the
COHERENT system’s clock routine to do its usual processing.

LEXICON

adjmsg() — altclk_in() 69

altclk_in() returns zero if it completes normally; if argument hz is less than HZ or not an integral multiple of HZ,
this function does nothing and returns -1.

See Also
altclk_out(), internal kernel routines

altclk_out() — Internal Kernel Routine
Uninstall polling function
int (*altclk_out)();

altclk_out() ends polling (previously installed with function altclk_in()). It restores the COHERENT clock rate to the
value of the manifest constant HZ (at present, 100 Hertz) and unhooks the polling function. It returns the value of
the previous pointer to the polling function.

See Also
alkclk_in(), internal kernel routines

ASSERT() — DDI/DKI Kernel Routine
Debug an expression
#include <sys/debug.h>
void ASSERT(expression)
int expression;

ASSERT() tests the Boolean expression for correctness. You can use this routine to verify expressions in programs
that you have compiled with the symbol DEBUG #define’d (for example, with the option -d to the O compiler).

If expression evaluates to non-zero (that is, the expression is correct), the call to ASSERT() has no effect. If,
however, expression evaluates to zero, ASSERT() panics the system. It prints a message on the console that
identifies expression, its source file, and its line number.

See Also
cmn_err(), DDI/DKI kernel routines

Notes
ASSERT() has base or interrupt level. It does not sleep.

A program can hold driver-defined basic locks, read/write locks, and sleep locks across calls to ASSERT().

backq() — DDI/DKI Kernel Routine
Get a pointer to the preceding queue
#include <sys/stream.h>
queue_t *backq(queue)
queue_t *queue;

backq() returns the address of the queue that preceeds the queue to which queue points. If queue points to a read
queue, backq() returns a pointer to the queue downstream from queue, unless queue is the end of the stream. If
queue, is a write queue, backq() returns a pointer to the next queue upstream from queue, unless queue is the
head of the stream. If something goes wrong, backq() returns NULL.

Level
Base or interrupt.

See Also
DDI/DKI kernel routines

Notes
backq() does not sleep.

The calling function cannot have the stream frozen when it calls this function.

The caller can hold driver-defined basic locks, read/write locks, and sleep locks across calls to this function.

LEXICON

70 altclk_out() — backq()

bcanput() — DDI/DKI Kernel Routine
Test whether a priority band has room for a message
#include <sys/types.h>
#include <sys/stream.h>
int bcanput(queue, priority)
queue_t *queue; uchar_t priority;

bcanput() tests whether the priority band priority within queue has room for a message. If priority equals zero,
bcanput() behaves identically to a call to canput(). queue must have a service procedure.

bcanput() returns one if the queue pointed to by queue contains room for a room with a priority of priority; it
returns zero if queue does not.

See Also
bcanputnext(), canput(), canputnext(), DDI/DKI kernel routines, putbq(), putnext(), queue

Notes
bcanput() has base or interrupt level. It does not sleep.

queue argument cannot reference field q_next. Use bcanputnext() to perform this task.

Before you enqueue a message, you must first call canput() to test whether queue has room for a message of the
given priority, even if bcanput() indicates that space is available. Do not send the message if no room is available.

Because of race conditions, bcanput() can state that priority has room for a message, but priority could be filled by
another process before your process enqueues its message. This, however, is a benign problem.

Your process cannot have the stream frozen when it calls this function. Your process can hold driver-defined basic
locks, read/write locks, and sleep locks across a call to this function.

bcanputnext() — DDI/DKI Kernel Routine
Test whether a priority band has room for a message
#include <sys/types.h>
#include <sys/stream.h>
int bcanputnext(queue, priority)
queue_t *queue; uchar_t priority;

bcanputnext() attempts to find a queue with a priority band of level priority that can hold a message.

bcanputnext() search the stream beginning at queue->q_next. It seeks a queue that contains a service routine. If
it finds one, it tests the queue to see whether it can hold a message in priority band priority. If the band is full,
bcanputnext() marks the queue so that the caller’s service routine is back-enabled automatically when the amount
of data in the queue reaches its low-water mark.

bcanputnext() returns one if a message of priority can be put into the stream, or if it reached the end of the stream
without finding a queue that has a service procedure. If the stream is full, it returns zero.

See Also
bcanput(), canput(), canputnext(), DDI/DKI kernel routines, putbq(), putnext(), queue

Notes
bcanputnext() has base or interrupt level. It does not sleep.

You must test whether queue has room for a message of the given priority, and not send the message if no room is
available. Because of race conditions, bcanput() can state that priority has room for a message, but priority could
be filled by another process before your process enqueues its message. This, however, is a benign problem.

Your process cannot have the stream frozen when it calls this function. Your process can hold driver-defined basic
locks, read/write locks, and sleep locks across a call to this function.

LEXICON

bcanput() — bcanputnext() 71

bclaim() — Internal Kernel Routine
Claim a buffer
#include <sys/buf.h>
BUF *bclaim(device, block)
dev_t device; daddr_t block;

bclaim() locates or allocates a buffer associated with block on device. The buffer’s contents are invalid if its field
b_flag has bit BFNTP set.

bclaim() requires user context. Therefore, do not call it from within deferred or timed functions, or from within an
interrupt handler.

See Also
internal kernel routines

bcopy() — DDI/DKI Kernel Routine
Copy data between locations within the kernel
#include <sys/types.h>
void bcopy(source, target, count)
caddr_t from, to; size_t count;

bcopy() copies count bytes from kernel address source to kernel address target. If the the chunk of memory pointed
to by source overlaps target, the results are undefined (and probably unwelcome).

See Also
bzero(), copyin(), copyout(), DDI/DKI kernel routines, uiomove(), ureadc(), uwritec()

Notes
bcopy() has base or interrupt level. It does not sleep.

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

To copy data between kernel and user space, use copyin(), copyout(), uiomove(), ureadc(), or uwritec().

This function is equivalent to the library routine memcpy().

bdone() — Internal Kernel Routine
Block I/O completed
#include <sys/buf.h>
void bdone(bp)
BUF *bp;

A driver for a block device built around the internal kernel routines must call bdone() when it has completed I/O
for the buffer pointed to by bp. If an I/O error occurred, the driver must set the BFERR bit in field bp->b_flag
before it calls bdone().

See Also
internal kernel routines

bflush() — Internal Kernel Routine
Flush buffer cache
#include <sys/buf.h>
void bflush(device)
dev_t device;

bflush() synchronizes all blocks for device in the buffer cache, and invalidates all references. COHERENT 4.2 uses
this routine when it unmounted a file system.

See Also
internal kernel routines

LEXICON

72 bclaim() — bflush()

block — Entry-Point Routine
Invoke a driver block interface
#include <sys/con.h>
void prefixblock(bp)
buf_t *bp;

Under the internal COHERENT device-driver interface, the entry point block gives access to the driver’s routine for
executing a block interface with the device. The address of this routine is given in field c_block of the driver’s CON
structure.

Argument bp points to the BUF structure that describes how data are written to or read from this device. For
details, see the entry for BUF in this manual.

See Also
BUF, CON, entry-point routines, strategy

bread() — Internal Kernel Routine
Read into buffer cache
#include <sys/buf.h>
BUF * bread(device, bno, flag)
dev_t dev; daddr_t bno;

bread() reads the block bno into the buffer cache. If flag is set, the read is synchronous (that is, bread() waits for
I/O to complete), and returns a pointer to the buffer. Otherwise, the read is asynchronous (that it, it returns
immediately), and bread() returns NULL. If the BFERR bit is set in the buffer’s field b_flag, a read error occurred.

See Also
internal kernel routines

brelease() — Internal Kernel Routine
Release a buffer
#include <sys/buf.h>
void brelease(bp)
BUF *bp;

brelease() unlocks and releases the buffer pointed to by bp.

A device driver built with the internal kernel routines must call brelease() when it no longer needs a buffer
obtained via a bread(). If a driver mus read and modify a block, the recommended sequence is for it to call bread(),
modify the block, set the BFMOD bit in the field b_flag field, then call brelease().

See Also
internal kernel routines

bsync() — Internal Kernel Routine
Flush modified buffers
#include <sys/buf.h>
void bsync()

bsync() flushes modified buffers to all buffered devices. This synchronizes the entire buffer cache.

See Also
internal kernel routines

buf — Internal Data Structure
Buffer cache
#include <sys/buf.h>

A buffer cache is an area of memory that holds data being written to or read from a device. The kernel gives each
block-special device its own buffer cache. The kernel, in turn, assigns to each buffer cache a copy of the structure
BUF, which the kernel uses to manipulate that buffer cache. It is defined in header file <sys/buf.h>, and contains
the following fields:

LEXICON

block — buf 73

b_dev This is a dev_t structure that describes the device being buffered. Use kernel macros major() and
minor() to translate this structure into the device’s major and minor numbers.

b_bno This gives the number of the starting block.
b_req This is the type of I/O requested, either BREAD or BWRITE.
b_count This gives the number of bytes to read or write.
b_resid This gives the number of bytes that remain to be transferred. Zero indicates that all data

transferred correctly, i.e., that an error did not occur.
b_paddr This gives the system global (DMA) address for the data.
b_vaddr This field gives the virtual (non-DMA) address for the data.

See file <sys/buf.h> for full details on this structure.

See Also
internal data structures

bufcall() — DDI/DKI Kernel Routine
Call a function when a buffer becomes available
#include <sys/types.h>
#include <sys/stream.h>
toid_t bufcall(size, priority, function, argument)
uint_t size; int priority;
void (*function)(); long argument;

bufcall() schedules function to be called with argument when a buffer of size bytes becomes available. You can use
bufcall() to obtain a buffer at some time in the future, should a call to a buffer-allocation routine fail.

When function runs, all interrupts from STREAMS devices are blocked. function has no user context and cannot call
any function that sleeps.

priority gives the priority of the request. You can use the following values:

BPRI_LO Low (normal) priority.
BPRI_MED Medium priority.
BPRI_HI High priority.

bufcall() returns a non-zero value that identifies the scheduling request. You can pass this value to unbufcall() to
cancel the request. If something goes wrong, bufcall() returns zero.

See Also
allocb(), DDI/DKI kernel routines, esballoc(), esbbcall(), itimeout(), unbufcall()

Notes
bufcall() has base or interrupt level. It does not sleep.

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

bufcall() cannot guarantee that function will succeed. Although function will not be executed until a buffer of size
bytes has become available, another driver may snatch the buffer between the time function is called and the time
it tries to claim the memory for itself.

busyWait() — Internal Kernel Routine
Busy-wait the system, pending some event
int busyWait(fn, ticks)
int (*fn)(), ticks;

busyWait() repeatedly calls the function to which fn points. It returns when fn returns a non-zero value, or after
ticks clock ticks have elapsed, whichever happens first. If fn is NULL, busyWait() waits unconditionally.

busyWait() returns one if fn returned a nonzero value, or zero if it has timed out.

See Also
busyWait2(), drv_usecwait(), internal kernel routines

Notes
Each tick is one one-hundredth of a second. Busy-waiting the system for even one clock tick is a bad idea, except

LEXICON

74 bufcall() — busyWait()

while testing a driver or during system start-up.

busyWait2() — Internal Kernel Routine
Busy-wait the system, pending some event
int busyWait2(fn, ticks)
int (*fn)(), ticks;

busyWait2() repeatedly calls the function to which fn points. It returns when fn returns a non-zero value, or after
ticks timer ticks have elapsed, whichever happens first. If fn is NULL, busyWait2() waits unconditionally.

busyWait2() differs from the call busyWait() in that its granularity is finer: one count equals 1/(11932*HZ)
seconds, or about 0.84 microseconds.

busyWait2() returns one if fn returned a nonzero value, or zero if it has timed out.

See Also
drv_usecwait(), internal kernel routines

bwrite() — Internal Kernel Routine
Write buffer to disk
#include <sys/buf.h>
void bwrite(bp, flag)
BUF *bp; int flag;

bwrite writes out the buffer to which bp points. If flag is set, the write is synchronous and bwrite() does not
return until I/O has completed; otherwise, the write is asynchronous and bwrite() returns immediately.

A device driver must lock the buffer gate before it calls bwrite(); if it does not, the buffer may be modified while it is
being written.

See Also
internal kernel routines

bzero() — DDI/DKI Kernel Routine
Initialize a block of memory to zero
#include <sys/types.h>
void bzero(address, bytes)
caddr_t address; size_t number;

bzero() initializes to zero number bytes of memory, beginning at address. It returns nothing.

The block of memory described by address and bytes must lie within the kernel’s address space and must reside in
memory. If address lies within user space, the driver can corrupt the system in an unpredictable (and probably
undesirable) way.

See Also
bcopy(), DDI/DKI kernel routines, kmem_zalloc()

Notes
bzero() has base or interrupt level. It does not sleep.

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

This function is equivalent to the library routine memset().

canput() — DDI/DKI Kernel Routine
Test whether a queue has room for a message
#include <sys/stream.h>
int canput(queue)
queue_t *queue;

canput() tests whether queue has room for a message. queue must have a service procedure.

canput() returns one if queue has room for a message; or zero if queue does not. Do not attempt to enqueue a
message on queue if canput() does not return one.

LEXICON

busyWait2() — canput() 75

See Also
bcanput(), bcanputnext(), canputnext(), DDI/DKI kernel routines, putbq(), putnext(), queue

Notes
canput() has base or interrupt level. It does not sleep.

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

Note that canput() can indicate that queue has room for a message, but another message can fill queue before your
process enqueues its message.

You cannot have the stream frozen when you call this function.

queue cannot reference field q_next. To examine the queue next to queue, call canputnext().

canputnext() — DDI/DKI Kernel Routine
Test whether a queue has room for a message
#include <sys/stream.h>
int bcanputnext(queue)
queue_t *queue;

canputnext() tests whether a queue has room for a message.

canputnext searches queue beginning at canputnext() until it finds a queue that has a service routine. If finds
one, it tests whether that queue has room for a message. If the queue is full, canputnext() marks the queue so
that the caller’s service routine is back-enable automatically when the amount of data in the queue reaches its low-
water mark.

canputnext() returns one if a message can be sent in the stream, or if it reaches the end of the stream without find
a queue that contains a service routine. It returns zero if the queue with a service routine does not have room for a
message.

See Also
bcanput(), bcanputnext(), canput(), DDI/DKI kernel routines, putbq(), putnext(), queue

Notes
canputnext() has base or interrupt level. It does not sleep.

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

Note that canputnext() can indicate that queue has room for a message, but another message can fill queue before
your process enqueues its message.

You cannot have the stream frozen when you call this function.

chpoll — Entry-Point Routine
Entry point for the polling routine
#include <sys/poll.h>
int prefixchpoll(device, events, pointer, events, pollhead)
dev_t device; short events; int pointer; short events;
struct pollhead **head;

chpoll is the entry point for polling a device. It is used only by character drivers that use the DDI/DKI interface;
STREAMS drivers do not use it.

A chpoll routine takes the following arguments:

device The device being polled.

events A bitmask of the events to be polled, as follows:

POLLIN Are data waiting to be read?
POLLOUT May data be written without blocking?
POLLPRI Are high-priority data waiting to be read?
POLLHUP Has a device hung up?

LEXICON

76 canputnext() — chpoll

POLLERR Has a device error occurred?
POLLRDNORM Are normal data waiting to be read?
POLLWRNORM May normal data be written without blocking?
POLLRDBAND Are out-of-band data waiting to be read?
POLLWRBAND May out-of-band data be written without blocking?

pointer If this flag is set to true, the driver should return a pointer to its pollhead structure.

events The chpoll routine writes at this address a mask of the events that have occurred.

head The address of the pollhead structure to interrogate.

Note that the pollhead structure is totally opaque; a driver has no access to any of its fields.

The chpoll routine returns zero if all goes well. If something goes wrong, it returns an appropriate error value.

See Also
entry points, phalloc(), phfree(), pollhead, pollwakeup()

Notes
This entry point is used only drivers that use the DDI/DKI interface. It is optional.

close — Entry-Point Routine
Close a device

Internal-Kernel Interface:
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/types.h>
int prefixclose(device, mode, flags, credptr, private)
dev_t device; int mode, flags; cred_t *credptr; void *private

DDI/DKI:
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/types.h>
int prefixclose(device, flag, type, credptr)
dev_t device; int flag, type; cred_t *credptr;

STREAMS:
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>
int prefixclose(queue, flag, credptr)
queue_t queue; int flag; cred_t *credptr;

A driver’s close routine closes the connection between the user process and the device, and prepares the device to
be opened again. Every driver must have this entry point. An application invokes it via the COHERENT system call
close(). For details on this system call, see its entry in the COHERENT Lexicon.

The close routine should return zero if it succeeds in its tasks. If something goes wrong, it should return an
appropriate error number. See the entry for errno in this manual for a list of error numbers. The driver
determines how to react to an error.

The following describes the close routine for each flavor of driver-kernel interface.

LEXICON

close 77

Internal-Kernel Interface
Under the internal-kernel interface to a driver, field c_close in the driver’s CON structure holds the address of this
routine. It is customary to name the close routine with the word close prefixed by a unique identifier for your
driver; but this is not required.

device is a dev_t that identifies the device to be closed.

mode and flags give, respectively, the mode into which device had been opened, and additional information about
how it had been opened. See the article for the system call open() in the COHERENT Lexicon for a table of the legal
values of these arguments.

credentials points to the credentials of the current user. If it wishes, your driver can read this structure to check
the user’s permissions before it closes device. Note that many drivers do not use this argument.

Finally, private points to a data element that is private to your driver. Note that many drivers do not use this
argument.

DDI/DKI Interface
To invoke the close routine under the DDI/DKI interface, the kernel calls the function prefixclose(), where prefix is
the unique prefix for this driver. The calling conventions are given in the second example, above.

device identifies the device to close.

flag gives the file-status flag. If the bits FNDELAY or FNONBLOCK are set, the driver should not sleep as it
performs its close-related tasks.

type gives the type of the device. Your driver should use this field to determine how many times device was
opened. At present, only one type is recognized:

OTYP_LYR
A ‘‘layered’’ device. The kernel invokes the close routine for every corresponding call to the driver’s open
routine. With devices of this type, the driver must count each invocation of its open and close routines to
determine when it should really close the device.

credptr points to the user’s credential structure.

STREAMS Interface
The calling conventions for the close routine of a STREAMS driver are given in the third example at the beginning of
this article.

queue points to the queue to be closed.

flag gives the file-status flag. For details, see the entry for open in this manual.

credptr points to the user’s credential structure.

When a last reference to a stream is closed, the following steps are repeated in turn for every entity on the stream,
from the stream head to the stream driver:

• If data are present on the write queue of the module or driver, the calling process waits up to 15 seconds for
the data to drain normally. Once the queue is drained or the timeout expires, continue.

• The close routine of the module or driver is called.

• When the close routine returns, the queue and all the messages that were on it are deallocated automatically.

The 15-second timeout is to help prevent loss of data. In general, while the system can force data to be lost, it
should try to avoid it. If an interactive process wants to hide these delays from the user, it can hand the final
close-off to a child process.

See Also
CON, drv_priv(), entry-point routines, errno, open, qprocsoff(), queue, unbufcall(), untimeout()
COHERENT Lexicon: close(), open()

Notes
The close routine has user context and can sleep.

A STREAMS driver or module must call qprocsoff() to disable its put and srv routine before it returns from its close

LEXICON

78 close

routine.

clrivec() — Internal Kernel Routine
Clear interrupt vector
void clrivec(level)
int level;

clrivec() dissociates, or clears, the current handler for interrupt level.

See Also
internal kernel routines, setivec()

clrq() — Internal Kernel Routine
Clear character queue
#include <sys/clist.h>
void clrq(cqp)
CQUEUE *cqp;

clrq() clears the character queue pointed to by cqp.

See Also
internal kernel routines

cltgetq() — Internal Kernel Routine
Get a char from a character queue
#include <sys/clist.h>
int cltgetq(cqp)
CQUEUE *cqp;

cltgetq() returns the next character from character queue cqp. It returns -1 if the queue is empty.

See Also
internal kernel routines

Notes
Prior to release 4.2 of COHERENT, this function was named getq(). The name has been changed to avoid collision
with a similarly named function in the STREAMS library.

cltputq() — Internal Kernel Routine
Put a character on a character queue
#include <sys/clist.h>
int cltputq(cqp, c)
CQUEUE *cqp; char c;

cltputq() puts c onto the character queue referenced by cqp. It returns the character put, or -1 if something went
wrong.

See Also
internal kernel routines

Notes
Prior to release 4.2, this function was named putq(). It has been renamed to avoid collision with a similarly named
STREAMS function.

cmn_err() — DDI/DKI Kernel Routine
Handle an error
#include <sys/cmn_err.h>
void cmn_err(level, format, ...)
int level; char *format, ...;

cmn_err() handles error conditions. It can display a message on the system console, or store the message within
the kernel buffer putbuf. It can also panic the system.

LEXICON

clrivec() — cmn_err() 79

level gives the severity of error, as follows:

CE_CONT Continue a previous message, or display a informative message that does not necessarily describe an
error. This level tells cmn_err() to suppress the newline character that it normally adds to the end of
the message it constructs; thus, this level permits you to build long messages. You can use messages
of this type to help debug your driver, among other things; note, however, that using cmn_err() for this
may change your system’s timing.

CE_NOTE Display a message that begins with the string NOTICE:. Use messages of this type to report events
that may not require action, but should interest the system administrator.

CE_WARN Display a messsage that begins with the string WARNING:. Use messages of this type to report events
that require immediate action by the system administrator.

CE_PANIC Display a message that begins with the string PANIC:, and panic the system. Use this level only for
errors so severe that the system must not continue to function.

format gives the message to be displayed. It can contain the conversion specifiers %d, %o, %s, %u, and %x. These
specifiers work much the same as they under the COHERENT function printf(), except that cmn_err() does not
recognize length specifications. format can be followed by zero or more arguments (indicated above by an ellipsis)
that give the variables whose values are to be displayed. cmn_err() relates each argument to the corresponding
format specifier within the string format, again just as printf() does.

By default, cmn_err() writes the message both onto the system console and into the kernel buffer putbuf. If the
first character in format is an exclamation point ‘!’, cmn_err() writes the message only into putbuf; whereas if the
first character in format is a circumflex ‘^’, it writes the message only onto the console. Kernel variable putbufsz
sets the size of putbuf.

See Also
DDI/DKI kernel routines
COHERENT Lexicon: db, printf(), tr (driver)

Notes
cmn_err() does not sleep.

If level is anything other than CE_PANIC, the calling function can hold driver-defined basic locks, read/write locks,
and sleep locks across a call to this function. If level is CE_PANIC, however, locks cannot be held — not that it
matters, as the system is going down.

This function is equivalent to, and a replace for, the internal-kernel routines printf() and devmsg().

con — Internal Data Structure
Structure of a device driver
The structure of a COHERENT device driver is set by the
CON
structure, which the header file
<sys/con.h>
defines as follows:

typedef struct con {
int c_flag;
int c_mind;
void (*c_open);
void (*c_close);
void (*c_block);
void (*c_read);
void (* c_write);
void (*c_ioctl);
void (*c_power);
void (*c_timer);
void (*c_load);
void (*c_uload);
int (*c_poll);

} CON;

LEXICON

80 con

Each of the fields in this header points to the equivalent of a DDI/DKI entry-point routine. The following
subsections describe field in detail.

Flags
Field c_flag OR’s the manners in which this device can be accessed, as followed:

DFBLK Block-special device.
DFCHR Character-special device.
DFTAP Tape device.
DFPOL Accessible via COHERENT system call poll().

Major-Device Number
Field c_mind gives the device’s major-device number. This number must be in the range of zero through 31. At
present, the major-device number of each device driver is set in header file devices.h; in a future release of
COHERENT, however, each device driver will be assigned its major-device number when the kernel is linked.
Therefore, code should not depend upon the device having a particular ‘‘magic’’ major-device number.

Open Routine
Field c_open points to the routine within the device driver that is executed whenever the kernel opens the device.
This function is always called with two arguments: the first is an o_dev_t that indicates the device being accessed,
and the second is an integer that indicates the mode in which it is being opened. The mode can be IPW (write
mode), IPR (read mode), or IRW | IRP. If an error occurs during execution of this function, it should call
set_user_error() with an appropriate value.

Close Routine
Field c_close points to the routine that is executed whenever COHERENT closes the device. This function takes the
same arguments as the open function.

Block Routine
Field c_block points to the routine within the device driver that is executed when the kernel reads a file in block
mode. (As noted earlier, COHERENT — unlike most implementations of UNIX — permits your driver to open its
device into either block- or character-special mode, should you wish.) This function is called with a pointer to a buf
structure, which holds information about this driver’s buffer cache. For more information on the buf structure, see
its entry in this manual’s Lexicon. The driver function that performs block transfers of data should first perform
the I/O transfer, then set field c_block->b_resid to the appropriate number and call kernel function bdone() to
clean up after itself.

Note that the function that performs block transfer must never sleep or access a process’s uproc structure. This is
because this function is asynchronous and therefore not pegged to a particular process.

Read Routine
Field c_read points to the driver’s routine that is called when the kernel wishes to read data from that driver’s
device. It takes two arguments: an o_dev_t that indicates the device to read; and a pointer to that device’s io
structure, which is used by the read function. For more information on the io structure, see its entry in this
manual’s Lexicon.

Unlike a block transfer, the read function does not return until I/O is complete. Your driver can use the kernel
functions sleep() and wakeup() to surrender the processor to another process while the read is being performed. It
can also use the kernel function ioputc() to send characters to the user process and to update counter io_ioc.

Write Routine
Field c_write points to the function that the kernel executes when it wishes to write to this device. It behaves
exactly the same as the function pointed to by field c_read, except that the direction of data transfer is reversed.
Your driver can use kernel function iogetc() is used to fetch characters from the user process and to update
counter io_ioc.

I/O Control Routine
Field c_ioctl points to the function that the kernel executes when it wishes to exert I/O control over a device. This
function is called to perform non-standard manipulations of a device, e.g., format a disk, rewind a tape, or change
the speed of a serial port.

The kernel always calls this function with three arguments. The first is an o_dev_t that identifies the device to be
manipulated; the second is an integer that indicates the command to be executed; and the third points to an array

LEXICON

con 81

that can hold additional information, if any, that the command may need.

This function, by its nature, uses a considerable amount of device-specific information. The header files
<sys/tty.h>, <sys/mtioctl.h>, and <sys/lpioctl.h> define codes for, respectively, teletypewriter devices (i.e.,
terminals), magnetic-tape devices, and line printers.

Power-Fail Routine
Field c_power points to the routine to be executed should power fail on the system. This field is not yet used by
COHERENT.

Timeout Routine
Field c_timer points to the routine that the kernel executes when a device driver requests periodic scheduling. To
request that the timeout routine for device dev be called once per second, set drvl[major(dev)].d_time to a nonzero
value. The external variable drvl[] is declared in header file <sys/con.h>; macro major() is defined in header file
<sys/stat.h>.

The kernel’s clock routines do not affect the value in field d_time. To stop invocations of the timeout
routine, store zero in drvl[major(dev)].d_time.

dev is an o_dev_t that indicates which device is being timed out.

Load Routine
Field c_load points to the routine that would be executed when this device driver were loaded. It performs all tasks
necessary to prepare the device and the driver to exchange information. Because COHERENT does not support
loadable device drivers, the kernel executes this routine when COHERENT is booted.

Unload Routine
The field c_uload points to the driver’s function that the kernel invokes when the driver is unloaded from memory.
This routine is never invoked, because COHERENT does not support loadable device drivers.

Poll Routine
Field c_poll points to a function that can be accessed by commands or functions that poll the device. The driver’s
polling function is always called with three arguments. The first is an o_dev_t that indicates the device to be
polled. The second is an integer whose bits flag which polling tasks are to be performed, as follows:

POLLIN Input data is available
POLLPRI Priority message is available
POLLOUT Output can be sent
POLLERR A fatal error has occurred
POLLHUP A hangup condition exists
POLLNVAL fd does not access an open stream

These are defined in the header file <sys/poll.h>. The third is an integer that gives the number of millseconds by
which the response should be delayed. Note that the COHERENT clock timer runs at 100 Hz rather than the
approximately 18 Hz clock used by MS-DOS.

The kernel functions pollopen() and pollwake(), respectively, initiate and terminate a polling event.

Example
The following shell script displays the values of the CON structure in a driver that uses the internal-kernel
interface.

drvldump - show drvl entry points in a kernel binary
Usage: drvldump [-c] [kernel-name]

SHOW_CON_ADDRS=n

a function - con_show name offset
con_show () {

NAME=$1
OFFSET=$2
ADDR=‘/conf/patch -p $KER $DEVCON+$OFFSET | sed -e "s/^.*0x/0x/"‘
if ["$ADDR" != 0x00000000]; then

echo "$ADDR $NAME $DEVCON"
fi

}

LEXICON

82 con

for ARG; do
case $ARG in
-c)

SHOW_CON_ADDRS=y
shift
;;

--help|-h)
echo "Usage: drvldump [-c] [kernel-name]"
exit 1
;;

esac
done

KER=${1-/coherent}

if [! -f $KER]; then
echo "Can’t open $KER"
exit 1

fi

if ["$SHOW_CON_ADDRS" = y] ; then
echo "Starting addresses CON structs in drvl table:\n"
for D in ‘from 0 to 31‘; do

DO=‘expr $D * 8‘
CON_ADDR=‘/conf/patch -p $KER drvl+$DO | sed -e "s/^.*0x/0x/"‘

if ["$CON_ADDR" != 0x00000000]; then
echo "Major number $D: $CON_ADDR"

fi
done
echo

fi

echo "Device driver entry points found in CON structs.\n"

for DEVCON in ‘nm -n $KER | grep "con\\$" | sed -e "s/^.* //"‘; do
con_show open 8
con_show close 12
con_show block 16
con_show read 20
con_show write 24
con_show ioctl 28
con_show powerfail 32
con_show timeout 36
con_show load 40
con_show unload 44
con_show poll 48

done

See Also
entry-point routines, internal data structures, internal kernel routines, set_user_error()

copyb() — DDI/DKI Kernel Routine
Duplicate a message block
#include <sys/stream.h>
mblk_t *copyb(bufptr)
mblk_t *bufptr;

copyb() allocates a message block and copies into it the contents of the block to which bufptr points. copyb()
ensures that the newly allocated block is at least as large as that to which bufptr points.

If all goes well, copyb() returns a pointer to the newly allocated message block; otherwise, it returns NULL.

See Also
allocb(), copymsg(), DDI/DKI kernel routines, msgb

Notes
copyb() has base or interrupt level. It does not sleep.

LEXICON

copyb() 83

A function can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

copyin() — DDI/DKI Kernel Routine
Copy data into a driver buffer from a user buffer
#include <sys/types.h>
int copyin(user, driver, bytes)
caddr_t user, driver; size_t bytes;

copyin() copies bytes of data from address user, which lies within the user’s data space, to address driver, which
lies within the kernel’s data space. driver must point to at least bytes of allocated memory. If the memory to
which driver points does not lie entirely within the kernel’s space, the system may panic.

If all goes well, copyin() returns zero; otherwise, it returns -1.

See Also
copyout(), DDI/DKI kernel routines, uiomove(), ureadc(), uwritec()

Notes
copyin() has base level. It can sleep.

A driver cannot hold a driver-defined basic lock or a read/write lock across a call to this function; it can, however,
hold a driver-defined sleep lock. When it holds a sleep lock, a driver must be careful to avoid creating a deadlock.

As data are being transferred, resolution of a page fault may result in another I/O to the same device.

This function is equivalent to the internal-kernel routine ukcopy().

copymsg() — DDI/DKI Kernel Routine
Duplicate a message
#include <sys/stream.h>
mblk_t *copymsg(msgptr)
mblk_t *msgptr;

copymsg() duplicates the message to which msgptr points. It allocates enough message blocks to hold the message
and calls copyb() to copy the message.

If all goes well, copymsg() returns a pointer to the duplicate message. Otherwise, it returns NULL.

See Also
allocb(), copyb(), DDI/DKI kernel routines, msgb

Notes
copymsg() has base or interrupt level. It does not sleep.

A driver can hold driver-defined basic locks, read/write locks, and sleep locks across a call to this function.

copyout() — DDI/DKI Kernel Routine
Copy data into a user buffer from a driver buffer
#include <sys/types.h>
int copyout(driver, user, bytes)
caddr_t driver, user; size_t bytes;

copyout() copies bytes of data from address driver, which lies within the kernel’s data space, to address user,
which lies within theuser’s data space. user must point to at least bytes of allocated memory. If the memory to
which driver points does not lie entirely within the kernel’s space, the system may panic.

If all goes well, copyout() returns zero; otherwise, it returns -1.

See Also
copyin(), DDI/DKI kernel routines, uiomove(), ureadc(), uwritec()

Notes
copyout() has base level. It can sleep.

LEXICON

84 copyin() — copyout()

A driver cannot hold a driver-defined basic lock or a read/write lock across a call to this function; it can, however,
hold a driver-defined sleep lock. When it holds a sleep lock, a driver must be careful to avoid creating a deadlock.

This function is equivalent to the internal-kernel routine kucopy().

copyreq — STREAMS Data Structure
Structure for a request for a STREAMS transparent ioctl copy
#include <sys/stream.h>

The structure copyreq holds information used to process transparent ioctls. A driver creates this structure by
overlaying a STREAMS message of type M_IOCTL or M_IOCDATA and converting it into an M_COPYIN or
M_COPYOUT message; thus, the driver lays copyreq upon the structures ioctl or copyresp. The stream head
guarantees that the message is large enough to contain all of the structures.

The following fields within copyreq are available to drivers:

int cq_cmd This gives the ioctl command, as copied from field ioc_cmd in structure iocblk.

cred_t *cq_cr This points to the user’s credentials. It is copied from field ioc_cr within structure iocblk.

uint_t cq_id This gives the ioctl’s identifier, as copied from the field ioc_id within structure iocblk.

caddr_t cq_addr If the message is of type M_COPYIN, cq_addr contains the address within user space from
which the data are copied; if the message is M_COPYOUT, it contains the address in user
space to which the data are copied.

uint_t cq_size The number of bytes to copy, regardless of the direction of copying.

int cq_flag This field is reserved for future use. The driver should initialize it to zero.

mblk_t *cq_private This field is reserved for the driver, which can use it to hold the information it needs to
process the ioctl. The contents of this field are copied into field cp_private of the resulting
M_IOCDATA message.

See Also
datab, DDI/DKI data structures, iocblk, msgb

Notes
When a message of type M_COPYIN or M_COPYOUT is freed, STREAMS does not free any message to which
cq_private refers; the STREAMS module or driver must free these messages.

copyresp — STREAMS Data Structure
Structure for responding to STREAMS transparent ioctl copy
#include <sys/stream.h>

Structure copyresp contains the information needed to continue processing transparent ioctls. No driver creates
this structure: it is contained within any M_IOCDATA messages that the stream head generates.

The following fields within copyresp are available to drivers:

int cp_cmd The ioctl command, copied from field cq_cmd of the structure copyreq.

cred_t *cp_cr The user’s credentials. It is copied from field cq_cr of structure copyreq.

uint_t cp_id The ioctl identifier, which uniquely identifies this ioctl within the stream. It is copied from
field cq_id of the structure copyreq.

caddr_t cp_rval The value returned by the last copy request. Zero indicates that the request succeeded; a
non-zero value indicates that the copy failed, with the nature of the failure indicated by the
value. When this field indicates failure, the driver or module should abort processing the
ioctl and free the message.

mblk_t *cp_private The contents of this field are copied from field cq_private of the structure copyreq. The driver
defines what goes into this field.

See Also
datab, DDI/DKI data structures, mesgb, copyreq, iocblk

LEXICON

copyreq — copyresp 85

Notes
If a driver reuses an M_IOCDATA message, it must clear all unused fields.

When a STREAMS function frees an M_IOCDATA message, it does not free the memory to which cp_private points.
Your driver must free this memory.

datab — STREAMS Data Structure
Structure for a STREAMS data block
#include <sys/types.h>
#include <sys/stream.h>

The data-block structure datab holds the data of a STREAMS message. The message-block structure msgb includes
a field that points to it. The kernel allocates a datab when it creates structures of type mblk_t.

The following fields within datab are available to a driver:

uchar_t *db_base The beginning of the data buffer. Do not alter this field.

uchar_t *db_lim This field points to one byte past the end of the data buffer. Do not alter this field.

uchar_t db_ref The number of message blocks that share the data buffer. Only one message block can point
to any given data block at any given time; therefore, if the value of this field is greater than
one, do not change the contents of the data buffer. Do not alter this field.

uchar_t db_type The type of message within the data buffer. A driver can change this field — but only if field
db_ref equals one, as described above.

See Also
DDI/DKI data structures, free_rtn, messages, msgb

Notes
The structure datab is defined as type dblk_t.

datamsg() — DDI/DKI Kernel Routine
Test whether a message type is a data type
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>
int datamsg(type)
uchar_t type;

datamsg() tests whether type is a data type, i.e., any of the types M_DATA, M_DELAY, M_PROTO, or
M_PCPROTO. datamsg() returns one if type is a data message, and zero if it is not. Use this function to examine
field db_type within a message’s datab structure, to see whether this is a data message. To access the type of the
message to which msgptr points, use the construction msgptr->b_datap->db_type.

See Also
allocb(), datab, DDI/DKI kernel routines, messages, msgb

Notes
datamsg() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

ddi_base_data() — DDI/DKI Kernel Routine
Get base data on per-process basis
#include <kernel/ddi_base.h>
dbdata_t *ddi_base_data();

ddi_base_data() returns a pointer to a table of information that the DDI/DKI must associate with a process but
does not need to access outside the context of that process. The value it returns should be considered constant.

See Also
ddi_cpu_data, ddi_global_data, ddi_proc_data, DDK/DKI kernel routines

LEXICON

86 datab — ddi_base_data()

Notes
ddi_base_data() has base level only. It does not sleep.

Please note that although ddi_base_data() is used with COHERENT’s implementation of the DDI/DKI interface, it is
not part of the published description of the DDI/DKI. Code that uses it will not be portable to other operating
systems.

ddi_cpu_data() — DDI/DKI Kernel Routine
Get global data on per-processor basis
#include <kernel/ddi_cpu.h>
dcdata_t *ddi_cpu_data();

ddi_cpu_data() returns a pointer to a table of information that can be considered DDI/DKI static data for a given
processor. The value returned should be considered constant.

ddi_cpu_data() returns the base address of the DDI/DKI’s data-table entry for the current CPU.

See Also
ddi_base_data, ddi_global_data, ddi_proc_data, DDI/DKI kernel routines

Notes
ddi_cpu_data() has base or interrupt level. It does not sleep.

Please note that although ddi_cpu_data() is used with COHERENT’s implementation of the DDI/DKI interface, it is
not part of the published description of the DDI/DKI. Code that uses it will not be portable to other operating
systems.

ddi_global_data() — DDI/DKI Kernel Routine
Get global data
#include <kernel/ddi_glob.h>
dgdata_t *ddi_global_data();

ddi_global_data() returns a base pointer to a table of information that represents the global state of the DDI/DKI
subsystem, with the possible exception of the STREAMS global state. The value returned should be considered
constant.

See Also
ddi_base_data, ddi_cpu_data, ddi_proc_data, DDI/DKI kernel routines

Notes
ddi_global_data() has base or interrupt level. It does not sleep.

Please note that although ddi_global_data() is used with COHERENT’s implementation of the DDI/DKI interface, it
is not part of the published description of the DDI/DKI. Code that uses it will not be portable to other operating
systems.

ddi_proc_data() — DDI/DKI Kernel Routine
Get global data on a per-process basis
#include <kernel/ddi_proc.h>
dpdata_t *ddi_proc_data();

ddi_proc_data() returns a base pointer to a table of information that the DDI/DKI needs to associate with a
process, but may need to access outside the process context. The value it returns should be considered constant.

See Also
ddi_base_data(), ddi_cpu_data(), ddi_global_data(), DDI/DKI kernel routines

Notes
ddi_proc_data() has base or interrupt level. It does not sleep.

Please note that although ddi_proc_data() is used with COHERENT’s implementation of the DDI/DKI interface, it is
not part of the published description of the DDI/DKI. Code that uses it will not be portable to other operating
systems.

LEXICON

ddi_cpu_data() — ddi_proc_data() 87

DDI/DKI data structures — Overview
The COHERENT implementation of DDI/DKI and STREAMS uses the following data structures:

copyreq Structure for a request for a STREAMS transparent ioctl copy
copyresp Structure for responding to STREAMS transparent ioctl copy
datab Structure for a STREAMS data-block structure
free_rtn The free-message routine
iocblk. ioctl structure
iovec Data-storage structure for scatter/gather I/O
linkblk Multiplexor link structure
lkinfo Information about a lock
module_info. Information about a STREAMS driver or module
msgb Message block structure
pollhead Structure for a STREAMS poll head
qinit Initialization for queues
queue Queue structure
streamtab Driver/module declaration
stroptions Structure for stream-head options
uio Organize scatter/gather I/O requests

Note that each structure contains many more fields than those that are documented in this manual. However, no
driver or module can manipulate any field in any structure other than those documented in this manual. Doing so
risks corrupting kernel memory.

Note, too, that each structure has its own ‘‘legal’’ origin, as follows:

copyreq Overlay an M_IOCTL or M_IOCDATA STREAMS message
copyresp Not created by the driver
datab Allocated when mblk_ts are allocated by kernel
free_rtn Allocated by driver
iocblk. Not created by the driver
iovec May be driver-allocated at present
linkblk Not created by the driver
lkinfo Allocated by driver
module_info. Statically allocated in driver source
msgb Allocated only by allocb() or esballoc()
qinit Statically allocated in driver source
queue Not created by the driver
streamtab Statically allocated in driver source
stroptions Built by driver in STREAMS message memory
uio May be driver-allocated at present

The kernel cannot police a driver to ensure that it does not create its own versions of these structures on the sly;
however, doing so may corrupt kernel memory.

See Also
device driver, STREAMS

DDI/DKI kernel routines — Overview
The COHERENT implementation of the DDI/DKI includes the following routines: Note that the routines marked with
an asterisk ‘*’ are used with COHERENT’s implementation of the DDI/DKI interface, but are not part of the
published description of the DDI/DKI. Code that uses them will not be portable to other operating systems.

adjmsg() Clip a message
allocb() Allocate a message block
ASSERT() Debug an expression
backq() Get a pointer to the preceding queue
bcanput(). Test for flow control in a priority band
bcanputnext(). Test for flow control in a priority band
bcopy() Copy data between locations within the kernel
bufcall() Call a function when a buffer becomes available
bzero() Initialize a block of memory to zero
canput() Test for room in a queue

LEXICON

88 DDI/DKI data structures — DDI/DKI kernel routines

canputnext() Test for room in a queue
cmn_err() Display an error message or panic the system
copyb() Copy a message block
copyin() Copy data from a user’s buffer to a driver’s buffer
copymsg() Copy a message
copyout(). Copy data from a driver’s buffer to a user’s buffer
datamsg() Test whether a message is a data message
ddi_base_data()* Get DDI/DKI base data on per-process basis
ddi_cpu_data()* Get DDI/DKI global data on per-processor basis
ddi_global_data()* . . . Get DDI/DKI global data
ddi_proc_data()* Get DDI/DKI global data on a per-process basis
drv_getparm(). Retrieve information about the kernel state
drv_hztousec() Convert clock ticks to microseconds
drv_priv() Determine whether credentials are privileged
drv_setparm() Set kernel state information
drv_usectohz() Convert microseconds to clock ticks
dupb(). Duplicate a message block
dupmsg() Duplicate a message
enableok() Enable a queue to be serviced
esballoc(). Allocate a message block with an externally supplied buffer
esbbcall(). Call a function when an externally-supplied buffer can be allocated
etoimajor(). Convert external to internal major device number
flushband() Flush messages in a priority band
flushq() Flush messages on a queue
freeb(). Free a message block
freemsg(). Free a message
freerbuf(). Free a buffer header used for raw I/O
freezestr() Freeze a stream
getemajor() Get external major-device number
geteminor() Get external minor-device number
getmajor() Get internal major-device number
getminor() Get internal minor-device number
getq() Get the next message from a queue
getrbuf() Allocate a buffer header for raw I/O
inb() Read a byte from an eight-bit I/O port
inl() Read a 32-bit long word from a 32-bit I/O port
insq() Insert a message into a queue
inw() Read a 16-bit short word from a 16-bit I/O port
itimeout() Execute a function after a given length of time
itoemajor(). Convert internal to external major number
kmem_alloc() Allocate space from kernel free memory
kmem_free(). Free previously allocated kernel memory
kmem_zalloc() Allocate space from kernel free memory
linkb() Concatenate two message blocks
LOCK() Acquire a basic lock
LOCK_ALLOC() Allocate a basic lock
LOCK_DEALLOC() . . . Deallocate a basic lock
makedevice() Make device number from major and minor numbers
msgdsize() Return number of bytes of data in a message
msgpullup() Concatenate bytes in a message
noenable() Prevent a queue from being scheduled
OTHERQ() Get pointer to queue’s partner queue
outb() Write a byte to an eight-bit I/O port
outl() Write a long integer to an 32-bit I/O port
outw(). Write a word to an 16-bit I/O port
pcmsg(). Test whether a message is a priority-control message
phalloc() Allocate and initialize a pollhead structure
phfree(). Free a pollhead structure
physiock() Request and validate raw I/O
pollwakeup(). Inform polling process that an event has occurred
proc_ref(). Obtain a reference to a process for signalling
proc_signal(). Send a signal to a process

LEXICON

DDI/DKI kernel routines 89

pullupmsg() Concatenate bytes in a message
put(). Call a put procedure
putbq() Place a message at the head of a queue
putctl() Send a control message to a queue
putctl1() Send a control message and a parameter to a queue
putnext(). Send a message to the next queue
putnextctl() Send a control message to a queue
putnextctl1() Send a control message and a parameter to a queue
putq() Put a message onto a queue
qenable() Schedule a queue’s service routine for running
qprocsoff() Disable put and service routines
qprocson() Enable put and service routines
qreply() Send a message in the opposite direction on a stream
qsize() Find the number of messages on a queue
RD() Get a pointer to a read queue
repinsb() Read bytes from an I/O port to a buffer
repinsd() Read 32-bit words from an I/O port to a buffer
repinsw() Read 16-bit words from an I/O port to a buffer
repoutsb() Read bytes from a buffer to an I/O port
repoutsd() Read 32-bit words from a buffer to an I/O port
repoutsw() Read 16-bit words from a buffer to an I/O port
rmvb() Remove a message block from a message
rmvq() Remove a message from a queue
RW_ALLOC(). Allocate and initialize a read/write lock
RW_DEALLOC() Deallocate an instance of a read/write lock
RW_RDLOCK() Acquire a read/write lock in read mode
RW_TRYRDLOCK(). . . Try to acquire a read/write lock in read mode
RW_TRYWRLOCK() . . Try to acquire a read/write lock in write mode
RW_UNLOCK() Release a read/write lock
RW_WRLOCK() Acquire a read/write lock in write mode
SAMESTR() Test if next queue is same type
set_user_error(). Set an error code in the user space
SLEEP_ALLOC(). Allocate and initialize a sleep lock
SLEEP_DEALLOC(). . . Deallocate a sleep lock
SLEEP_LOCK() Acquire a sleep lock
SLEEP_LOCK_SIG() . . Acquire a sleep lock
SLEEP_LOCKAVAIL() . Query whether a sleep lock is available
SLEEP_LOCKOWNED() Query whether a sleep lock is held by the caller
SLEEP_TRYLOCK(). . . Try to acquire a sleep lock
SLEEP_UNLOCK() . . . Release a sleep lock
splbase() Block no interrupts
spldisk() Block disk-device interrupts
splhi(). Block STREAMS interrupts
splstr() Block STREAMS interrupts
spltimeout() Block timeout interrupts
splx() Reset an interrupt-priority level
strlog() Submit messages to the log driver
strqget() Get information about a queue
strqset() Change information about a queue or band of a queue
sv_alloc(). Allocate and initialize a synchronization variable
SV_BROADCAST() . . . Wake up all processes sleeping on a synchronization variable
SV_DEALLOC() Deallocate an instance of a synchronization variable
SV_SIGNAL(). Wake up one process sleeping on a synchronization variable
SV_WAIT() Sleep on a synchronization variable
SV_WAIT_SIG() Sleep on a synchronization variable
testb() Check for an available buffer
TRYLOCK() Try to acquire a basic lock
uiomove() Copy data using uio structure
unbufcall() Cancel a pending request to bufcall()
unfreezestr() Unfreeze a stream
unlinkb() Remove a message block from the head of a message
UNLOCK() Release a basic lock

LEXICON

90 DDI/DKI kernel routines

untimeout Cancel execution of a previously scheduled function
ureadc() Copy a character to space described by a uio structure
uwritec() Copy a character from space described by a uio structure
WR(). Get a pointer to the write queue

See Also
device driver, internal kernel routines, STREAMS

defend() — Internal Kernel Routine
Execute deferred functions
void defend()

defend() tells the kernel to execute all functions that are on its deferred list. This function is never invoked by an
interrupt handler.

See Also
internal kernel routines

defer() — Internal Kernel Routine
Defer function execution
void defer(func, arg)
void (*func)(); char *arg;

defer() defers execution of the function to which func points. arg is an argument passed to func. Execution of func
remains deferred until the next context switch, transition from kernel to user mode, or invocation of the function
defend().

Deferred functions never call sleep() or access the u area, because the kernel can switch u areas as part of context
switching. Up to 127 functions can be deferred at any one time. Exceeding this limit may lose all deferred
functions.

defer() normally is used to minimize interrupt latency by deferring operations from interrupt level (where lower
priority interrupts are disabled) to background level (where all interrupts normally are enabled). It is also used to
help eliminate critical race conditions between task- and interrupt-related operations because deferred functions
execute synchronously with each other, with timed functions, and with system calls.

See Also
internal kernel routines

device driver — Introduction
A device driver is a program that controls the action of one of the physical devices attached to your computer
system. The following table lists the device drivers included with the COHERENT system. The first field gives the
device’s major device number; the second gives its name; and the third describes it. When a major device number
has no driver associated with it, that device is available for a driver yet to be written. Note that the

0: null The ‘‘bit bucket’’
0: mem Interface to memory and null device
0: kmem Device to manage kernel memory
0: kmemhi
0: clock System clock
0: cmos System CMOS
0: ps Processes currently being executed
0: idle System idle time
1: ct Controlling terminal device (/dev/tty)
2: console Video module for console (/dev/console)
2: nkb The ‘‘new’’ keyboard driver — loadable keyboard tables (/dev/console)
2. kb The ‘‘old’’ keyboard driver (/dev/console)
2. mm The video driver
3: lp Parallel line printer
4: fd Floppy-disk drive
4: fdc 765 diskette and floppy-tape controller
4: ft Floppy-tape drive

LEXICON

defend() — device driver 91

5: asy Serial driver
6:
7:
8: rm Dual RAM disk
9: pty Pseudoterminals

10:
11: at AT hard disk
12:
13: hai Host adapter-independent SCSI driver
13: aha Older driver for Adaptec SCSI hard disks
13: ss Older driver for Seagate SCSI hard disks
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Please note that the devices with major number 0 are not portable, and non-DDI/DKI. Also note that in future
releases of COHERENT, the hai driver will be divided into several optional SCSI host-bus adapters (HBAs) and target
devices.

It is not unusual for one major number to admit several driver service modules. Instances of this include the
following major numbers:

0 This number is for a number of system-dependent drivers.

2 This number supports the console, both its keyboard modules and its video modules.

4 This describes varieties of floppy-disk and floppy-tape controllers and drives.

13 This describes a number of SCSI host modules, HBA modules, and target modules.

Major and Minor Numbers
COHERENT uses a system of major and minor device numbers to manage devices and drivers. In theory, COHERENT

assigns a unique major number to each type of device, and a unique minor number to each instance of that type.
In practice, however, a major number describes a device driver (rather than a device per se). The individual devices
serviced by that driver are identified by a minor number. Sometimes, certain parts of the minor number specify
configuration. For example, bits 0 through 6 of the minor number for COHERENT RAM disks indicate the size of
the allocated device.

In future releases of COHERENT, major numbers will not be static, as they are in the above table. Rather, they will
be assigned by the config script when you install COHERENT onto your system. This scheme will allow more
flexible arrangements of drivers, and will also allow COHERENT to support more than 32 drivers at once. If you
write code to work with device drivers, you should not make any assumptions about a given driver’s major number.

Optional Kernel Components
The kernel also contains the following optional components:

LEXICON

92 device driver

em87 Emulate hardware floating-point routines
msg Perform System V-style message operations
sem Perform System V-style semaphore operations
shm Perform System V-style shared-memory operations
streams Perform STREAMS operations

These components resemble device drivers, in that that they perform discrete work and can be linked into or
excluded from the kernel, as shown below. However, they do not perform I/O with a device, and so are not true
drivers. For details on these modules, see their entries in the Lexicon.

Serial Ports
COHERENT manages serial ports with one driver, asy. It has major number 5, but it supports all four COM ports,
and a variety of generic multi-port cards. The configuration of ports that asy supports is set when you install
COHERENT; however, you can reconfigure asy should you wish to add more hardware to your system. See its
Lexicon article for details.

Configuring Drivers and the Kernel
Beginning with release 4.2, COHERENT lets you tune kernel and driver variables, enable or disable drivers, and
easily build a new bootable kernel that incorporates your changes.

The command idenable lets you enable or disable a driver within the kernel. The command idtune lets you set a
user-modifiable variable within the kernel. Finally, the command idmkcoh generates a new kernel that
incorporates all changes you have made with the other three commands. Changes are entered with idenable and
idtune do not take effect until you invoke idmkcoh to generate a new kernel, and boot the new kernel. Scripts
/etc/conf/*/mkdev simpify the choices of idenable and idtune during installation and reconfiguration: they
invoke idtune and idenable in response to your choice of configuration options.

Adding a New Device Driver
The commands described above make it easy for you to add a new device driver to your COHERENT kernel.

The following walks you through the processing of adding a new driver. We will add the driver foo, which enables
the popular ‘‘widget’’ device.

1. To begin, log in as the superuser root.

2. The next step is to create a directory to hold the driver’s sources and object. Every driver must have its own
directory under directory /etc/conf; and the sources must be held in directory src in that driver’s directory.
In this case, create directory /etc/conf/foo; then create directory /et/conf/foo/src.

3. Copy the sources for the driver into its source directory; in this case, copy them into /etc/conf/foo/src.

4. Create a Makefile in your driver’s source directory, e.g., /etc/conf/foo/src/makefile. The easiest way to see
what is required is to review several of the driver Makefiles shipped in the COHERENT driver kit. You can
perform a test compilation of your driver by running make with the driver’s src directory as the current
directory. This should create one object file that has the suffix .o. Copy this file in the driver’s home
directory, and name it Driver.o. In this case, the object for the driver should be in file
/etc/conf/foo/Driver.o. In some rare cases, a driver compile into more than one object. You should store all
of these objects into one archive; name the archive Driver.a and store it in the driver’s home directory. The
COHERENT commands that build the new kernel know how to handle archives correctly. The main idea is that
files Space.c (if one exists) and Driver.o or Driver.a be placed in the driver directory, i.e., the parent of the src
directory.

5. Add an entry to file /etc/conf/sdevice for this driver. sdevice, as described above, names the drivers to be
included in the kernel. The entries for practically every entry are identical; you need to note only that the
second column marks whether to include the driver in the kernel. In this case, the entry for the driver foo
should read as follows:

foo Y 0 0 0 0 0x0 0x0 0x00x0

For details on what each column means, read the comments in file /etc/conf/sdevice.

6. Add an entry to file /etc/conf/mdevice for the new driver. This file is a little more complex than sdevice; in
particular, it distinguishes between STREAMS-style drivers and ‘‘old-style’’ COHERENT drivers. In most cases,
you can simply copy an entry for an existing driver of the same type, and modify it slightly. In this case, the
entry for foo should read as follows:

LEXICON

device driver 93

full func misc code block char minor minordma cpu
name flags flags prefix major major minmax chan id
foo - CGo foo 15 15 0 255 -1-1

In almost every case, the full name and the code prefix are identical. The code prefix also names the directory
that holds the driver’s object. Function flags are always always a hyphen, and miscellaneous flags almost
always CGo. The block-major and character-major numbers again are almost always identical. The major
number is usually assigned by the creator of the device driver. In future releases of the kernel, these will be
assigned dynamically by the kernel itself; poorly written drivers that depend upon the driver having a magic
major-device number will no longer work. Finally, the last four columns for non-STREAMS drivers are almost
always 0, 255, -1, and -1, respectively. See the comments in file /etc/conf/mdevice.

7. If the driver has tunable variables, these should be set in the file Space.c, which should be stored in the
driver’s home directory. As it happens, foo does not need a Space.c file. For examples of such files, look in
the various sub-directories of /etc/conf.

8. Type the command /etc/conf/bin/idmkcoh to build a new kernel. If necessary, move the new kernel into
the root directory; you cannot boot it until it is in the root directory.

9. Save the old kernel and link the newly build kernel to /autoboot. You want save the old kernel, just in case
the new one doesn’t work. For directions on how to boot a kernel other than /autoboot, see the Lexicon entry
for booting.

10. Back up your files! With a new driver in your kernel, it’s best to play it safe.

11. Reboot your system to invoke the new kernel. If all goes well, you will now be enjoying the services of the new
device driver.

If you wish to boot your test kernel from a floppy disk instead of from your development file system, execute script
/etc/conf/bin/Floppy after step 8, above.

For scripts on how to add or remove individual drivers from your kernel, see the article of the driver in question.

Types of Device-Driver Interface
Beginning with release 4.2, COHERENT uses two types of device-driver interface:

Internal Kernel Interface
This type of driver uses the routines internal to the COHERENT kernel. Examples of this interface include
the at driver for the AT hard disk, and the hai driver for SCSI devices. See their sources in, respectively,
directories /etc/conf/at/src and /etc/conf/hai/src.

DDI/DKI Interface
The device-driver interface/driver-kernel interface (DDI/DKI) is a programmers’ interface for UNIX System V
release 4.

When you begin to write a driver for COHERENT, you should pick carefully between these two strategies:

• The internal-kernel interface is proven and works; however, note that this is a world apart from UNIX, and a
driver written in this interface is not readily portable to any other operating system.

• The DDI/DKI interface does ensure portability with UNIX System V release 4; however, the COHERENT

implementation lacks some features present in true UNIX. These features mainly center around features that
are lacking from the COHERENT kernel itself, which means that the COHERENT must await a rewritten memory
manager and file system before it will have a fully compliant DDI/DKI.

Sets of routines from the DDI/DKI can be combined with those from the internal-kernel interface. In some cases,
the DDI/DKI offers the better method of performing a given task; in others, the internal-kernel interface offers the
better (or, more likely, the only) method to perform a task. If you are importing a driver from UNIX System V
release 4, then you should use the DDI/DKI routines primarily. Likewise, you should use them primarily if you are
writing a driver that you wish to export to UNIX. Note, too, that as COHERENT evolves toward the standard of
System V release 4, the DDI/DKI interface will grow in importance.

The sources included with release 4.2.05 of the device-driver kit are in the internal-kernel format rather than
DDI/DKI. It was simply not practical to recast these drivers in the DDI/DKI mold at the present time; however, we
are supplying information regarding DDI/DKI interfaces to inform developers of the future direction of COHERENT.
In the development of new drivers, DDI/DKI facilities should be used wherever possible for greatest compatibility,
e.g., with future releases of COHERENT.

LEXICON

94 device driver

To summarize, all else being equal, the DDI/DKI is preferred over the internal-kernel interface. The Lexicon entries
themselves will alert you of the alternate ways of performing a given task, to help you decide which to use.

The best way to judge which interface you should use is to read the sources included with the COHERENT Device
Driver Kit:

echo (/etc/conf/echo/src)
This driver gives a small example of a STREAMS driver.

at (/etc/conf/at/src)
This driver manipulates the AT hard disk. It gives the best demonstration of writing a block driver, with
regard to compatibility with UNIX System V release 4.

hai devices (/etc/conf/hai/src)
This driver manipulates SCSI devices. It demonstrates how to use first-party DMA.

ss (/etc/conf/ss/src)
This driver manipulates the Seagate SCSI disk. It demonstrates how to use memory-mapped I/O.

fd (/etc/conf/fd/src)
fdc These drivers manipulate the floppy disks. It demonstrates how to perform DMA via the Intel controllers.

asy (/etc/conf/asy/src)
This driver manipulates serial ports COM1 through COM4 and multiport asynchronous serial boards using
8250- through 16550-type UARTs. It demonstrates how to write a non-STREAMS driver for a character
device.

Beyond this, you must use your best judgement as you gain experience in working with COHERENT.

Coding Requirements
The following summarizes the coding requirements for device drivers that use the internal-kernel or DDI/DKI
interfaces.

To begin, the coding requirements for the internal-kernel interface:

1. Put ‘C’ in the miscellaneous flags in the file /etc/conf/mdevice.

2. Do not define symbol _DDI_DKI in the driver’s source file.

3. Place driver’s entry points in a CON structure. For information on this structure, see the entries for entry
points and CON in this Lexicon.

4. There is distinction between internal and external major- and minor-device numbers. A device number
(dev_t) is a 16-bit object. Use internal-kernel routine minor(), q.v., to obtain the minor-device number.

5. Either include <sys/coherent.h>, or explicitly define symbol _KERNEL to be one, before any other #include
directives in the driver source.

The coding requirements for the DDI/DKI interface are as follows:

1. Do not put a ‘C’ into the miscellaneous-flags field in file /etc/conf/mdevice (q.v.).

2. Define symbol _DDI_DKI in the driver’s source file, before any #include directives.

3. Put an entry into the function-flags field in /etc/conf/mdevice for each of the driver’s entry points; do not
put them into a CON structure.

4. A device number (dev_t) is a 32-bit object. There is some discussion in the literature of internal vs.
external numbering for device numbers and for the major and minor parts of the device number as well.
As of COHERENT 4.2.05, only external numbers are of interest to the writer of device drivers. Thus, when a
dev_t is passed to a driver’s entry point, it is an external device number. When major numbers are
entered into file /etc/conf/mdevice, they are external major numbers. Unit numbers and device features
are decoded from the external minor number, which is obtained from the external device number by calling
the DDI/DKI routine geteminor().

5. Define symbol _KERNEL to be one in the driver source, before any #include directives.

LEXICON

device driver 95

Using This Lexicon
This manual is organized into the Mark Williams Lexicon format. The following overview articles introduces the
categories of articles within this manual:

DDI/DKI data structures
This article introduces the articles that describe the types of structures from which a stream is
constructed.

DDI/DKI kernel routines
This article introduces the articles that discuss the DDI/DKI routines that are built into the kernel.

entry-point routines
This article introduces the articles that discuss the entry points into a driver.

internal data structures
This article introduces the data structures internal to the COHERENT kernel.

internal kernel routines
This article introduces the routines built into the COHERENT kernel that can be used in a device driver.

STREAMS
This article introduces STREAMS.

technical information
This article introduces articles that give technical information, such as types of messages or of signals.

See Also
COHERENT Lexicon: asy, at, boot, console, ct, floppy disk, ft, hard disk, kernel, Lexicon, lp, mboot, mem, null,
psy, sgtty, STREAMS, tape, termio

device numbers — Technical Information
Device numbering is evolving under COHERENT toward compability with UNIX System V release 4. For this reason,
the internal-kernel and DDI/DKI interfaces differ in their treatment of device numbers.

Under both the internal-kernel and DDI/DKI interfaces, a device number, or dev_t, combines major and minor
numbers.

The major device number is arbitrarily assigned. A driver’s logic should not rely on that driver being assigned any
specific major-device numbers. A driver’s major-device number is set by its entry in the file mdevice.

The driver’s programmer assigns minor-device numbers. If a device driver controls several distinct units of the
same device simultaneously (e.g., multiple floppy-disk drives or multiple partitions on a hard disk), the minor-
device number often indicates which unit is being accessed. If a device driver allows different options for accessing
a device, such as hardware flow control for a serial device or rewind-on-close for a tape device, it is common for
some part of the minor-device number to indicate the user’s choice of options.

The literature discusses internal versus external device numbers. As of release 4.2.05, this does not apply to
COHERENT. The internal-kernel interface does not distinguish between these entities; and it has not yet been
implemented for COHERENT’s version of the DDI/DKI interface.

See Also
makedevice(), getemajor(), geteminor(), getmajor(), getminor(), technical information

devmsg() — Internal Kernel Routine
Print a message from a device driver
void devmsg(dev, fmt, ...)
dev_t dev; char *fmt;

devmsg() prints a message from a device driver on the system console. fmt and optional additional arguments are
in the same form as used by the function printf(), except that devmsg() appends a newline onto fmt. Output from
devmsg() is synchronous and at high priority, so its use is limited to brief error messages.

See Also
internal kernel routines, printf()

LEXICON

96 device numbers — devmsg()

Notes
This function does much the same work as the DDI/DKI routine cmn_err().

dmago() — Internal Kernel Routine
Enable DMA transfers
void dmago(chan)
int chan;

dmago() enables transfers on DMA channel chan. A call to dmago() must be preceded by a call to dmaon(), which
sets the DMA parameters.

See Also
internal kernel routines

dmain() — Internal Kernel Routine
Copy from system global memory to kernel data
dmain(nbytes, src, dest)
long nbytes; paddr_t src; vaddr_t dest;

dmain() copies nbytes from system global address src to kernel address dest.

See Also
internal kernel routines

dmaoff() — Internal Kernel Routine
Disable DMA transfers
int dmaoff(chan)
int chan;

dmaoff() disables transfers on the DMA channel chan. It returns the residual count (i.e., the number of bytes not
transferred). A call to dmaoff() must be preceded by calls to dmaon() and dmago().

See Also
internal kernel routines

dmaon() — Internal Kernel Routine
Prepare for DMA transfer
#include <sys/types.h>
int dmaon(chan, paddr, count, wflag)
int chan, wflag; paddr_t paddr; unsigned count;

dmaon() programs DMA channel chan to transfer count bytes to or from physical-memory address paddr. If wflag
is zero, the data are read from the device and written to memory.

If all goes well, dmaon() returns one. It returns zero if a ‘‘straddle condition’’ arises — that is, if an operation would
cross the boundary of a 64-kilobyte ‘‘hunk’’ of physical memory — because the DMA controller cannot handle this
situation.

See Also
internal kernel routines

dmaout() — Internal Kernel Routine
Copy from kernel data to system global memory
dmaout(nbytes, dest, src)
long nbytes; vaddr_t dest, src;

dmaout() copies nbytes from kernel address src to system global address dest.

See Also
internal kernel routines

LEXICON

dmago() — dmaout() 97

dmareq() — Internal Kernel Routine
Request block I/O, avoiding DMA straddles
#include <sys/buf.h>
void dmareq(bp, iop, dev, req)
BUF *bp; IO *iop; dev_t dev; int req;

dmareq(), like ioreq(), queues an I/O request through the block routine of a device driver. bp points to the BUF
structure for the I/O. iop points to an IO structure. dev is the device to access. Finally, req requests the type of
I/O: it must be either BREAD or BWRITE.

dmareq() converts I/O requests that straddle DMA boundaries into two or three non-straddling requests. It
converts block DMA straddles into two non-straddling I/O requests; it converts other DMA straddles into three
non-straddling I/O requests, where the DMA-straddling block is handled through the buffer cache. Note that the
driver’s block routine must be able to function with the smaller I/O requests.

See Also
ioreq(), internal kernel routines

drv_getparm() — DDI/DKI Kernel Routine
Retrieve information about the kernel state
#include <sys/types.h>
#include <sys/ddi.h>
int drv_getparm(parameter, address)
ulong_t parameter; ulong_t *address;

drv_getparm() retrieves the value of parameter, and writes it into address. parameter can be one of the following:

LBOLT The number of clock ticks since the kernel was last booted. The difference between successive
values of this parameter can be used to calculate the number of ticks that elapsed between calls.

Under COHERENT, each tick is one one-hundredth of a second; however, the length of a clock tick
varies among implementations, and if you wish your driver to be portable to other operating
systems, do not hard-code this value. You can use functions drv_hztousec() and drv_usectohz()
to convert between clock ticks and microseconds.

UPROCP The address of the current process’s process (UPROC) structure. The value written at address
value is of type proc_t * The only valid use of this value is as an argument to function vtop().
Because this value is associated with the current process, the caller must have process context
(that is, must be at base level) when it attempts to retrieve this value. Use this value only within
the context of the process within which it was retrieved.

UCRED The address of the structure that describes the current user’s credentials for the current process.
The value written at address value is of type cred_t *. The only valid use of this value is an an
argument to function drv_priv(). Because this value is associated with the current process, the
caller must have process context (that is, must be at base level) when it attempts to retrieve this
value. Use this value only within the context of the process within which it was retrieved.

TIME Read the current time, in seconds. This is the same value returned by the system call time(), that
is, in the number of seconds that have elapsed since January 1, 1970, 00:00:00 UTC. This
definition presupposes that the administrator has set the system’s date and time correctly.

drv_getparm() returns zero if all went well; otherwise, it returns -1. This usually indicates that parameter held an
invalid parameter.

See Also
DDI/DKI kernel routines, drv_hztousec(), drv_priv(), drv_usectohz(), vtop()
COHERENT Lexicon: time()

Notes
drv_getparm() has base level parameter is set to UPROCP or UCRED, or base or interrupt level when parameter is
set to LBOLT or TIME. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

98 dmareq() — drv_getparm()

drv_getparm() does not check whether the driver has the appropriate context when the driver calls it. Use this
function only when it is appropriate.

drv_hztousec() — DDI/DKI Kernel Routine
Convert clock ticks into microseconds
#include <sys/types.h>
#include <sys/ddi.h>
clock_t drv_hztousec(ticks)
clock_t ticks;

drv_hztousec() returns the number of microseconds equivalent to ticks, which is in units of clock ticks. To convert
between clock ticks and microseconds, use drv_usectohz().

Several functions either take arguments in ticks, or return time in ticks. The length of a tick varies among
operating systems; therefore, you should not hard-code any assumption about the length of a tick into your driver.

See Also
DDI/DKI kernel routines, delay(), drv_getparm(), drv_usectohz(), dtimeout(), itimeout()

Notes
drv_hztousec has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

If a clock_t is too small to hold the number of microseconds equivalent to ticks, drv_hztousec() returns then the
maximum value of clock_t. Calling drv_getparm() with a parameter of LBOLT often returns a value whose
equivalent in microseconds is too large to fit into a clock_t. If you wish to use drv_getparm() and drv_hztousec()
to time an operation, you should subtract the values returned by successive calls to drv_getparm() and convert the
difference, instead of converting the values and then performing the subtraction.

drv_priv() — DDI/DKI Kernel Routine
Check if a user has privileged credentials
#include <sys/types.h>
#include <sys/ddi.h>
int drv_priv(credentials)
cred_t *credentials;

drv_priv() checks whether credentials identifies a process that is owned by a privileged user. Use this function
only when file permissions and special minor-device numbers cannot guard the driver sufficiently.

The kernel passes a pointer to a credential structure to various entry-points into the driver (i.e., open, close, read,
and ioctl). You can also obtain it by calling drv_getparm() from base-level driver code.

If credentials shows that the process is owned by a privileged user, drv_priv() returns zero; otherwise it returns
EPERM.

See Also
DDI/DKI kernel routines, drv_getparm()

Notes
drv_priv() has base or interrupt levels. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

drv_setparm() — DDI/DKI Kernel Routine
Set an internal kernel variable
#include <sys/types.h>
#include <sys/ddi.h>
int drv_setparm(action, value)
ulong_t action, value;

drv_setparm() uses action to modify an internal-kernel variable by value. If all goes well, it returns zero; otherwise
(e.g., because the user lacks permission to modify variable) it returns -1.

LEXICON

drv_hztousec() — drv_setparm() 99

action can be one of the following:

SYSCANC Add value to the count of characters read from a terminal device. Exclude special characters,
such as break or backspace.

SYSMINT Add value to the count of modem interrupts received.

SYSOUTC Add value to the count of characters written to a terminal device.

SYSRAWC Add value to the count of characters read from a terminal device. Do not exclude special
characters.

SYSRINT Add value to the count of interrupts generated by data to be received from a terminal device.

SYSXINT Add value to the count of interrupts generated by data to be transmitted to a terminal device.

drv_setparm() returns zero if all goes well; otherwise, it returns -1.

See Also
DDI/DKI kernel routines, drv_getparm()

Notes
drv_setparm() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, a read/write lock, or a sleep lock across calls to this function.

drv_usectohz() — DDI/DKI Kernel Routine
Convert microseconds to clock ticks
#include <sys/types.h>
#include <sys/ddi.h>
clock_t drv_usectohz(microseconds)
clock_t microseconds;

drv_usectohz() converts microseconds to clock ticks. It returns the smallest number of clock ticks equal to or
greater than microseconds; in other words, it rounds up, not down. If the number of ticks is too large to fit into a
clock_t, it returns the maximum value that will fit into a clock_t.

See Also
DDI/DKI kernel routines, delay(), drv_getparm(), drv_hztousec(), dtimeout(), itimeout()

Notes
drv_usectohz() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

Some functions take time values expressed in clock ticks; others return time values expressed in clock ticks. Each
operating system has its own notion of what constitutes a clock tick; therefore, a driver should not hard-code any
assumption about the length of a tick. Rather, use drv_usectohz() and its complementary function
drv_hztousec() to convert between microseconds and clock ticks.

dupb() — DDI/DKI Kernel Routine
Duplicate a message block
#include <sys/stream.h>
mblk_t *dupbbufferptr)
mblk_t *bufferptr;

dupb() creates a new msgb structure for the message block to which bufferptr points. Unlike the related function
copyb(), dupb() does not copy data block (or blocks) to which the message block points; rather, it just creates a
new structure to point to the data block.

If all goes well, dupb() returns a pointer to the newly created message block; otherwise, it returns NULL.

See Also
copyb(), datab, DDI/DKI kernel routines, dupmsg(), msgb

LEXICON

100 drv_usectohz() — dupb()

Notes
dupb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

dupmsg() — DDI/DKI Kernel Routine
Duplicate a message
#include <sys/stream.h>
mblk_t *dupmsg(message)
mblk_t *message;

dupmsg() duplicates the message to which message points. It duplicates all of the message blocks in the message
and links them together.

If all goes well, dupmsg() returns a pointer to the newly created duplicate message; otherwise, it returns NULL.

See Also
copyb(), copymsg(), datab, DDI/DKI kernel routines, dupb(), msgb

Notes
dupmsg() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

enableok() — DDI/DKI Kernel Routine
Enable a queue to be serviced
#include <sys/stream.h>
#include <sys/ddi.h>
void enableok(queue)
queue_t *queue;

enableok() cancels a previous call to noenable(). It permits the service routine of the queue to which queue points
to be rescheduled.

See Also
DDI/DKI kernel routines, noenable(), queue, qenable()

Notes
enableok() has base or interrupt level. It does not sleep.

The caller cannot have the stream frozen when it calls this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

entry-point routines — Overview
Routines for managing requests to the driver

A driver contains entry-point routines via which the kernel or an application can ask the driver to do something.
The following gives the legal entry points. Each is described in its own Lexicon entry. Those marked with an ‘*’
apply only to the DDI/DKI interface; those marked with a ‘†’ apply only to the internal COHERENT interface.

block† Block interface to the device
chpoll* Polling entry point
close Close a device
halt* Shut down a device upon system shut-down
init*. Initialize a device
intr*. Process an interrupt
ioctl. Control a character device
load† Routine to execute upon loading the driver into memory
mmap* Check virtual mapping for a memory-mapped device
open Open a device
poll† Poll the device
power† Routine to execute if power fails
print* Print a message on the system’s console

LEXICON

dupmsg() — entry-point routines 101

put* Receive messages from the preceding queue
read Read data from a device
size* Return the size of a logical block device
srv* Service messages
start* Initialize a device at system start-up
strategy*. Perform block I/O
time† Routine to execute when timeouts occur
uload† Routine to execute when driver is unloaded from memory
write Write data to a device

Under the DDI/DKI, driver routines are accessed by the kernel by using the driver’s unique prefix. For example, to
access a driver’s read routine for the driver whose prefix is foo, call the function fooread().

Under the internal COHERENT kernel routines, entry points are accessed through the driver’s copy of the structure
CON. For example, the address of the read routine is kept in field c_read of the driver’s CON structure. The kernel
contains functions to invoke these routines. For example, to invoke the read routine for a device, call function
dread() with that device’s unique identifier.

See Also
con, DDI/DKI kernel routines, internal kernel routines, STREAMS

errors — Overview
List of error messages

The following gives the error codes that drivers can return from their entry-point routines or include within
STREAMS messages:

EACCES Permission error: A processes tried to open a file that it has no permission to open.
EADDRINUSE The requested address is being used.
EADDRNOTAVAIL The requested address cannot be assigned.
EAFNOSUPPORT The requested family of addresses is not available.
EAGAIN An attempt to allocate a temporary resource (e.g., memory) failed.
EALREADY The requested operation is already underway.
EBUSY The device is busy.
ECONNABORTED A received-connect request has aborted.
ECONNREFUSED The requested host denied permission to connect.
ECONNRESET The connection was reset by the peer entity.
EDESTADDRREQ The requested operation required a destination address, but none was given.
EFAULT Bad address.
EHOSTDOWN Requested host is down.
EHOSTUNREACH No route to requested host.
EINPROGRESS The requested operation is in progress.
EINTR The operation was interupted.
EINVAL Invalid argument.
EIO An I/O error occurred.
EISCONN The requested endpoint was already connected.
EMSGSIZE The message is too long.
ENETDOWN The requested network is down.
ENETRESET The network dropped the connection because it is being reset.
ENETUNREACH The requested network is unreachable.
ENOBUFS No buffer space is available.
ENODEV The requested device is not available.
ENOMEM Not enough memory.
ENOPROTOOPT The requested protocol option is not available at the indicated level.
ENOSPC The device is out of free space.
ENOTCONN The requested operation requires that the endpoint be connected, but it is not.
ENXIO No such device or address.
EOPNOTSUPP The requested operation is not supported.
EPERM Permission denied.
EPROTO Protocol error.
ETIMEOUT The connection has timed out.

LEXICON

102 errors

See Also
entry-point routines, geterror(), STREAMS

esballoc() — DDI/DKI Kernel Routine
Allocate a message block using a driver-supplied buffer
#include <sys/stream.h>
mblk_t *esballoc(buffer, size, priority, freefun)
uchar_t *buffer; int size, priority; frtn_t *freefun;

esballoc() allocates a STREAMS message and the data-block header, and attaches to them a data buffer that the
driver supplies.

buffer points to the base of the data buffer that the driver supplying, and which is size bytes long.

priority gives the priority of the allocation request. It must be one of BPRI_LO, BPRI_MED, or BPRI_HI, for,
respectively, low-, medium-, or high-priority messages.

freefun points to the data structure that describes the routine to free the driver-allocated message buffer. When
the kernel calls freeb() upon the last reference to this message, it invokes the routine freefun->free_func. For
details, see the Lexicon entry for free_rtn.

If all goes well, esballoc() returns a pointer to the newly allocated message block; if not, it returns NULL.

See Also
allocb(), DDI/DKI kernel routines, freeb(), free_rtn, msgb

Notes
esballoc() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

esbbcall() — DDI/DKI Kernel Routine
Call a function upon allocation of a buffer
#include <sys/types.h>
#include <sys/stream.h>
toid_t esbbcall(priority, function, arg)
int priority; int (*function)(); long arg;

esbbcall() calls esballoc() to allocate a message-block header and a data-block header for a data buffer that the
driver itself supplies. If esballoc() cannot immediately allocate the requested headers, esbbcall() schedules function
to be run (with the argument arg) when memory becomes available. function has no user context and must not call
any function that sleeps.

priority gives the priority of the allocation request. Legal values are BPRI_LO, BPRI_MED, and BPRI_HI, for,
respectively, a low-, medium-, or high-priority request.

If all goes well, esbbcall() returns a non-zero value that identifies the scheduled request; you can pass this
identifier to the function unbufcall() to cancel the request, should need arise. If, however, something goes wrong,
esbbcall() returns zero.

See Also
allocb(), bufcall(), DDI/DKI kernel routines, esballoc(), itimeout(), unbufcall()

Notes
esbbcall() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock acoss a call to this function.

Even when function is called, esballoc() can fail if another module or driver grabbed the available memory before
function could call allocb().

LEXICON

esballoc() — esbbcall() 103

etoimajor() — DDI/DKI Kernel Routine
Convert external major-device number to internal
#include <sys/types.h>
#include <sys/ddi.h>
major_t etoimajor(external)
major_t external;

etoimajor() converts the external major-device number external to an internal major-device number. If all goes
well, etoimajor() returns the internal major number. If external is not valid, it returns NODEV.

See Also
DDI/DKI kernel routines, getemajor(), geteminor(), getmajor(), getminor(), itoemajor(), makedevice().

Notes
etoimajor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

fdisk() — Internal Kernel Routine
Hard-disk partitioning
int fdisk(dev, fp)
dev_t dev; struct fdisk_s fp[4];

fdisk() attempts to read partitioning information from block 0 of the hard-disk device dev. If successful, fdisk()
saves attributes for the four partitions in array fp, and returns one. If a read error occurs or it finds an invalid
signature for the partition table, it returns zero.

See Also
internal kernel routines

flushband() — DDI/DKI Kernel Routine
Flush messages in a given priority band
#include <sys/types.h>
#include <sys/stream.h>
void flushband(queue, priority, flag)
queue_t *queue; uchar_t priority; int flag;

flushband() flushes all messages in priority band priority of the message queue to which queue points. If priority is
zero, flushband() flushes only messages with normal or high priority. Otherwise, it flushes messages from priority
according to the value of flag, as follows:

FLUSHDATA Flush only data messages, i.e., messages of type M_DATA, M_DELAY, M_PROTO, or
M_PCPROTO.

FLUSHALL Flush all messages.

See Also
DDI/DKI kernel routines, flushq(), put(), queue

Notes
flushband() has base or interrupt level. It does not sleep.

The calling process cannot have the stream frozen when calling this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

flushq() — DDI/DKI Kernel Routine
Flush the messages on a queue
#include <sys/stream.h>
void flushq(queue, flag)
queue_t *queue; int flag;

LEXICON

104 etoimajor() — flushq()

flushq() frees messages within queue. flag indicates the messages to flush, as follows:

FLUSHDATA Flush only data messages, i.e, those with type M_DATA, M_DELAY, M_PROTO, or M_PCPROTO.

FLUSHALL Flush all messages.

If the number of messages within queue falls below its low-water mark, thus allowing another process to write a
message onto it, flushq() enables the nearest service procedure upstream or downstream (as approriate).

See Also
DDI/DKI kernel routines, flushband(), freemsg(), put(), putq(), queue

Notes
flushq() has base or interrupt level. It does not sleep.

The calling process cannot have the stream frozen when it calls this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep locks across a call to this function.

free_rtn — STREAMS Data Structure
Structure for STREAMS message-free routine
#include <sys/stream.h>

The structure free_rtn holds information on how to invoke the driver’s function for freeing a message buffer. When
a driver calls routine esballoc() to allocate a message, esballoc() creates a copy of free_rtn and links it to the
message. Thus, when routine freeb() is called to free the message and the message’s reference count drops to zero,
freeb() reads free_rtn and uses the information therein to invoke the driver’s routine for freeing the data buffer.

The following fields within free_rtn are available to a driver:

void (*free_func)() This points to the driver’s function that frees the data buffer. When this function runs,
interrupts from all STREAMS devices are blocked. free_func has no user context and so cannot
call any routine that sleeps, or access any dynamically allocated data structures that may no
longer exist when it runs.

char *free_arg This points to an argument to pass to free_func. This function can take only one argument, a
pointer to a string, it can use this argument creatively.

See Also
DDI/DKI data structures, freeb()

freeb() — DDI/DKI Kernel Routine
Free a message block
#include <sys/stream.h>
void freeb(buffer)
mblk_t *buffer;

freeb() frees the message block to which buffer points. If the block’s reference count, as held in field db_ref of
structure datab, is greater than one, freeb() decrements it and returns. If db_ref equals one, freeb() deallocates
the message block and the corresponding data block.

If the data buffer had been allocated by esballoc(), freeb() frees it by invoking the free routine indicated in its copy
of the structure free_rtn. When the data buffer is freed, freeb() releases all STREAMS resources associated with the
buffer, and returns.

See Also
allocb(), datab, DDI/DKI kernel routines, dupb(), esballoc(), free_rtn, msgb

Notes
freeb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

free_rtn — freeb() 105

freemsg() — DDI/DKI Kernel Routine
Free a message
#include <sys/stream.h>
void freemsg(message)
mblk_t *message;

freemsg() frees message, including all of its message blocks and data buffers.

See Also
DDI/DKI kernel routines, freeb(), datab, msgb

Notes
freemsg() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

freerbuf() — DDI/DKI Kernel Routine
Free a buffer header used for raw I/O
#include <sys/buf.h>
#include <sys/ddi.h>
void freerbuf(buf_header)
buf_t *buf_header;

freerbuf() frees a buffer header that had been allocated by a call to getrbuf(). It returns nothing. buf_header points
to the buffer header to be freed.

This function normally is called through the I/O-done handler. For details on what the I/O-done handler is and
how you establish it, see the Lexicon entry for getrbuf().

See Also
buf, DDI/DKI kernel routines, getrbuf()

Notes
freerbuf() has base or interrupt level, and does not sleep.

A function can hold a basic lock, read/write lock, or sleep lock across a call to this function.

freezestr() — DDI/DKI Kernel Routine
Freeze a stream
#include <sys/types.h>
#include <sys/stream.h>
pl_t freezestr(queue)
queue_t *queue;

freezestr() freezes the stream to which queue belongs.

When a stream is frozen, no process can invoke that stream’s open, close, put, or service routines. No messages
can be added to or removed from any queue, except by the process that called freezestr(). Freezing a stream does
not stop the functions that are running within it: each continues until it attempts to do something that changes
the state of the stream, at which point it must wait for the stream to be thawed.

A driver or module must freeze a stream while it manipulates its queues. This restriction applies to every function
that searches a queue, as well as to the functions insq(), rmvq(), strqset(), and strqget().

freezestr() returns the interrupt priority that the stream had had when it was frozen. You can use this value in a
subsequent call to unfreezestr(), which thaws a stream, to restore the stream’s interrupt priority to its pre-frozen
level.

See Also
DDI/DKI kernel routines, unfreezestr()

Notes
freezestr() has base or interrupt level. It does not sleep.

LEXICON

106 freemsg() — freezestr()

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

Calling freezestr() to freeze a stream that you have already frozen causes a deadlock.

Use freezestr() sparingly. It is rarely necessary to freeze a stream: most modules do not need to manipulate a
queue directly, and freezing a stream slows performance significantly.

getDmaMem() — Internal Kernel Routine
Request virtual address of physical memory
char *getDmaMem(numBytes, align)
unsigned int numBytes, align;

getDmaMem() allocates physically aligned, physically and virtually contiguous blocks of RAM. It is used mainly
for devices that use Intel DMA hardware without scatter/gather.

numBytes is the amount of memory requested, in bytes.

align gives the physical boundary to which memory must be aligned. For example, to request four-kilobyte
alignment, set align to equal 4096. align must be a power of two.

If it can meet the request, getDmaMem() returns the virtual address of the start of the region allocated. If it
cannot grant the request, getDmaMem() returns zero.

See Also
getPhysMem(), internal kernel routines

Notes
PHYS_MEM must be patched to at least numBytes for the call to getDmaMem() to work.

Once allocated, memory is not returned to the physMem pool.

getemajor() — DDI/DKI Kernel Routine
Get an external major-device number
#include <sys/types.h>
#include <sys/ddi.h>
major_t getemajor(device)
dev_t device;

getemajor() returns the external major number for device.

An external major-device number is the number visible to the user, e.g., through the command ls -l. An internal
major-device number is visible only to the kernel. Because the range of major-device numbers is large and
sparsely populated, the kernel maps external numbers to internal to save space. Every entry point to a driver uses
an external, not internal, major-device number.

See Also
DDI/DKI kernel routines, device numbers, etoimajor(), geteminor(), getmajor(), getminor(), makedevice()

Notes
getemajor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

geteminor() — DDI/DKI Kernel Routine
Get the external minor-device number
#include <sys/types.h>
#include <sys/ddi.h>
minor_t geteminor(device)
dev_t device;

geteminor() returns the external minor number for device.

An external minor-device number is visible to the user, e.g., through the command ls -l. An internal minor-device
number is visible only to the kernel. Every entry point to a driver uses an external, not internal, minor-device
number.

LEXICON

getDmaMem() — geteminor() 107

See Also
DDI/DKI kernel routines, device numbers, etoimajor(), getemajor(), getmajor(), getminor(), makedevice()

Notes
geteminor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

getmajor() — DDI/DKI Kernel Routine
Get the internal major-device number
#include <sys/types.h>
#include <sys/ddi.h>
major_t getmajor(dev)
dev_t device;

getmajor() returns the internal major number for device. For a description of external and internal major numbers,
see the entry for getemajor().

See Also
DDI/DKI kernel routines, device numbers, etoimajor(), getemajor(), geteminor(), getminor(), makedevice()

Notes
getmajor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

Note that getmajor() performs no validity checking: if device is bogus, it returns an bogus major-device number.

getminor() — DDI/DKI Kernel Routine
Get internal minor-device number
#include <sys/types.h>
#include <sys/ddi.h>
minor_t getminor(device)
dev_t device;

getminor() returns the internal minor-device number for device. For a description of external and internal minor-
device numbers, see the entry for geteminor().

See Also
DDI/DKI kernel routines, device numbers, etoimajor(), getemajor(), geteminor(), getmajor(), makedevice()

Notes
getminor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

getminor() returns no validity checking: if device is bogus, it returns a bogus minor-device number.

getPhysMem() — Internal Kernel Routine
Request reserved physical memory
char *getPhysMem(numBytes)
int numBytes;

When the kernel starts up, it reserves a block of physically contiguous memory (of size PHYS_MEM) for one or
more device drivers to use. Any device driver can request some of this memory; to do so, it calls getPhysMem()
from within its load routine. numBytes gives the number number of bytes it needs.

If it can meet the request, getPhysMem() returns the virtual address of the start of the region allocated. This
region has contiguous virtual addresses within kernel data space, as well as contiguous physical addresses. If it
cannot grant the request, getPhysMem() returns 0. Use routine vtop() to determine the physical address of the
region.

LEXICON

108 getmajor() — getPhysMem()

See Also
getDmaMem(), internal kernel routines, vtop()

getq() — DDI/DKI Kernel Routine
Get the next message from a queue
#include <sys/stream.h>
mblk_t *getq(queue)
queue_t *queue;

getq() returns the next message available from the top of queue. If no message is queued, it returns NULL. getq()
handles flow control, and if necessary restarts I/O that was blocked.

See Also
bcanput(), canput(), DDI/DKI kernel routines, putbq(), putq(), qenable(), rmvq()

Notes
getq() has base or interrupt level. It does not sleep.

The calling process cannot have the stream frozen when it calls this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep locks across a call to this function.

getrbuf() — DDI/DKI Kernel Routine
Allocate a buffer header for raw I/O
#include <sys/buf.h>
#include <sys/ddi.h>
#include <sys/kmem.h>
buf_t *getrbuf(flag)
long flag;

getrbuf() allocates a buffer header to be used for performing raw I/O. The driver can then initialize this header to
the values that control I/O, then pass its address to the routines that perform I/O.

flag indicates whether the function is willing to sleep while it awaits free space. Setting flag to KM_SLEEP tells the
kernel that if not enough memory is available to allocate a buffer header, the driver is willing to sleep until enough
memory becomes available. Setting it to KM_NOSLEEP tells the kernel that the driver will not sleep.

getrbuf() returns NULL if something goes wrong; for example, insufficient memory is available to allocate a buffer
header and flag is set to KM_NOSLEEP. If all goes well, however, it returns the address of the header, which is an
object of type buf_t.

After the kernel has allocated the buffer header and returned its address, the driver must initialize the fields of the
buffer header as follows:

b_bcount
The number of bytes to be transferred.

b_blkno
The number of the block to be accessed.

b_bufsiz
The size of the buffer that is associated with this header.

b_dev The non-extended device number. Note that this applies only to COHERENT.

b_edev The number of the device being manipulated.

b_flags The direction of data transfer: B_READ if the transfer moves from the kernel to the user’s buffer; or
B_WRITE if data moves from the user’s buffer to the kernel. The setting must match that in field b_req.
See below for details.

b_iodone
The address of the function to call when the raw I/O has finished.

b_paddr
The system global address of the data area. Note that this applies only to COHERENT.

LEXICON

getq() — getrbuf() 109

b_req Set this to either BREAD or BWRITE. The setting must match that in field b_flags. See below for details.

b_resid The number of bytes to transfer. This field’s value must match that of field b_bcount.

b_un.b_addr
The virtual address of the buffer that the user supplies. Note that whatever program invokes getrbuf()
must also obtain the data area. It must do this before it calls physiock() or any other function to which it
can pass a buffer.

The following gives the proper way to set or unset b_flags and b_req for reading or writing:

Reading

bp->b_flags |= B_READ;
bp->b_req = BREAD;

Writing

bp->b_flags &= ~B_READ;
bp->b_req = BWRITE;

By default, the buffer header has B_READ set to off. The driver is not allowed to modify flags pell-mell, or the
results may crash the system.

See Also
buf, DDI/DKI kernel routines, freerbuf()

Notes
If flag is set to KM_SLEEP, getrbuf() has base level and can sleep; if it is set to KM_NOSLEEP, it has base or
interrupt level and does not sleep.

If flag is set to KM_SLEEP, a function can hold driver-defined basic locks and read/write locks across a call to this
function; otherwise, it cannot. A function can hold a sleep lock across a call to this function regardless of the value
of flag.

getubd() — Internal Kernel Routine
Get a byte from user data space
char getubd(u)
char *u;

getubd() reads a byte from offset u in the current process’s user data space. If an address fault occurs, getubd()
calls set_user_error() with the value EFAULT.

See Also
internal kernel routines

getusd() — Internal Kernel Routine
Get a short from user data
short getusd(usp)
short * usp;

getusd() gets a short (16-bit) integer from the user data space address pointed to by usp.

See Also
internal kernel routines

getuwd() — Internal Kernel Routine
Get a word from user data space
int getuwd(u)
char *u;

getuwd() reads a word from offset u in the current process’s user data space. If an address fault occurs, getuwd()
calls set_user_error() with the value EFAULT.

See Also
internal kernel routines

LEXICON

110 getubd() — getuwd()

getuwi() — Internal Kernel Routine
Get a word from user code space
int getuwi(u)
char *u;

getuwi() reads a word from offset u in the current process’s user code space. If an address fault occurs, it calls
set_user_error() with the value EFAULT.

See Also
internal kernel routines

halt — Entry-Point Routine
Shut down a device upon system shut-down
void prefixhalt();

The kernel invokes a driver’s halt routine when the system is shut down. The driver should not assume that
interrupts are enabled. It should ensure that its device has no more interrupts pending, and it should inform its
device to generate no more interrupts.

After the halt routine is called, no more calls can be made to the driver’s entry points.

See Also
entry-point routines

Notes
This entry-point is used only by the DDI/DKI interface. It is optional.

This routine should never sleep.

inb() — DDI/DKI Kernel Routine
Read a byte from an eight-bit I/O port
#include <sys/types.h>
uchar_t inb(port)
int port;

inb() reads an unsigned character from port, which is a valid eight-bit I/O port, and returns it.

Function repinsb() resembles inb(), except that it reads a string of characters from a port.

See Also
DDI/DKI kernel routines, inl(), inw(), outb(), outl(), outw(), repinsb(), repinsd(), repinsw(), repoutsb(),
repoutsd(), repoutsw()

Notes
inb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

init — Entry-Point Routine
Initialize a device
void prefixinit();

init is the entry point to the routine with which the driver initializes its device. The kernel invokes this routine
when it is booted. The related entry point, start, can be invoked after the system has been booted.

The init routine is executed before interrupts are enabled. It must not sleep, nor may it call any function that
sleeps or requires user context.

An init routine can call the following DDI/DKI kernel functions:

LEXICON

getuwi() — init 111

ASSERT() getmajor() makedevice()
bcopy() getminor() outb()
bzero() inb() outl()
cmn_err() inl() outw()
drv_getparm() inw() phalloc()
drv_hztoused() itoemajor() phfree()
drv_usectohz() kmem_alloc() repinsw()
etoimajor() kmem_free() repoutsb()
getemajor() kmem_zalloc() repoutsw()
geteminor() LOCK_ALLOC() SLEEP_ALLOC()

See Also
entry-point routines, start

Notes
This entry-point is used only by the DDI/DKI interface. It is optional.

inl() — DDI/DKI Kernel Routine
Read a 32-bit value from an I/O port
ulong_t inb(port)
int port;

inl() reads an unsigned long integer from port, which is a valid 32-bit I/O port, and returns it.

See Also
DDI/DKi kernel routines, inb(), inw(), outb(), outl(), outw(), repinsb(), repinsd(), repinsw(), repoutsb(),
repoutsd(), repoutsw()

Notes
inl() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

insq() — DDI/DKI Kernel Routine
Insert a message into a queue
#include <sys/stream.h>
int insq(queue, oldmsg, newmsg)
queue_t *queue; mblk_t *oldmsg, *newmsg;

insq() inserts newmsg into queue, at the point immediately preceding oldmsg. If oldmsg is NULL, insq() inserts
newmsg at the end of queue.

If all goes well, insq() returns one; otherwise, it returns zero.

insq() updates all flow-control parameters. It schedules the service procedure to be run, unless it had been
disabled by a call to noenable().

STREAMS requires that messages be ordered by their priority. If a driver attempts to insert a message out of order,
insq() will not enqueue it.

See Also
DDI/DKi kernel routines, freezestr(), getq(), putbq(), putq(), rmvq(), unfreezestr()

Notes
insq() has base or interrupt level. It does not sleep.

The caller must have the stream frozen when calling this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

112 inl() — insq()

internal data structures — Overview
The following articles define data structures that are internal to the O kernel:

buf Buffer cache
con Structure of a device driver
io Manage communication with a device
uproc Define a process

See Also
device driver, internal kernel routines

internal kernel routines — Overview
The following routines are internal to the COHERENT kernel.
actvsig() Activate signal handler
altclk_in() Install polling function
altclk_out() Uninstall polling function
bclaim() Claim a buffer
bdone() Block I/O completed
bflush() Flush buffer cache
bread() Read into buffer cache
brelease(). Release a buffer
bsync() Flush modified buffers
busyWait() Busy-wait the system, pending some event
busyWait2() Busy-wait the system, pending some event
bwrite() Write buffer to disk
clrivec() Clear interrupt vector
clrq() Clear character queue
cltgetq() Get a char from a character queue
cltputq() Put a character on a character queue
dblock() Call the device block interface
dclose(). Invoke the driver’s close routine
defend() Execute deferred functions
defer() Defer function execution
devmsg() Print a message from a device driver
dioctl() Call a device-driver’s I/O control point
dmago(). Enable DMA transfers
dmain() Copy from system global memory to kernel data
dmaoff() Disable DMA transfers
dmaon() Prepare for DMA transfer
dmaout() Copy from kernel data to system global memory
dmareq() Request block I/O, avoiding DMA straddles
dopen() Invoke the driver’s open routine
dpoll(). Invoke the driver’s poll routine
dpower() Invoke the driver’s power-fail routine
dread() Invoke the driver’s read routine
dtime() Invoke the driver’s timeout routine
dwrite(). Invoke the driver’s device write routine
fdisk(). Hard-disk partitioning
getDmaMem(). Request virtual address of physical memory
getPhysMem(). Request reserved physical memory
getubd() Get a byte from user data space
getusd() Get a 16-bit short integer from user data space
getuwd() Get a 32-bit word from user data space
getuwi() Get a word from user code space
iogetc() Get a character from I/O segment
iomapand() Set bits in the I/O privilege bitmap
iomapOr() Clear bits in the I/O privilege bitmap
ioputc(). Put a character into I/O segment
ioread() Read from I/O segment
ioreq() Re-queue I/O request through block routine
iowrite() Write to I/O segment

LEXICON

internal data structures — internal kernel routines 113

kalloc() Allocate kernel memory
kfree() Free kernel memory
kiopriv() Write a bit into the I/O privilege bitmap
kucopy() Kernel-to-user data copy
lock() Lock a gate
locked(). See if a gate is locked
major() Extract major-device number
map_pv() Map physical to virtual addresses
MAPIO() Return global address
mapPhysUser() Overlay user data with memory-mapped hardware
minor() Extract minor-device number
nondsig(). Non-default signal pending
P2P() Convert system global to physical address
panic() Fatal system error
pollopen() Initiate driver polled event
pollwake() Terminate driver polled event
printf() Formatted print
putubd() Store a byte into user data space
putusd() Store a short into user data data
putuwd() Store a 32-bit word into user data space
putuwi() Put a word into user code space
pxcopy() Copy from physical or system global memory to kernel data
read_t0() Read the system clock t0
salloc() Allocate a memory segment
sendsig() Send a signal
setivec() Set an interrupt vector
sigdump() Generate core dump
sphi() Disable interrupts
spl() Adjust interrupt mask
splo() Enable interrupts
super() Verify super-user
timeout(). Defer function execution
ttclose() Close tty
ttflush() Flush a tty
tthup() tty hangup
ttin() Pass character to tty input queue
ttinp(). See if tty input queue has room for more input
ttioctl(). Perform tty I/O control
ttopen() Open a tty
ttout() Get next character from tty output queue
ttoutp(). See if tty input queue has data available
ttread() Read from tty
ttread0() Read from tty
ttsetgrp(). Set tty process group
ttsignal() Send tty signal
ttstart(). Start tty output
ttwrite() Write to tty
ttwrite0() Write to tty
ukcopy() User to kernel data copy
unlock() Unlock a gate
unmap_pv() Dissociate virtual addresses from physical addresses
vtop() Translate virtual address to physical address
wakeup() Wakeup processes sleeping on an event
x_sleep() Wait for event or signal
xpcopy() Copy from kernel data to physical or system global memory

See Also
DDI/DKI kernel routines, device driver, internal data structures, STREAMS

LEXICON

114 internal kernel routines

intr — Entry-Point Routine
Process an interrupt
void prefixintr(vector)
int vector;

The intr routine is the interrupt handler for both block and character drivers. This entry point applies only to
drivers that use the DDI/DKI interface to the kernel.

vector gives the number that COHERENT uses to associate a driver’s interrupt handler with an interrupting device.
This number is set in the file sdevice.

The intr routine performs all tasks specific to the driver and its device. You should know the exact chip set that
produces the interrupt for your device, the bit patterns of the device’s control and status register, and how data are
moved into and out of your computer.

If the driver called biowait() or SV_WAIT() to await the completion of an operation, the intr routine must call
biodone() or SV_SIGNAL() to tell the process to resume.

See Also
biodone(), entry-point routines, spl(), SV_SIGNAL()

Notes
This entry-point is used only by the DDI/DKI interface. It is required only in drivers for hardware that generate
interrupts. It is not used with software drivers.

The intr routine must never do the following:

• Call a function that sleeps.
• Lower the level of interrupt priority below that at which the interrupt routine was entered.
• Call any routine that requires user context.
• Call uiomove(), ureadc(), or uwritec() when field uio_segflg of structure uio equals UIO_USERSPACE, which

indicates that data are being transferred between the user and kernel spaces.

inw() — DDI/DKI Kernel Routine
Read a 16-bit word from an I/O port
ushort_t inw(port)
int port;

inw() reads an unsigned short integer from port, which is a valid 16-bit I/O port, and returns it.

See Also
DDI/DKI kernel routines, inb(), inl(), outb(), outl(), outw(), repinsb(), repinsd(), repinsw(), repoutsb(),
repoutsd(), repoutsw()

Notes
inw() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

io — Internal Data Structure
Manage communication with a device
#include <sys/io.h>

The kernel uses structure io to manage communication with a device. It is defined in header file <sys/io.h>.

A driver’s read function can use the following fields within io, as follows:

io_seek Point at which reading begins. It is in the form of the number of bytes from the beginning of the
file or device. This is, of course, is meaningless for devices for devices like serial ports. In the case
of disk drives, this number must indicate the block to be read, i.e., the number must be evenly
divisible by constant BSIZE, which gives the size of a COHERENT block. If this is not true, an error
has occurred.

io_ioc The number of bytes to read or write. When the read is completed, this should be set to the
number of bytes that remain to be read or written. If it is not reset to zero, then an error has
occurred.

LEXICON

intr — io 115

io_base The offset of data to be transferred into the user’s memory space. This is converted to a physical
or virtual memory address before performing the read.

io_flag Flags. IONDLY indicates that the request should not delay for data if the requested results are not
immediately available; it is equivalent to the DDI/DKI value O_NDELAY. IONONBLOCK indicates
that the driver is non-block; it is equivalent ot the DDI/DKI value O_NONBLOCK.

See Also
internal data structures

iocblk — STREAMS Data Structure
STREAMS ioctl structure
#include <sys/stream.h>

The structure iocblk defines an ioctl request. Messages of types M_IOCTL, M_IOCACK, and M_IOCNAK use it.
The driver does not create this structure.

A module or driver usually converts a message of type M_IOCTL into one of type M_ICACK or M_IOCNAK by
changing its type and updating the relevant fields within iocblk. When a driver processes a transparent ioctl
(defined below), it usually overlays iocblk with a copy of the structure copyreq. The stream head guarantees that
the message is large enough to hold either structure.

The following fields within iocblk are available to a driver:

int ioc_cmd This holds the ioctl command that the user issued.

cred_t *ioc_cr This points to the user’s credentials.

uint_t ioc_id This uniquely identifies the ioctl request within the stream.

uint_t ioc_count This gives the number of bytes of data within the M_IOCTL message. Data are passed in
message blocks of type M_DATA that are linked to the M_IOCTL message. In a message of
type M_IOCACK, this field gives the number of bytes to copy into the user’s buffer.

If this field is set to the special value TRANSPARENT, the ioctl request is transparent. This
means that the the user did not use the I_STR format of STREAMS ioctls. The module or driver
must use M_COPYIN messages to obtain user data, and use M_COPYOUT messages to change
user data. The message block M_DATA linked to the M_IOCTL message block contains the
value of the arg parameter to the COHERENT system call ioctl().

int ioc_error This field holds the error, if any, for a message of type M_IOCACK or M_IOCNAK.

int ioc_rval This field is set to the return value, if any, for a message of type M_IOCACK. The kernel
returns this value to the system call ioctl() that generated the request.

See Also
copyreq, copyresp, data structures, datab, msgb

ioctl — Entry-Point Routine
Control a character device

Internal-Kernel Interface:
#include <sys/types.h>
#include <sys/cred.h>
#include <sys/file.h>
#include <sys/errno.h>
void prefixioctl(device, command, arg, mode, credptr, retptr, private)
dev_t device; int command, mode, *retptr; _VOID *arg; cred_t *credptr, void *private;

DDI/DKI or STREAMS:
#include <sys/types.h>
#include <sys/cred.h>
#include <sys/file.h>
#include <sys/errno.h>
int prefixioctl(device, command, arg, mode, credptr, retptr)
dev_t device; int command, mode, *retptr; _VOID *arg; cred_t *credptr;

LEXICON

116 iocblk — ioctl

The ioctl (i.e., ‘‘I/O control’’) routine gives a non-STREAMS character driver an alternate entry point that it can use
for almost any operation other than a transfer of data, e.g., to implement terminal setting, format disk devices,
implement a trace driver for debugging, and flush queues. An application can invoke the ioctl routine through the
COHERENT system call ioctl().

Internal-Kernel Interface
Under the internal-kernel inteface to a driver, the address of the ioctl routine is kept in field c_ioctl of the driver’s
CON structure. It is customary to name the ioctl routine with the word ioctl prefixed by a unique identifier for
your driver; but this is not required.

An ioctl routine takes the following arguments:

device This is a dev_t that identifies the device to be manipulated.

command
This gives the number of the operation to perform. These numbers are specific to the driver.

arg This points to the parameters passed between the user and the driver. The nature of the arguments
depends upon the driver and on the command being executed.

mode This gives the modes to set when the device was opened. See the description of the entry point open for a
description of the legal values for this argument.

credptr This points to the user’s credential structure.

retptr This gives the address at which the ioctl routine must write its return value.

private This points to a data item that is unique to your driver. Note that most drivers do not use this argument.

The ioctl returns nothing. The kernel determines what the system call ioctl() (which invokes this entry-point
routine) returns to the user application: the kernel returns -1 (and sets errno to an appropriate value) if the ioctl
entry-point routine called set_user_error() to return an error. If the ioctl routine exits normally, ioctl() returns the
value that the ioctl routine writes at address retptr; if this is not set, ioctl() returns zero.

DDI/DKI or STREAMS
The rest of this article describes how to invoke this function under the DDI/DKI interface, using the calling
conventions given at the beginning of this article. The kernel invokes it by calling function prefixioctl(), where
prefix is the unique prefix for this driver. The function takes the following arguments:

device The number of the device to manipulate.

command The number of the operation to perform. These numbers are specific to the driver.

arg A pointer to the parameters passed between the user and the driver. The nature of the arguments
depends upon the driver and on the command being executed. If arg points to the user space, the
driver can use functions copyin() and copyout() to transfer data between kernel and user space.

mode The modes set when the device was opened. See the description of the entry point open for a
description of the legal values for this argument.

credptr A pointer to the user’s credential structure.

retptr The address at which the ioctl routine must write its return value.

The ioctl routine returns an int to the kernel. The value that the kernel’s system call ioctl() returns user-level
program is determined by how the ioctl routine exits. If the ioctl routine called set_user_error() to report an error,
ioctl() returns -1.

However, if the ioctl routine exits normally, it should return zero to the kernel; the system call ioctl(), will return
to the user-level program the value that the ioctl routine wrote at the address retptr. If the ioctl routine fails, it
should return -1 to the kernel; ioctl() will return that value to the user-level program.

See Also
CON, copyin(), copyout(), drv_priv(), entry-point routines, errno, open
COHERENT Lexicon: ioctl()

LEXICON

ioctl 117

Notes
This entry point is optional.

The ioctl routine has user context and can sleep.

STREAMS drivers do not have ioctl routines. The stream head converts I/O control commands to M_IOCTL
messages, which are handled by the driver’s put or srv routines.

iogetc() — Internal Kernel Routine
Get a character from I/O segment
#include <sys/io.h>
int iogetc(iop)
IO *iop;

iogetc() reads a character from the I/O segment referenced by iop. If an address fault occurs, it calls
set_user_error() with value EFAULT and returns -1; otherwise, it decrements iop->ioc by one and returns the
value of the character read. If iop->io_ioc (the I/O count) is zero, iogetc() returns -1.

See Also
internal kernel routines

iomapAnd() — Internal Kernel Routine
int iomapAnd(val, offset)
int val, offset;

iomapAnd() ‘‘bitwise AND’s’’ the 32-bit mask val at the word offset offset within the I/O privilege map. This
permits a usr’s code to to enable a given option on a given port or ports.

If offset is zero, iomapAnd() covers ports zero through 31; if offset is one, it covers ports 32 through 63; and so on.
The current valid range for offset is zero through 63, corresponding to ports in the range of zero through 0x7FF.

iomapAnd() returns the updated map word.

See Also
internal kernel routines

iomapOr() — Internal Kernel Routine
Clear bits in the I/O privilege bitmap
int iomapOr(val, offset)
int val, offset;

iomapOr() ‘‘bitwise OR’s’’ the 32-bit mask val at the word offset offset within the I/O privilege map. This permits a
usr’s code to to disable a given option on a given port or ports.

If offset is zero, iomapOr() covers ports zero through 31; if offset is one, it covers ports 32 through 63; and so on.
The current valid range for offset is zero through 63, corresponding to ports in the range of zero through 0x7FF.

iomapOr() returns the updated map word.

See Also
internal kernel routines

ioputc() — Internal Kernel Routine
Put a character into I/O segment
#include <sys/io.h>
int ioputc(c, iop)
char c; IO *iop;

ioputc() writes character c into the I/O segment referenced by iop. If an address fault occurs, ioputc() calls
set_user_error() with value EFAULT and returns -1; otherwise, it decrements iop->io_ioc by one and returns the
value of the character written. If iop->io_ioc (the I/O count) is zero, it returns -1.

See Also
internal kernel routines

LEXICON

118 iogetc() — ioputc()

ioread() — Internal Kernel Routine
Read from I/O segment
#include <sys/io.h>
void ioread(iop, v, n)
IO *iop; char *v; unsigned n;

ioread() copies n bytes from the I/O segment referenced by iop to address v in the kernel’s data segment. If an
address fault occurs, it calls set_user_error() with value EFAULT.

See Also
internal kernel routines

ioreq() — Internal Kernel Routine
Re-queue I/O request through block routine
#include <sys/io.h>
void ioreq(bp, iop, dev, req, f)
BUF *bp; IO *iop; dev_t dev;

ioreq() queues a request through the block routine of the driver. If a request is already pending on the IO structure
referenced by iop, queuing will not occur until the previous request is completed. req should be BREAD or
BWRITE. f should be BFIOC|BFRAW under normal circumstances. ioreq() normally is called from the read/write
routines of a block device that does not support DMA.

See Also
dmareq(), internal kernel routines

iovec — DDI/DKI Data Structure
DDI/DKI data-storage structure for scatter/gather I/O
#include <sys/types.h>
#include <sys/uio.h>

The structure iovec describes a data storage area that is used in a scatter/gather I/O transfer. The structure uio
controls such a transfer; it contains a pointer to an array of iovec structures, each of which describes one hunk of
memory to be used in the transfer.

The kernel or a driver can create an iovec. The rules by which an iovec is manipulated depend upon its origin —
and therefore, upon which entity ‘‘owns’’ it. A driver can set the fields within iovec structure only for the uio
structures that it has created. It can, however, read all iovec structures.

iovec contains two fields that are available to drivers:

caddr_t iov_base;
The base address of the ‘‘hunk’’ of memory.

int iov_len;
The size, in bytes, of the ‘‘hunk’’ of memory.

See Also
data structures, physiock(), uio, uiomove(), ureadc(), uwritec()

Notes
No function exists for allocating iovec structures when a driver needs to create them. Therefore, a driver can
either use kmem_zalloc() to allocate them, or allocate them statically.

iowrite() — Internal Kernel Routine
Write to I/O segment
#include <sys/io.h>
void iowrite(iop, v, n)
IO *iop; char *v; unsigned n;

iowrite() writes n bytes from address v in the kernel’s data segment to the I/O segment referenced by iop. If an
address fault occurs, iowrite() calls set_user_error() with EFAULT.

LEXICON

ioread() — iowrite() 119

See Also
internal kernel routines

itimeout() — DDI/DKI Kernel Routine
Execute a function after a given length of time
#include <sys/types.h>
toid_t itimeout(function, argument, ticks, priority)
void (* function)(); void *argument;
long ticks; pl_t priority;

The DDI/DKI function itimeout() schedules a function to be executed after a given amount of time has passed. If
something goes wrong and it could not schedule the function, itimeout() returns zero. Otherwise, it returns an
identifier other than zero. You can pass this value to the function untimeout() to cancel this request, should you
wish.

function points to the function to execute. It must neither sleep nor reference the process’s context. ticks gives the
number of clock ticks to wait before executing the function. argument points to an argument to pass to function.
Finally, priority gives the function’s interrupt priority. The value supplied must be at least pltimeout, i.e., plbase
is not valid.

The kernel may not execute function exactly after ticks clock ticks have passed; however, it will wait at least ticks-1
ticks before it executes function.

See Also
DDI/DKI kernel routines, LOCK_ALLOC(), untimeout()

Notes
itimeout() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

Before you de-initialize or deallocate a data structure, first cancel every function that itimeout() has scheduled to
access that structure.

When the time comes to execute a scheduled function, the kernel will run it only if the processor is at base level. If
the processor is not at base level, execution of the function is deferred.

itoemajor() — DDI/DKI Kernel Routine
Convert internal to external major number
#include <sys/types.h>
#include <sys/ddi.h>
major_t itoemajor(imajor, prevemajor)
major_t imajor, prevemajor;

itoemajor() returns the external major number that corresponds to the internal major number imajor. See
getemajor() for an explanation of external and internal major numbers.

prevemajor gives the most recently obtained external major number. When you call itoemajor() for the first time,
set this to NODEV. Because an internal major number can be associated more than external major number, this
mechanism lets you call itoemajor() repeated to find all of the external major numbers. When it has returned all
external major numbers associated with imajor, it returns NODEV.

See Also
DDI/DKI kernel routines, etoimajor(), getemajor(), geteminor(), getmajor(), getminor(), makedevice()

Notes
itoemajor() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

120 itimeout() — itoemajor()

kalloc() — Internal Kernel Routine
Allocate kernel memory
#include <sys/coherent.h>
char * kalloc(n)
int n;

kalloc() is a macro that allocates n bytes in the kernel’s data segment. The amount of space available to kalloc() is
limited by the kernel variable ALLSIZE. kalloc() returns a pointer to the allocated buffer, or NULL if space is
insufficient.

The storage space returned contains garbage. Most drivers use memset() to clear the storage, if needed. Space
allocated with kalloc() must be deallocated with kfree().

See Also
kfree(), internal kernel routines

kernel variables — Technical Information
Variables set within COHERENT kernel

The following lists most of the variables that you can ‘‘hot patch’’ within the kernel.

For a complete list of tunable variables, see the file /etc/conf/mtune. Note, however, that this file does not name
the variables themselves; rather, it uses the variable’s enumeration constant initialized; e.g., mtune identifies
variable ALLSIZE as ALLSIZE_SPEC.

The clock rate is defined as the manifest constant HZ (hertz), which is set in header file kernel/const.h. Normally,
this value is set to 100, which translates into 100 ticks per second, or approximately 10 milliseconds per tick.

By using command /conf/patch to reset one or more of these variables, you can change the behavior of the
kernel. Note that it is possible to reset these variables in such a way that the kernel is unusable, memory is
destroyed, or other undesirable consequences occur. If you do not know exactly what you are doing, you are well
advised to leave these variables alone!

ALLSIZE — Size of kernel memory allocation pool

int ALLSIZE;

ALLSIZE gives the number of bytes in the kernel’s memory allocation pool. This pool is manipulated by
the functions kalloc and kfree. ALLSIZE is ‘‘auto sized’’ unless patched to a non-zero value.

ISTSIZE — Initial stack size

int ISTSIZE = 4096;

ISTSIZE specifies the size of the user stack, in bytes. This affects all processes. It can be increased if
required. Reducing the size of the user’s stack may cause programs to crash due to stack overflow. The
kernel stack associated with a process will not change.

KBBOOT — Toggle MS-DOS-style booting

int KBBOOT = 1;

KBBOOT flags whether your system can be rebooted MS-DOS fashion, i.e., by typing <ctrl><alt>.
When set to a non-zero value, it enables MS-DOS rebooting; this is the default. You can use patch to reset
this variable to zero, as follows:

/conf/patch /coherent KBBOOT=0

Thereafter, typing <ctrl><alt> displays the value of function key 0 rather than rebooting. Function
key 0 defaults to the phrase ‘‘reboot’’, as a reminder that this key normally reboots your system. However,
this never actually prints since the system normally reboots. You can set the value of function key 0 to
anything you want, either via the command fnkey or directly in the keyboard tables located in directory
/conf/kbd.

NBUF — Number of blocks in buffer cache
NBUF specifies the number of blocks in the buffer cache. It is auto-sized unless you patch it to a non-zero
value.

LEXICON

kalloc() — kernel variables 121

NCLIST — Number of clists

int NCLIST = 64;

NCLIST specifies the number of clists in kernel memory. clists are used by the canonical tty routines to
store input/output data.

NINODE — Number of in-memory i-nodes

int NINODE = 128;

NINODE specifies the maximum number of i-nodes that can be open simultaneously.

NMSC — Number of characters per message

int NMSC = 640;

NMSC gives the maximum number of characters per message.

NMSG — Number of message buffers

int NMSG = 10;

NMSG gives the number of message buffers allocated.

NMSQB — Maximum characters per message queue

int NMSQB = 2048;

NMSQB gives the default maximum number of bytes of messages on any one message queue.

NMSQID — Maximum number of message queues

int NMSQID = 9;

NMSQID specifies the maximum number of message queues in the system.

NPOLL — Number of simultaneous pending polls

int NPOLL = 0;

NPOLL specifies the maximum number of polls that can be pending simultaneously. If it is zero, dynamic
allocation will occur, in groups of 32 pending polls. You increase variable ALLSIZE by eight bytes per
pending poll.

PHYS_MEM — Amount of memory reserved for drivers
This variable is an int. Its value is the number of bytes needed in the block of physically contiguous
memory reserved for special-purpose device drivers.

RLOCKS — Number of available locks
This variable is an int. By default, it is set to 100.

SHMMAX — Maximum size of a shared-memory segment
This variable gives the maximum size of a shared-memory segment. By default, it is set to 0x10000.

SHMMNI — Maximum number of shared-memory segments
This gives the maximum number of shared-memory segments that can exist at any one time. By default, it
is set to 100.

VIDSLOW — Slow (no snow) video updates

int VIDSLOW = 0;

Set VIDSLOW to non-zero to enable video memory updates only during vertical retrace. This reduces snow
on the display with some older video controller cards.

condev — Console device

dev_t condev = makedev(2,0);

condev specifies the console device that the kernel’s printf or putchar routines write to. This normally is
the memory-mapped video driver, but it can be mapped to any terminal driver that recognizes data written
from the kernel’s data segment. The drivers for the console and serial devices are currently supported as
the kernel’s console devices.

LEXICON

122 kernel variables

cprocp — Pointer to current process

PROC *cprocp;

cprocp points to the proc structure that is associated with the user process that is currently executing.

drvl — Device driver list

#include <sys/con.h>
#include <kernel/param.h>
DRV drvl[drvn];

drvl is an array that references device drivers. Field d_conp points to a table of driver access routines, or
is NULL. Field d_time is non-zero if the driver timed routine is to be invoked once per second.

drvn — Number of device drivers

int drvn;

drvn gives the maximum number of device drivers available to the kernel.

lbolt — Clock ticks since system startup (lightning bolt)

time_t lbolt;

lbolt is the number of clock ticks since system startup. A clock tick normally occurs HZ times per second.

pipedev — File system used for pipes

dev_t pipedev;

pipedev gives the file system to be used for pipes. It is normally the same as rootdev (the root device).

ronflag — Root file system is read-only

int ronflag;

If ronflag is set to non-zero, the root file system has read-only access.

rootdev — File system used for root device

dev_t rootdev;

rootdev specifies the root file system’s device.

See Also
technical information

Notes
You can modify most kernel variables by modifying file /etc/conf/stune. If a variable is not named in that file, you
can modify it with the debugger db using the command line:

db -a kernel.sym kernel

where kernel and kernel.sym name, respectively, the kernel to be patched and its symbol-table file. Once you have
invoked the debugger, type the name of the variable; db will display its address and current value. If the value is
other than what you want, type the command

varname=value

which patches variable varname to value. Then type the command :q to exit from db. This approach works, but has
the disadvantage that you must repeat it each time you link a new kernel.

kfree() — Internal Kernel Routine
Free kernel memory
#include <sys/coherent.h>
void kfree(k)
char *k;

kfree() is a macro that frees a dynamic buffer that had been obtained from kalloc().

LEXICON

kfree() 123

See Also
internal kernel routines

kiopriv() — Internal Kernel Routine
Write a bit into the I/O privilege bitmap
int kiopriv(port, bit)
unsigned int port, bit;

kiopriv() writes the bit value bit into the I/O privilege bitmap for the address of port. A bit value of zero enables
user I/O for the port address; whereas a bit value of one disables user I/O for that port address.

kiopriv() returns zero if the port address was invalid (i.e., out of range for the bitmap); otherwise, it returns one.

See Also
internal kernel routines

kmem_alloc() — DDI/DKI Kernel Routine
Allocate space from kernel free memory
#include <sys/types.h>
#include <sys/kmem.h>
void *kmem_alloc(bytes, flag)
size_t bytes; int flag;

kmem_alloc() allocates bytes of kernel memory.

flag indicates whether the driver can sleep while waiting for memory. KM_SLEEP indicates that the driver will
sleep, if necessary, until the requested amount of memory is available; therefore, kmem_alloc() waits until bytes of
memory is available. KM_NOSLEEP indicates that it will not sleep; therefore, kmem_alloc() returns NULL if the
requested amount of memory is not available immediately.

kmem_alloc() returns a pointer to the newly allocated memory. If flag is set to KM_NOSLEEP and bytes of
memory is not available, it returns NULL. It always returns NULL if you set bytes to zero.

See Also
DDI/DKI kernel routines, kmem_free(), kmem_zalloc()

Notes
kmem_alloc() has base level only if flag equals KM_SLEEP; it has base or interrupt level if flag equals
KM_NOSLEEP. It can sleep if flag is set to KM_SLEEP.

A driver can hold a driver-defined basic lock or read/write lock across a call to this function if flag is
KM_NOSLEEP, but may not hold it if flag is KM_SLEEP. It can hold a driver-defined sleep lock regardless of the
value of flag.

kmem_free() — DDI/DKI Kernel Routine
Free previously allocated kernel memory
#include <sys/types.h>
#include <sys/kmem.h>
void kmem_free(address, bytes)
void *address; size_t bytes;

kmem_free() returns to the free pool bytes of memory at address. This memory must have been allocated by a call
to kmem_alloc() or kmem_zalloc().

See Also
DDI/DKI kernel routines, kmem_alloc(), kmem_zalloc()

Notes
kmem_free() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

124 kiopriv() — kmem_free()

kmem_zalloc() — DDI/DKI Kernel Routine
Allocate space from kernel free memory
#include <sys/types.h>
#include <sys/kmem.h>
void *kmem_zalloc(bytes, flag)
size_t bytes; int flag;

kmem_zalloc() allocates bytes of kernel memory and initializes them to zero.

flag indicates whether the driver can sleep while waiting for memory. KM_SLEEP indicates that the driver will
sleep, if necessary, until the requested amount of memory is available; therefore, kmem_zalloc() waits until bytes
of memory is available. KM_NOSLEEP indicates that it will not sleep; therefore, kmem_zalloc() returns NULL if
the requested amount of memory is not available immediately.

kmem_zalloc() returns a pointer to the newly allocated memory. If flag is set to KM_NOSLEEP and bytes of
memory is not available, it returns NULL. It always returns NULL if you set bytes to zero.

See Also
DDI/DKI kernel routines, kmem_alloc(), kmem_free()

Notes
kmem_zalloc() has base level only if flag equals KM_SLEEP; it has base or interrupt level if flag equals
KM_NOSLEEP. It can sleep if flag is set to KM_SLEEP.

A driver can hold a driver-defined basic lock or read/write lock across a call to this function if flag is
KM_NOSLEEP, but may not hold it if flag is KM_SLEEP. It can hold a driver-defined sleep lock regardless of the
value of flag.

kucopy() — Internal Kernel Routine
Kernel-to-user data copy
unsigned
kucopy(k, u, n)
char *k;
char *u;
unsigned n;

kucopy() copies n bytes from offset k in the kernel’s data segment to offset u in user’s data segment. It returns the
number of bytes copied. If an address fault occurs, kucopy() calls set_user_error() with the value EFAULT and
returns zero.

See Also
internal kernel routines, ukcopy()

Notes
This function is equivalent to the DDI/DKI routine copyout().

linkb() — DDI/DKI Kernel Routine
Concatenate two message blocks
#include <sys/stream.h>
void linkb(first, second)
mblk_t *first, *second;

linkb() concatenates the message second onto message first. It sets field b_cont within first to point to second.

See Also
DDI/DKI kernel routines, msgb, unlinkb()

Notes
linkb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

kmem_zalloc() — linkb() 125

linkblk — STREAMS Data Structure
Structure for a STREAMS multiplexor link
#include <sys/stream.h>

The structure linkblk contains the information that a driver needs to establish or break a multiplexor link. It is
part of the M_DATA portion of M_IOCTL messages generated the ioctl() calls I_LINK, I_UNLINK, I_PLINK, and
I_PUNLINK. The driver does not create this structure.

A driver or module can use the following fields within linkblk:

queue_t *l_qtop The address of the multiplexing driver’s write queue. Set this field to NULL if the link persists
across a close of the driver.

queue_t *l_qbot The address of the lower stream’s upper write queue. These queues’ qinit structures are those
that the driver’s streamtab structure specifies for lower processing.

int l_index The multiplexing link in the system.

See Also
datab, DDI/DKI data structures, iocblk, msgb, qinit, streamtab

lkinfo — DDI/DKI Data Structure
DDI/DKI structure for a lock
#include <sys/ksynch.h>

Structure lkinfo describes a lock. Basic and read/write locks can share a lkinfo; however, a basic lock may not
share a lkinfo with a sleep lock, or vice versa. A driver allocates this structure on its own.

The following fields within lkinfo are available to a driver:

char *lk_name The address of the lock’s name. The driver must initialize this field. The name should begin
with the driver’s prefix.

int lk_flags Flags. As of this writing, the COHERENT implementation of STREAMS recognizes no flags. The
driver must initialize this field to zero. LOCK_ALLOC() or RW_ALLOC().

long lk_pad[2] This field is reserved for future use. The driver must initialize both array members to zero.

See Also
DDI/DKI data structures, LOCK_ALLOC(), RW_ALLOC(), SLEEP_ALLOC()

Notes
The structure lkinfo is defined as type lkinfo_t.

load — Entry-Point Routine
Routine to execute upon loading the driver into memory

Under the internal COHERENT device-driver interface, the entry point load gives access to the routine to execute
when the driver is first loaded into memory. Its address is kept in field c_load of the driver’s CON structure. The
kernel executes this routine when it is booted.

See Also
CON, entry-point routines

lock() — Internal Kernel Routine
Lock a gate
#include <sys/types.h>
void lock(g)
GATE g;

lock() waits for the gate g to unlock, then locks it. When the gate of a system resource is locked, no other
processes can use the resource. Gates must be in the kernel’s data segment, not on the stack. Because it may call
sleep(), lock() is never called from within an interrupt handler, block routine, deferred function, or timed function.

LEXICON

126 linkblk — lock()

See Also
internal kernel routines, locked()

LOCK() — DDI/DKI Kernel Routine
Acquire a basic lock
#include <sys/types.h>
#include <sys/ksynch.h>
pl_t LOCK(lock, level)
lock_t *lock; pl_t level;

LOCK() sets the interrupt priority to level and acquires the lock to which lock points. To be portable, a driver must
specify a level high enough to block any interrupt handler that may attempt to acquire this lock. If the lock is not
available, the caller must wait until it becomes so.

LOCK() returns the previous interrupt-priority level.

See Also
DDI/DKI kernel routines, LOCK_ALLOC(), LOCK_DEALLOC(), TRYLOCK(), UNLOCK()

Notes
LOCK() has base or interrupt level. Basic locks are not recursive. A driver can hold a driver-defined sleep across a
call to this function. It can also hold a driver-defined basic lock or read/write lock if it observes the priority
restrictions described above.

A driver must honor the order of the lock hierarchy when it calls LOCK(). If it does not, it can create a deadlock.
When a driver calls LOCK() from interrupt level, it cannot set level to a priority below that at which the interrupt
handler is running.

LOCK_ALLOC() — DDI/DKI Kernel Routine
Allocate a basic lock
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
lock_t *LOCK_ALLOC(hierarchy, minimum, lock_info, flag)
uchar_t hierarchy; pl_t mininum; lkinfo_t *lock_info; int flag;

Function LOCK_ALLOC() allocates a basic lock. It initializes the lock to the unlocked state.

hierarchy gives the order in which the newly created lock is to be acquired relative to other locks. It must no less
than one and no greater than 32, and must be selected so that locks normally are acquired in increasing order. If
your driver acquires locks at more than one level of interrupt priority and you wish it to be portable, you should
organize the hierarchy among those locks such that the hierarchy increases with level of priority.

minimum gives the minimum level of priority to be used by any function that attempts to acquire this lock. Any
subsequent calls to LOCK() to acquire the lock that LOCK_ALLOC() creates must pass in a priority at least as great
as minimum.

LOCK_ALLOC() recognizes the following values for minimum:

plbase Block no interrupts.
pltimeout Block the functions scheduled by functions itimeout() and dtimeout().
pldisk Block disk-device interrupts.
plstr Block STREAMS interrupts.
plhi Block all interrupts.

The above assumes the following order of priority levels:

plbase < pltimeout <= pldisk, plstr <= plhi

The order of pldisk and plstr relative to each other is not defined.

lock_info points to a lkinfo structure. Fields lk_flags and lk_pad must be initialized to zero. Field lk_name points
to the string that names the lock. Names are used only for collecting statistics. A name should begin with the
driver’s magic prefix; and it should be unique to the lock or group of locks for which the driver wishes to collect
statistics. A given lock_info can be shared among multiple basic locks and read/write locks, but not between a
basic lock and a sleep lock.

LEXICON

LOCK() — LOCK_ALLOC() 127

flag specifies whether you can sleep for the lock to be allocated, should sufficient memory not be available
immediately. KM_SLEEP indicates that the caller will sleep if necessary; KM_NOSLEEP indicates that it will not.

If all goes well, LOCK_ALLOC() returns a pointer to the newly allocated lock. If flag is set to KM_NOSLEEP and
sufficient memory is not available, it returns NULL.

See Also
DDI/DKI kernel routines, lkinfo, LOCK(), LOCK_DEALLOC(), TRYLOCK(), UNLOCK()

Notes
If flag is set to KM_SLEEP, LOCK_ALLOC() has base level and can sleep. If flag is set to KM_NOSLEEP, it has
base or interrupt level and cannot sleep.

If flag is set to KM_NOSLEEP, a driver can hold a driver-defined basic lock or read/write lock across a call to this
function. If flag is set to KM_SLEEP, it cannot. A driver can hold a driver-defined sleep lock across a call to this
function regardless of the value of flag.

LOCK_DEALLOC() — DDI/DKI Kernel Routine
Deallocate a basic lock
#include <sys/ksynch.h>
void LOCK_DEALLOC(lock)
lock_t *lock;

LOCK_DEALLOC() deallocates the lock to which lock points.

See Also
DDI/DKI kernel routines, LOCK(), LOCK_ALLOC(), TRYLOCK(), UNLOCK()

Notes
LOCK_DEALLOC() has base or interrupt level. It does not sleep.

Do not attempt to deallocate a lock that is locked or is awaited. Doing so triggers undefined behavior.

A driver can hold a driver-defined basic lock (other than the one being deallocated), read/write lock, or sleep lock
across a call to this function.

locked() — Internal Kernel Routine
See if a gate is locked
#include <sys/proc.h>
#include <sys/types.h>
int locked(gate)
GATE gate;

the macro locked() determines if gate is locked.

See Also
internal kernel routines, lock()

major() — Internal Kernel Routine
Extract major-device number
#include <sys/stat.h>
#include <sys/types.h>
int major(dev)
dev_t dev;

The macro major() returns a device’s major number.

See Also
internal kernel routine

LEXICON

128 LOCK_DEALLOC() — major()

makedevice() — DDI/DKI Kernel Routine
Make a device number
#include <sys/types.h>
#include <sys/ddi.h>
dev_t makedevice(major, minor)
major_t major; minor_t minor;

makedevice() creates a device number from the external major and minor device numbers. It returns the device
number, which contains both major and minor.

See Also
DDI/DKI kernel routines, getemajor(), geteminor(), getmajor(), getminor()

Notes
makedevice() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

makedevice() does not validate major or minor. Caveat utilitor!

map_pv() — Internal Kernel Routine
Map physical to virtual addresses
vaddr_t map_pv(paddr, len)
paddr_t paddr;
fsize_t len;

map_pv() initializes a virtual address to access physical memory at location paddr of size len bytes. It provides
read and write (but not execute) access. When no longer required, a virtual address should be released by invoking
unmap_pv().

See Also
internel kernel routines

MAPIO() — Internal Kernel Routine
Return global address
#include <sys/mmu.h>
int MAPIO(table_address, offset)
SEG *table_address; int offset;

The macro MAPIO() passes an absolute page-table address for a segment and an offset into the segment, and
returns the system global address of the desired location. It is used when a region of memory is available in a
mapped segment, but could be unmapped later when it is needed. A driver uses the corresponding system global
address range to refer to the memory whether or not the segment that contains it is mapped into virtual space.

See Also
internal kernel routines, salloc()

mapPhysUser() — Internal Kernel Routine
Overlay user data with memory-mapped hardware
int mapPhysUser(virtAddr, physAddr, numBytes)
int virtAddr, physAddr, numBytes;

mapPhysUser() mapped the virtual address virtAddr into the user data-page table for the current process at
address physAddr, for the byte count of numBytes.

This function must observe the following restrictions:

1. Addresses virtAddr and physAddr must be aligned to four-kilobyte boundaries, i.e., must be multiples of
4,096. This is a consequence of the 386/486 paging hardware.

2. Addresses from virtAddr to virtAddr plus numBytes minus one must be in the user data segment (not within
the user stack).

LEXICON

makedevice() — mapPhysUser() 129

3. Addresses from physAddr to physAddr plus numBytes minus one must be either all outside of installed RAM
or all inside the range of physical addresses within the PHYS_MEM pool.

If any of these conditions are not met, mapPhysUser() does nothing. Otherwise, all subsequent access to the
specified range of user addresses goes to the physical range requested.

mapPhysUser() returns zero if any of the above requirements is not met; otherwise, it returns one.

See Also
internal kernel routines

Notes
numbytes must be an exact multiple of four kilobytes (4,096 bytes). If it is not, COHERENT rounds it up to the next
multiple of four kilobytes.

mdevice — System Administration
Describe drivers that can be linked into kernel
/etc/conf/mdevice

File mdevice describes each device driver that can be linked into the COHERENT kernel. The command idmkcoh
uses the information in this file when it builds and configures a new kernel.

mdevice contains one line for each driver or kernel component that can be linked into the kernel. Each line, in
turn, consists of ten fields. The following describes the ten fields in order, from left to right:

1. Name
This field gives the name of the driver or component. Each name must uniquely identify the driver or
component within the kernel. This field cannot be longer than eight characters.

2. Function Flags
This field holds a flag for each function (that is, entry point) within the driver or component. This field is
used only by drivers or components that use the STREAMS or DDI/DKI interfaces; drivers that use the
internal-kernel interface should place a hyphen ‘-’ in this field. The legal flags are as follows:

o Open
c Close
r Read
w Write
i Ioctl
s Startup
x Exit
I Init
h Halt
p Poll — that is, chpoll()

3. Miscellaneous Flags
These flags give information about the device. They are set by most varieties of driver; the only exception is
a STREAMS driver, for which only the flag S matters. The legal flags are as follows:

c Character device
b Block device
f Driver conforms to the DDI/DKI
o Driver has only one entry in /etc/conf/sdevice
r Driver is required in all configurations of the kernel
S STREAMS module; or STREAMS device when used with the ‘c’ flag
H Device driver controls hardware
C Driver uses interal-kernel (CON) interface

Note that the ‘C’ flag is unique to COHERENT, and cannot be used under other operating systems.

4. Code Prefix
This gives the ‘‘magic prefix’’ by which the kernel identifies the entry-point routines for this driver. In most
instances, this is identical with the driver’s name.

LEXICON

130 mdevice

5. Block Major-Device Number
This gives the major-device number of this driver when it is accessed in block mode. In most instances,
this and the following field are identical.

6. Character Major-Device Number
This gives the major-device number of this driver when it is accessed in character (raw) mode. In most
instances, this and the preceding field are identical.

7. Minor Device Numbers, Minimum
This gives the smallest number that can be held by a minor-device number under this driver. Most drivers
set this field to the lowest legal value, which is zero.

8. Minor Device Numbers, Maximum
This gives the largest number that can be held by a minor-device number under this driver. Most drivers
set this field to the highest legal value, which is 255.

9. DMA Channel
This gives the DMA channel by which the device is accessed. Under COHERENT, this is always set to -1.

10. CPU ID
This gives the CPU that controls this driver, should the driver be running in a multiprocessor environment
and be dedicated to a particular processor. Under COHERENT, this is always set to -1.

For an example of modifying this file, see the entry for device drivers.

Example
The following gives some example entries from mdevice:

1 2 3 4 5 6 7 8 9 10
###
Example of an kernel components: floating-point emulator and STREAMS
###
em87 - - em87 0 0 0 0 -1 -1
streams I - streams 0 0 0 0-1 -1

###
Example of a STREAMS driver: note flags ‘c’ and ‘S’ both set in field 3
###
echo - cSf echo 0 33 0 255 -1 -1

###
Example DDI/DKI character driver: Note that field 2 is initialized.
###
trace ocriI cfo tr 0 34 0 255 -1 -1

###
Example IK driver: Note flag ‘C’ in field 3
###
at - CGHo at 11 11 0 255 -1 -1

See Also
Administering COHERENT, device drivers, idmkcoh, mtune, sdevice, stune

messages — Technical Information
Types of STREAMS messages
#include <stream.h>

The following lists the types of STREAMS messages that drivers can use. M_DATA is a data message. An asterisk ‘*’
indicates that the message is a control message with normal priority. A dagger ‘†’ indicates that the message is a
control message with high priority.

M_BREAK* Generate a line break.
M_COPYIN† Copy data from the user to a STREAMS message during transparent ioctl.
M_COPYOUT† Copy data from a STREAMS message to the user during transparent ioctl.
M_CTL* Control message used between neighboring modules and drivers.
M_DATA Data message.

LEXICON

messages 131

M_DELAY* Generate a real-time delay.
M_ERROR† The stream has incurred a fatal error.
M_FLUSH† Flush queue.
M_HANGUP† The device has been disconnected.
M_IOCACK† An ioctl request has succeeded
M_IOCNAK† An ioctl request has failed.
M_IOCDATA† The status and data of a previous M_COPYIN or M_COPYOUT request during a transparent

ioctl request.
M_IOCTL* A user has made an ioctl request.
M_PCCTL† Message passed between neighboring drivers.
M_PCPROTO* Protocol control message.
M_PCSETOPTS* Set stream-head options.
M_PCSIG* Send a signal to a process.
M_PROTO† Protocol message.
M_READ† Indicate the occurrence of a read routine when the stream head’s read queue has no data.
M_SETOPTS† Set stream-head options.
M_SIG† Send a signal to a process.
M_START† Output can be restarted.
M_STARTI† Input can be restarted.
M_STOP† Stop output immediately.
M_STOPI† Stop input immediately.

See Also
technical information

minor() — Internal Kernel Routine
Extract minor-device number
#include <sys/stat.h>
int minor(dev)
dev_t dev;

The macro minor() returns a device’s minor number.

See Also
internal kernel routines

mmap — Entry-Point Routine
Check virtual mapping for a memory-mapped device
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/vm.h>
int prefixmmap(device, offset, protection)
dev_t device; off_t offset; int protection;

mmap is the entry point to the driver’s internal routine for memory-mapped devices. The COHERENT system call
mmap(), when applied to a character-special file, maps this device’s memory into user space, for direct
manipulation by the user’s application.

device gives the device whose memory is being mapped. offset gives the offset within device memory at which
mapping begins. protection gives the protection flags. The following flags are Valid:

PROT_READ Page can be read
PROT_WRITE Page can be written on
PROT_EXEC Page can be executed
PROT_USER Page is accessible from user level
PROT_ALL All of the above

The mmap routine must check whether offset is within the range that the device supports. If the offset does not
exist, then it should return NOPAGE.

If offset exists, the mmap routine returns its physical-page identifier.

LEXICON

132 minor() — mmap

See Also
entry-point routines

Notes
This entry-point is used only by the DDI/DKI interface. It is optional.

The driver’s mmap routine has user context and can sleep.

As of this writing, the COHERENT kernel does not contain the system call mmap().

module_info — STREAMS Data Structure
Information about a STREAMS driver or module
#include <sys/conf.h>
#include <sys/stream.h>
#include <sys/types.h>

Structure module_info holds the identification data and limits that with which a queue is initialized. The kernel
creates one module_info for each driver or module, and initializes it to the values that the driver or module
requires. A driver or module can have separate module_info structures for its read queues and write queues, or it
can use the same module_info for both.

A driver can view the following fields within module_info:

ushort_t mi_idnum A number that uniquely identifies the driver or module.

char *mi_idname The address of the name of the driver or module. A name cannot have more than
FMNAMESZ characters, not including the terminating NUL. At present, this constant is
set to eight.

long mi_minpsz The minimum size of a message packet.

long mi_maxpsz The maximum size of a message packet.

ulong_t mi_hiwat The default high-water mark for the queue. If the queue’s messages together hold more
than this number of bytes of data, the queue is declared to be full and is flow-controlled.

ulong_t mi_lowat The default low-water mark for the queue. If the queue’s messages together hold fewer
than this number of bytes of data, the queue is declared not to be full and is not flow-
controlled.

module_info is read-only; however, its fields mi_minpsz, mi_maxpsz, mi_hiwat, and mi_lowat can be copied into
a queue structure, where they can be modified.

See Also
DDI/DKI data structures, queue

msgb — STREAMS Data Structure
Structure of a STREAMS message block
#include <sys/types.h>
#include <sys/stream.h>

A STREAMS message consists of one or message blocks. A message block, in turn, is referenced by a pointer to the
structure msgb. The functions allocb() and esballoc() automatically create a msgb when they allocate a message;
note that this structure must be created only by those functions.

The following fields within msgb can be read by drivers and modules:

struct msgb *b_next
struct msgb *b_prev The addresses of, respectively, the next and previous blocks of the message queue. These

fields bind a queue’s messages into a link list, and they bind a message onto its queue.

struct msgb *b_cont The address of the next message block within the message. This field is initialized when a
message consists of more than one message block.

uchar_t *b_rptr

LEXICON

module_info — msgb 133

uchar_t *b_wptr The addresses of, respectively, the first unread byte within the data buffer associated with
this message, and the next byte to be written into the data buffer. These fields together
define the message’s region within the associated data buffer.

struct datab *b_datap The address of this message’s data block. Never change this field!

uchar_t b_band The message’s priority band. In normal- and high-priority messages, b_band is set to
zero. Use the value of this field to position the message within its queue: the higher its
priority band (that is, the lower the value of this field), the closer to the head of the queue
it should be.

ushort_t b_flag A bitmask of flags that control how the stream head processes the message. At present,
the only valid flag is MSGMARK, which indicates that the last byte in the message is
‘‘marked’’.

When a message is on a queue, all fields within its msgb are read-only.

See Also
allocb(), datab, DDI/DKI data structures, esballoc(), free_rtn, freeb(), getq(), messages, rmvq()

Notes
The structure msgb is defined as type mblk_t.

msgdsize() — DDI/DKI Kernel Routine
Get the number of bytes of data that a message holds
#include <sys/stream.h>
int msgdsize(message)
mblk_t *message;

msgdsize() counts and returns the bytes of data within message. It counts only the data within message blocks of
type M_DATA.

See Also
DDI/DKI kernel routines, msgb

Notes
msgdsize has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

msgpullup() — DDI/DKI Kernel Routine
Copy message data into a new message
#include <sys/stream.h>
mblk_t *msgpullup(message, bytes)
mblk_t *message; int bytes;

msgpullup() copies into a new message the first bytes of data from message. If bytes equals -1, it copies all data
from message. msgpullup() does not affect message in any way.

If message does not contain bytes of the same message type, msgpullup() fails and returns NULL. Otherwise, it
returns the address of the new message.

See Also
allocb(), DDI/DKI kernel routines, msgb

Notes
msgpullup() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

134 msgdsize() — msgpullup()

mtune — System Administration
Define tunable kernel variables
/etc/conf/mtune

File mtune defines all of the tunable variables within the kernel. These variables let you configure some aspects of
your kernel, without having to modify the kernel’s drivers or recompile the kernel.

Command idmkcoh reads this file when it builds a new kernel, and uses its contents to help patch the newly build
kernel. A mkdev script (kept in a subdirectory of /etc/conf) also sets appropriate variables within this file, based
on your answers to its questions.

Each line within mtune defines one tunable parameter. A line consists of four fields, as follows:

1. Name
This field names the parameter. It cannot exceed 20 characters.

2. Minimum Value
The legal minimum value of this parameter.

3. Default Value
The default value for this parameter. This value can be overridden by an entry in file /etc/conf/stune.

4. Maximum Value
The legal maximum value of this parameter.

Note that under UNIX System V, fields 2 and 3 are reversed. A line that begins with the pound sign ‘#’ is a
comment, and is ignored by idmkcoh when it builds a new kernel.

For details on the parameters that this file sets, read the comments within this file.

See Also
Administering COHERENT, device drivers, mdevice, sdevice, stune

Notes
mtune contains comments that describe the kernel variables that you can tune. If you wish to tune the kernel,
you should read this file and modify it appropriately. The variables are documented in this file rather than in the
COHERENT manual to ensure that you have exactly accurate information about the variables that reside in the
version of the kernel on your system.

noenable() — DDI/DKI Kernel Routine
Stop scheduling of a queue service routine
#include <sys/stream.h>
void noenable(queue)
queue_t *queue;

noenable() stops functions insq(), putbq(), and putq() from scheduling the service routine of queue when they
enqueue a message that does not have high priority. noenable() does not stop these functions from enabling
queue’s service routine when they enqueue a high-priority message, nor does it stop the service routine from being
enabled when a function calls qenable() explicitly.

See Also
DDI/DKI kernel routines, enableok(), insq(), putbq(), putq(), qenable(), queue

Notes
noenable() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have frozen the stream when it calls noenable().

To undo the action of noenable(), call function enableok().

LEXICON

mtune — noenable() 135

nondsig() — Internal Kernel Routine
Non-default signal pending
int nondsig()

nondsig() returns the signal number if the current process has a non-ignored signal. If there are no non-ignored
signals, nondsig() returns zero.

See Also
internal kernel routines

nonedev() — Internal Kernel Routine
Illegal device request
void nonedev()

nonedev() calls function set_user_error() with value. ENXIO. This function is placed in the configuration table to
provide a routine that sets this error status. It does not return anything useful.

See Also
internal kernel routines

nulldev() — Internal Kernel Routine
Ignored device request
int nulldev()

The function nulldev() does nothing. It is placed in the configuration table to supply something to call when a
function is required to do nothing. nulldev() returns nothing useful.

See Also
internal kernel routines

open — Entry-Point Routine
Open a device

Internal Kernel Interface:
#include <sys/cred.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/types.h>
int prefixopen(device, mode, flags, credentials, inodep)
dev_t device; int mode, flags; cred_t *credentials; struct inode *inodep;

DDI/DKI:
#include <sys/cred.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/types.h>
int prefixopen(device, oflag, otype, credentials)
dev_t *device; int oflag, otype; cred_t *credentials;

STREAMS:
#include <sys/cred.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/types.h>
int prefixopen(queue, device, oflag, sflag, credentials)
queue_t *queue; dev_t *device; int oflag, sflag; cred_t *credentials;

A driver’s open routine prepares a device to be manipulated. Every driver must have this entry point. An
application invokes it via the COHERENT system call open(). For details on this system call, see its entry in the
COHERENT Lexicon.

LEXICON

136 nondsig() — open

The open routine returns zero on success, or an appropriate error number. See the entry for errno in this manual
for a list of error numbers. The driver determines how to react to an error.

The following describes the open routine for each flavor of driver-kernel interface.

Internal-Kernel Interface
Under the internal-kernel interface to a driver, field c_open in the driver’s CON structure holds the address of this
routine. It is customary to name the open routine with the word open prefixed by a unique identifier for your
driver; but this is not required.

device is a dev_t that identifies the device to be opened.

mode and flags give, respectively, the mode into which device should be opened, and additional information about
how it should be opened. See the article for the system call open() in the COHERENT Lexicon for a table of the legal
values of these arguments.

credentials points to the credentials of the current user. If it wishes, your driver can read this structure to check
the user’s permissions before it opens device. Note that many drivers do not use this argument.

Finally, inodep points to a structure that holds information about the i-node that is current being manipulated.
Note that many drivers do not use this argument.

DDI/DKI Interface
To invoke the open routine under the DDI/DKI interface, the kernel calls the function prefixopen(), where prefix is
the unique prefix for this driver. The function takes the following arguments:

device The address of the dev_t structure that identifies this device.

oflag Flag that indicate how device is to be opened. The open routine must recognize the following values:

FEXCL Open the device in a driver-dependent manner.

FNDELAY
Open the device and return immediately, even if a problem occurs.

FNONBLOCK
Same as FNDELAY.

FREAD Open device for reading.

FWRITE
Open device for writing.

otype The type of interface into which device is to be opened. The open routine can recognize the following
values:

OTYP_BLK
Open into a block interface.

OTYP_CHR
Open into a character (raw) interface.

OTYP_LYR
Open into a layered interface.

credentials
The address of the user’s credentials.

The open routine has user context and can sleep.

STREAMS Interface
To invoke the open routine under the STREAMS interface, the kernel calls the function prefixopen(), where prefix is
the unique prefix for this driver. The function takes the following arguments:

queue The address of the queue into the driver’s read side.

device The address of the dev_t structure that identifies this device. For modules, device identifies the device of
the driver that is at the end of the stream.

LEXICON

open 137

oflag Flag that indicate how device is to be opened. The open routine must recognize the same values as those
given above for the DDI/DKI interface.

sflag STREAMS flag. The open routine must recognize the following values:

CLONEOPEN
A ‘‘clone’’ open. If the driver supports cloning, it must alter the value of device to that of the
‘‘clone’’ device. Cloning is discussed below.

MODOPEN
Open a module, not a driver.

0 Open device directly, without cloning.

credentials
The address of the user’s credentials.

Before it returns, the open routine of a STREAMS driver or module must call qprocson() to enable its put and srv
routines — but only after it has allocated and intialized all resources upon which the put and service routines
depend.

Only one instance of the open routine can be running at any given time for a given queue. The open routine has
user context and can sleep.

Cloning
Cloning is the process by which a driver selects an unused device for a user. This spares the user the bother of
polling many devices as he looks for one that is not being used. When an applications opens the clone driver, that
driver calls the open routine of the real driver with sflag set to CLONEOPEN. This spares a driver from having to
reserve special minor numbers as entry points for clones.

There are two common methods of cloning. The first does not use the flag CLONEOPEN; the second does.

1. The driver reserves special minor numbers for clones. When a user opens one of these, the driver searches for
an unused device and, if it finds one, sets device to identify the unused device it has discovered.

2. When it sees the flag CLONEOPEN, the driver can invoke a special ‘‘cloning’’ driver to find and open a clone
device. Here, device’s major number identifies the cloning driver, and its minor number the driver to be
cloned.

Multiple clone opens can run concurrently. Support of cloning is optional, so a driver should react rationally if
does not support cloning but is asked to clone a driver.

See Also
close, CON, drv_priv(), entry-point routines, errno, qprocson(), queue
COHERENT Lexicon: open()

OTHERQ() — DDI/DKI Kernel Routine
Get the other queue
#include <sys/ddi.k>
#include <sys/stream.h>
queue_t * OTHERQ(queue)
queue_t *queue;

OTHERQ() returns the address of queue’s partner queue. If queue points to the write queue, OTHERQ() returns a
pointer to the read queue, and vice versa.

See Also
DDI/DKI kernel routines, RD(), WR()

Notes
OTHERQ() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

138 OTHERQ()

outb() — DDI/DKI Kernel Routine
Output a byte to an I/O port
#include <sys/types.h>
void outb(port, c)
int port; uchar_t c;

outb() writes byte c to port.

See Also
DDI/DKI kernel routines, inb(), inl(), inw(), outl(), outw()

Notes
outb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

outl() — DDI/DKI Kernel Routine
Write a long integer to an I/O port
#include <sys/types.h>
void outl(port, datum)
int port; ulong_t datum;

outl() writes the unsigned long (32-bit) integer datum to port.

See Also
DDI/DKI kernel routines, inb(), inl(), inw(), outb(), outw()

Notes
outl() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

outw() — DDI/DKI Kernel Routine
Output a short integer (word) to an I/O port
#include <sys/types.h>
void outw(port, datum)
int port; ushort_t datum;

outw() writes the short (16-bit) integer datum to port.

See Also
DDI/DKI kernel routines, inb(), inl(), inw(), outb(), outl()

Notes
outw() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

P2P() — Internal Kernel Routine
Convert system global to physical address
P2P(gl_addr)
vaddr_t gl_addr;

Macro P2P converts a system global address to a physical address. For example, the code sequence

#include <sys/mmu.h>
phys_addr = P2P(sys_gl_addr);

LEXICON

outb() — P2P() 139

converts system global address sys_gl_addr and stores it into variable phys_addr.

See Also
internal kernel routines

panic() — Internal Kernel Routine
Fatal system error
void panic(format, arg, ...)
char *format;

panic() prints an error message and halts the system. Normally, it is called only when a catastrophic event occurs.

format gives formatting information for the error message, accompanied by zero or more arg arguments. Syntax for
format is the same as for the kernel function printf().

See Also
internal kernel routines, printf()

pcmsg() — DDI/DKI Kernel Routine
Test if a message type indicates high priority
#include <sys/ddi.h>
#include <sys/stream.h>
#include <sys/types.h>
int pcmsg(type)
uchar_t type;

pcmsg() tests the message type to see if it indicates high priority. It returns one if does, or zero if it does not. Field
datab.db_type holds a message’s type.

See Also
allocb(), datab, DDI/DKI kernel routines, msgb, messages

Notes
pcmsg() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

phalloc() — DDI/DKI Kernel Routine
Create a pollhead structure
#include <sys/kmem.h>
#include <sys/poll.h>
struct pollhead *phalloc(flag)
int flag;

phalloc() allocates and initializes structure of type pollhead. A character driver that uses the DDI/DKI interface
can use pollhead to support polling.

The calling routine should use flag to indicate whether it will sleep. Setting flag to KM_SLEEP indicates that if not
enough memory is available to allocate a pollhead structure, the caller will sleep until memory becomes available.
Setting flag to KM_NOSLEEP indicates that the caller will not sleep; if not enough memory is available to allocate a
pollhead structure, phalloc() immediately returns NULL.

See Also
DDI/DKI kernel routines, phfree(), pollwakeup()

Notes
If flag equals KM_SLEEP, phalloc() has base level only and can sleep; if flag equals KM_NOSLEEP, it has base or
interrupt level and does not sleep.

A driver can hold a driver-defined basic lock or read/write lock across a call to this function if flag equals
KM_NOSLEEP; it cannot hold such locks if flag equals KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

LEXICON

140 panic() — phalloc()

phfree() — DDI/DKI Kernel Routine
Free a pollhead structure
#include <sys/poll.h>
void phfree(head)
struct pollhead *head;

phfree() frees the pollhead structure head, which must have been allocated by the function phalloc().

See Also
DDI/DKI kernel routines, phalloc(), pollwakeup()

Notes
phfree() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

physiock() — DDI/DKI Kernel Routine
Request and validate raw I/O
#include <sys/buf.h>
#include <sys/types.h>
#include <sys/types.h>
int physiock(strategy, buf_ptr, device, rwflag, blocks, uio_ptr)
int (*strategy); buf_t *buf_ptr; dev_t device;
int rwflag; daddr_t blocks; IO *uio_ptr;

physiock() uses a buffer header to perform unbuffered I/O. Thus, it provides block drivers with a character (or
‘‘raw’’) interface to a device.

When it executes a request for raw I/O, physiock() performs the following tasks:

1. Check whether the request runs to or past the end of the device. If a read request runs past the end of the
device or a write request runs to or past the end of the device, the request is invalid and physiock() rejects it.
See the description of return values, below, for details on how it handles this situation.

2. Set up a buffer header to describe the I/O task. For details, see the Lexicon entry for the function getrbuf().

3. Lock pages so they cannot be swapped out of memory. (NB, this currently does not apply to COHERENT, but
will when demand paging is added to its kernel.)

3. Call the driver’s strategy routine.

4. Sleep until the transfer is complete. It awakens when the I/O-done handler calls biodone() to awaken it. (For
details on the I/O-done handler, see the Lexicon entry for getrbuf().)

5. Update various structures where necessary, tidy up memory, and return.

physiock() takes the following parameters:

strategy
The address of the driver’s strategy routine.

buf_ptr The address of the instance of type buf that describes the I/O request. If this is initialized to NULL,
physiock() allocates a buffer and a buffer header from the buffer pool, then frees them after the I/O
request has been executed.

device The number of the external device with which I/O is to be performed.

rwflag The direction of I/O. If it is set to B_READ, the data moves from the kernel into the user’s buffer; if to
B_WRITE, then the data moves in the opposite direction.

blocks The number of blocks that a logical device can support. One block equals NBPSCTR bytes, as defined by
header file
.BR <sys/param.h> . Note that for some devices (e.g., tape devices), this should be set to an arbitrarily

large value.

LEXICON

phfree() — physiock() 141

uio_ptr The address of the instance of type IO that defines the user space which the I/O procedure is to use. Note
that under UNIX’s implementation of the DDI/DKI, this argument has type uio_t.

Return Values
physiock() returns zero if the I/O executed without trouble or if it read data at the end of a device. It returns a
value other than zero if any of the following conditions occurred:

• Only a partial transfer of data occurred. physiock() updates the uio instance to which uio_ptr points to reflect
this partial transfer, and returns a non-zero value.

• The I/O request attempts to read beyond the end of this device, or write at or beyond the end of a device.
physiock() returns ENXIO.

• The user memory to which uio_ptr points is not valid. physiock() returns EFAULT.

• physiock() could not lock pages for DMA. It returns EAGAIN.

See Also
DDI/DKI kernel routines, freerbuf(), getrbuf(), strategy

Notes
physiock() has base level. It can sleep.

A function cannot hold a basic lock or read/write lock across a call to this function. It can, however, hold a sleep
lock.

poll — Entry-Point Routine
Poll the device
int prefixpoll(device, events, msec, private)
device_t device; int events, msec; void *private;

Under the internal COHERENT device-driver interface, the entry point poll gives access to the driver’s routine for
polling the device. The address of this routine is given in field c_poll of the driver’s CON structure.

By convention, the poll routine is named with the word poll prefixed with your driver’s unique prefix. This,
however, is not required.

device identifies the device to be polled.

events gives the number of events to be polled.

msec gives the number of seconds to wait before the call times out.

Finally, private points to a data item that is private to this driver. Note that most drivers do not use this argument.

See Also
CON, entry-point routines

pollhead — STREAMS Data Structure
Structure for a STREAMS poll head
#include <sys/poll.h>

The structure pollhead is used in System V polling. This structure is meant to be totally opaque; no access to its
internal structure is permitted.

A driver must provide one pollhead structure for each minor device that it supports. It must call phalloc() to
allocate the structure; it must call phfree() to free the structure once it is no longer needed. A DDI/DKI driver can
use a pollhead structure only if phalloc() has allocated and initialized it.

The driver entry point chpoll gives access to the driver’s polling routine.

See Also
chpoll, DDI/DKI data structures, phalloc(), phfree()

LEXICON

142 poll — pollhead

pollopen() — Internal Kernel Routine
Initiate driver polled event
void pollopen(eventp)
event_t *eventp;

pollopen() creates a polled event on the event structure to which eventp points. The event structure must reside in
static kernel data space.

See Also
internal kernel routines

pollwake() — Internal Kernel Routine
Terminate driver polled event
#include <sys/types.h>
void pollwake(eventp)
event_t *eventp;

pollwake() generates a polled event report on the event structure pointed to by eventp. The event structure must
reside in static kernel data space. If the field

eventp->e_eprocp

is NULL, no events are still pending and the driver has no need to call pollwake().

See Also
internal kernel routines

pollwakeup() — DDI/DKI Kernel Routine
Inform polling process that an event has occurred
#include <sys/poll.h>
void pollwakeup(head, event)
struct pollhead *head; short event;

pollwakeup() notifies all processes that are polling for event. It should be used only by drivers that use the
DDI/DKI interface. A driver should call this function for each occurrence event. A process can register for
notification by invoking the COHERENT system call poll().

head points to the pollhead structure for for the minor device. It must have been allocated with the function
phalloc().

See Also
DDI/DKI kernel routines, phalloc(), phfree()
COHERENT Lexicon: poll()

Notes
pollwakeup() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

power — Entry-Point Routine
Routine to execute if power fails
int prefixpower(device)
dev_t device;

Under the internal COHERENT device-driver interface, the entry point power points to the routine to execute if
power fails. The address of this routine is given in field c_power of the driver’s CON structure.

device identifies the device being manipulated.

See Also
CON, entry-point routines

LEXICON

pollopen() — power 143

print — Entry-Point Routine
Print a message on the system’s console
#include <sys/types.h>
#include <sys/errno.h>
int prefix (device, message)
dev_t device; char *message;

The print routine prints message on the system’s console, plus any text the driver itself cares to add. The kernel
invokes this routine when something has gone wrong with the block device.

The driver should call the function cmn_err() to display its own message.

See Also
cmn_err(), entry-point routines, errno
COHERENT Lexicon: errno.h, printf()

Notes
This entry point is used only by the DDI/DKI interface. It is optional.

The driver should not interpret the string text passed to it.

The print routine must not call any routine that sleeps.

printf() — Internal Kernel Routine
Formatted print
void printf(format, arg, ...)
char *format;

printf() is a kernel routine that offers a simplified version of the function found in the standard C library. This
version recognizes the formatting conversions %, c, d, o, p, r, s, u, x, D, O, U, and X. It also recognizes the length
modifier l. It does not recognize left justification, field widths, or zero padding. For details on each conversion
specification, see the Lexicon entry for printf() in the COHERENT Lexicon.

See Also
internal kernel routines
COHERENT Lexicon: printf()

Notes
Unlike the library version of this function, the kernel version of printf() is synchronous; that is, it does not wait
until the next context switch before it prints your message.

This function does much the same work as the DDI/DKI routine cmn_err().

proc_ref() — DDI/DKI Kernel Routine
Identify a process
#include <sys/types.h>
void *proc_ref ();

proc_ref() returns a pointer to the process in whose context the driver is running. A non-STREAMS character driver
can pass the value returned by proc_ref() to proc_signal() to signal that process, or to proc_unref() to un-reference
this value. There is no other use for this value.

See Also
DDI/DKI kernel routines, proc_signal(), proc_unref()

Notes
proc_ref() has base level only. It requires user context. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

144 print — proc_ref()

proc_signal() — DDI/DKI Kernel Routine
Send a signal to a process
#include <sys/types.h>
#include <sys/signal.h>
int proc_signal(process, signal)
void *process; int signal;

proc_signal() sends signal to process, which must have been obtained by a call to proc_ref(). signal can be one of
the following:

SIGHUP The device has ‘‘hung up’’.
SIGINT The driver has received an interrupt.
SIGQUIT The driver has received the quit character.
SIGWINCH The size of a window has changed.
SIGURG Urgent data are waiting.
SIGPOLL A pollable event has occurred.

If process still exists, proc_signal() sends sends it signal and returns zero. However, if it has exited, proc_signal()
does nothing and returns -1.

See Also
DDI/DKI kernel routines, proc_ref(), proc_unref(), signals

Notes
proc_signal() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

A STREAMS driver or module should not use proc_signal(). Rather, it should send a message of type M_SIG or
M_PCSIG to the stream head. A driver must not use proc_signal() to send SIGTSTP.

proc_signal() interrupts any process that is blocked in SV_WAIT_SIG() or SLEEP_LOCK_SIG(). In most cases, this
causes these functions to return prematurely.

pullupmsg() — DDI/DKI Kernel Routine
Concatenate bytes in a message
#include <sys/stream.h>
int pullupmsg(message, bytes)
mblk_t *message; int bytes;

pullupmsg() concatenates and aligns the first bytes of message. If bytes equals -1, it concatenates all data. If it
cannot find bytes of the same message type, it fails and returns zero; otherwise, it returns the number of
characters concatenated.

See Also
allocb(), DDI/DKI kernel routines, msgpullup()

Notes
pullupmsg() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a calls to this function.

This function is provided for compatibility with obsolete versions of the DDI/DKI. You should instead use the
function msgpullup().

put — Entry-Point Routine
Receive a message from a queue
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/types.h>

Read Side:
int prefixrput(queue, message)
queue_t queue; mblk_t message;

LEXICON

proc_signal() — put 145

Write Side:
int prefixwput(queue, message)
queue_t queue; mblk_t message;

The put routine passes message onto queue.

No driver or module can call a put routine directly; rather, it should use the function put() to invoke it.

A put routine is designated read or write, depending upon the direction of message flow. A module or driver must
have a write put routine. A module must have a read put routine, but a driver is not required to have it because
its interrupt handler can do that work instead.

See Also
datab, entry-point routines, flushband(), flushq(), msgb, putctl(), putctl1(), putnext(), putq(), qreply(), queue,
srv

Notes
This entry point is used only by the DDI/DKI interface. Under this interface, it is required.

A put routine does not have user context, and therefore cannot call any function that sleeps.

No locks should be held when passing messages to other queues in the stream.

Multiple copies of the same put routine for a given queue, as well as the service routine for the queue, can be
running concurrently. Drivers and modules must synchronize access to their private data structures accordingly.

DDI/DKI drivers cannot call put procedures directly. They must now call the appropriate STREAMS utility
function, e.g., put(), putnext(), putctl(), putnextctl(), or qreply().

put() — DDI/DKI Kernel Routine
Call a put procedure
#include <sys/stream.h>
void put(queue, message);
queue_t *queue; mblk_t *message;

put() calls the driver’s put procedure for queue. message points to the message being passed.

See Also
DDI/DKI kernel routines, putctl(), putctl1(), putnext(), putnextctl(), putnextctl1(), qreply(), query

Notes
put() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

putbq() — DDI/DKI Kernel Routine
Place a message at the head of a queue
#include <sys/stream.h>
int putbq(queue, message)
queue_t *queue, mblk_t *message;

putbq() places message at the head of queue. If queue contains a message whose priority exceeds that of message,
putbq() places message at the head of the appropriate priority band. A driver usually calls putbq() when
bcanputnext() or canputnext() indicates that message cannot be passed to the next stream component.

putbq() updates all flow-control parameters. It schedules queue’s service routine if it had not been disabled by a
previous call to noenable().

If all goes well, putbq() returns one. Otherwise, it returns zero.

See Also
bcanputnext(), canputnext(), DDI/DKI kernel routines, getq(), insq(), msgb, putq(), queue, rmvq()

LEXICON

146 put() — putbq()

Notes
putbq() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when calling this function.

putbq() can fail if insufficient memory is available to allocate the accounting data structures used with messages
whose priority bands are greater than zero.

A high-priority message should never be placed onto a queue from within a service routine.

putctl() — DDI/DKI Kernel Routine
Put a control message onto a queue
#include <sys/stream.h>
int putctl(queue, type)
queue_t *queue; int type;

putctl() allocates a message block and calls the driver’s put to put it onto queue. type is the type of the message to
be created; it must not be a data type, i.e., M_DATA, M_PROTO, or M_PCPROTO.

putctl() returns one if it could allocate and put the the message block. It fails and returns zero if type is a data
type, or if it cannot allocate a message block.

See Also
DDI/DKI kernel routines, put(), putctl1(), putnextctl(), putnextctl1(), queue

Notes
putctl() has base or interrupt type. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

queue cannot reference field q_next. Rather, use the function putnextctl()

putctl1() — DDI/DKI Kernel Routine
Enqueue a control message and one-byte parameter
#include <sys/stream.h>
int putctl1(queue, type, parameter)
queue_t *queue; int type, parameter;

putctl1(), like putctl(), allocates a message block and calls the driver’s put routine to put it onto queue. type is the
type of message to create; it must not be a data type, i.e., M_DATA, M_PROTO, or M_PCPROTO.

parameter gives a one-byte parameter. What this parameter represents depends upon the type of message being
created.

putctl1() returns one if it could allocate and put the the message block. It fails and returns zero if type is a data
type, or if it cannot allocate a message block.

See Also
DDI/DKI kernel routines, put(), putctl(), putnextctl(), putnextctl1(), queue

Notes
putctl1() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

queue must not reference the field q_next. To pass a message to the next queue in a stream, use the function
putnextctl1().

LEXICON

putctl() — putctl1() 147

putnext() — DDI/DKI Kernel Routine
Send a message to the next queue
#include <sys/stream.h>
int putnext(queue, message)
queue_t *queue; mblk_t *message;

putnext() invokes the driver’s put routine to put message onto queue’s next queue (i.e., to queue->q_next). It does
not return a meaningful value.

See Also
DDI/DKI kernel routines, msgb, putnextctl(), putnextctl1(), queue

Notes
putnext() has base or interrupt level. It does not sleep.

The caller cannot have the stream frozen when it calls this function.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

putnextctl() — DDI/DKI Kernel Routine
Send a control message to a queue
#include <sys/stream.h>
int putnextctl(queue, type)
queue_t *queue; int type;

putnextctl() allocates a message block and calls the driver’s put routine to put it onto the queue next to queue
(i.e., to queue->q_next). type is the type of the message to be created; it must not be a data type, i.e., M_DATA,
M_PROTO, or M_PCPROTO.

putnextctl() returns one if it could allocate and put the the message block. It fails and returns zero if type is a
data type, or if it cannot allocate a message block.

See Also
DDI/DKI kernel routines, put, putctl(), putctl1(), putnextctl1(), queue

Notes
putnextctl() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

putnextctl1() — DDI/DKI Kernel Routine
Send a control message and a parameter to a queue
#include <sys/stream.h>
int putnextctl1(queue, type, parameter)
queue_t *queue; int type, parameter;

putnextctl1(), like putctl(), allocates a message block and calls the driver’s put routine to put it onto the queue
next to queue (i.e., to queue->q_next). type is the type of the message to be created; it must not be a data type, i.e.,
M_DATA, M_PROTO, or M_PCPROTO.

parameter gives a one-byte parameter. What this parameter represents depends upon the type of message being
created.

putnextctl1() returns one if it could allocate and put the the message block. It fails and returns zero if type is a
data type, or if it cannot allocate a message block.

See Also
DDI/DKI kernel routines, put(), putctl(), putnextctl(), putnextctl1(), queue

Notes
putnextctl1() has base or interrupt level. It does not sleep.

LEXICON

148 putnext() — putnextctl1()

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

putq() — DDI/DKI Kernel Routine
Put a message onto a queue
#include <sys/stream.h>
int putq(queue, message)
queue_t *queue; mblk_t *message;

putq() puts message onto queue after its put routine has finished processing it.

putq() places message onto queue after all other messages with the same priority. It updates all flow-control
parameters, and schedules queue’s service routine if it had not been disabled by a previous call to noenable().

If all goes well putq() returns one; otherwise, it returns zero.

See Also
DDI/DKI kernel routines, getq(), insq(), msgb, putbq(), queue, rmvq()

Notes
putq() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

putq() fails if not enough memory is available to allocate the accounting data structures used with messages with
priority greater than zero.

putubd() — Internal Kernel Routine
Store a byte into user data space
putubd(u, b)
char *u, b;

putubd() stores byte b at address u in the user’s data segment. If an address fault occurs, it calls set_user_error()
with value EFAULT.

See Also
internal kernel routines

putusd() — Internal Kernel Routine
Store a short to user data
putusd(addr, s)
short *addr, s;

putusd() writes short (16-bit) integer s into the user data space addressed by addr.

See Also
internal kernel routines

putuwd() — Internal Kernel Routine
Store a word into user data space
putuwd(u, w)
char *u; int w;

putuwd() stores word w at address u of the user’s data segment. If an address fault occurs, it calls
set_user_error() with value EFAULT.

See Also
internal kernel routines

LEXICON

putq() — putuwd() 149

putuwi() — Internal Kernel Routine
Put a word into user code space
putuwi(u, w)
char *u; int w;

putuwi() puts word w into address u of the user’s code segment. If an address fault occurs, it calls
set_user_error() with value EFAULT.

See Also
internal kernel routines

pxcopy() — Internal Kernel Routine
Copy from physical or system global memory to kernel data
#include <sys/seg.h>
pxcopy(src, dest, num_bytes, flag)
paddr_t src; vadr_t dest; unsigned int num_bytes; int flag;

Kernel function pxcopy() copies data from physical or system-global memory into kernel memory. You can invoke
it either of two forms.

The first form copies num_bytes from physical address src into kernel data virtual address dest. This form is
selected by setting argument flag to manifest constant SEL_386_KD.

The second form copies num_bytes from system global address src to kernel data virtual address dest. This form is
selected by setting argument flag to manifest constant SEL_386_KD|SEL_VIRT.

Note that num_bytes must be less than or equal to four kilobytes (4,096 bytes).

No alignment restrictions are placed on src or dest.

See Also
internal kernel routines

qenable() — DDI/DKI Kernel Routine
Enable a queue
#include <sys/stream.h>
void qenable(queue);
queue_t *queue;

qenable() enables queue. It tells the STREAMS scheduler that queue’s service routine is ready to be called.

See Also
DDI/DKI kernel routines, enableok(), noenable(), queue, srv

Notes
qenable() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

qenable() works regardless of whether queue’s service routine has been disabled by a call to noenable().

qinit — STREAMS Data Structure
Structure to initialize a STREAMS queue
#include <sys/stream.h>

The structure qinit contains pointers to procedures that initialize or manipuate a queue. A driver or module
declares one qinit structure for all of its read queues, and one for all of its write queues. The driver’s streamtab
structure holds the address of each qinit structure.

Once they are initialized, all fields within qinit are read-only. A driver or module can read the following fields:

LEXICON

150 putuwi() — qinit

int (*qi_putp)() The address of the driver’s put routine.

int (*qi_srvp)() The address of the driver’s srv (service) routine. This is initialized to NULL if the driver has no
srv routine.

int (*qi_qopen)() The address of the driver’s open routine. Only read queues need an open routine; the qinit
structure for write queues initializes this field to NULL.

int (*qi_qclose)() The address of the driver’s close routine. Only read queues need an open routine; the qinit
structure for write queues initializes this field to NULL.

int (*qi_qadmin)() This field reserved for future use. Always initialize it to NULL.

struct module_info *qi_minfo
The address of the driver’s module_info structure.

struct module_stat *qi_mstat
The address of structure module_stat, which is defined in header file <sys/strstat.h>.
module_stat holds statistics; if the driver or module does not keep statistics, it initializes this
field to NULL.

See Also
DDI/DKI data structures, module_info, queue, streamtab

qprocsoff() — DDI/DKI Kernel Routine
Turn off a driver or module
#include <sys/stream.h>
void qprocsoff(readqueue)
queue_t *readqueue;

qprocsoff() ‘‘turns off’’ the driver or module that owns readqueue. It removes readqueue’s service routines from the
list of service routines to be run; then it waits until all concurrent put or service routines are finished, disables the
put routine, and returns.

When these routines are disabled in a module, messages flow around it as if it were not present in the stream.
When they are disabled in a driver, of course, the queue halts.

To ‘‘turn on’’ the driver or module, call function qprocson().

See Also
DDI/DKI kernel routines, qprocson()

Notes
qprocsoff() has base level only. It can sleep.

A driver cannot hold a driver-defined basic lock or read/write lock across a call to this function. However, it can
hold a driver-defined sleep lock.

The caller cannot have the stream frozen when it calls this function.

The close routine of a driver must call qprocsoff() before it deallocates any resources upon which a driver’s put or
service routines depend.

qprocson() — DDI/DKI Kernel Routine
Turn on a driver or module
#include <sys/stream.h>
void qprocson(readqueue)
queue_t *readqueue;

qprocson() ‘‘turns on’’ the driver or module that owns readqueue. It enables its put and service routines.

See Also
DDI/DKI kernel routines, qprocsoff()

Notes
qprocson() has base level only. It can sleep.

LEXICON

qprocsoff() — qprocson() 151

A driver cannot hold a driver-defined basic lock or read/write lock across a call to this function. However, it can
hold a driver-defined sleep lock.

The caller cannot have the stream frozen when it calls this function.

The open routine within a driver or module must call qprocson() when it (the routine) is first invoked — but only
after it has allocated and intialized all resources upon which the put and service routines depend.

qreply() — DDI/DKI Kernel Routine
Reply to a message
#include <sys/stream.h>
void qreply(queue, message)
queue_t *queue; mblk_t *message;

qreply() replies to a message. It does so by calling OTHERQ() to find queue’s partner, then calls its put routine to
place message upon it.

See Also
DDI/DKI kernel routines, put, OTHERQ(), putnext()

Notes
qreply() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when it calls this function.

qsize() — DDI/DKI Kernel Routine
Count the messages on a queue
#include <sys/stream.h>
int qsize(queue)
queue_t *queue;

qsize() counts the messages on queue, and returns the sum.

See Also
DDI/DKI kernel routines, msgb, queue

Notes
qsize() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep locks across a call to this function.

The caller cannot have the stream frozen when it calls this function.

queue — STREAMS Data Structure
Structure of a STREAMS queue
#include <sys/stream.h>
#include <sys/types.h>

The structure queue holds the information with which a STREAMS queue is managed. A STREAMS driver or module
has two such structures: one for the stream’s read queue and one for its write queue.

A driver or module can access the following fields within queue:

struct qinit *q_qinfo
The address of the structure qinfo, which holds the addresses of the routines with which the
driver or module processes this queue. This field must not be altered.

struct msgb *q_first
struct msgb *q_last

The addresses of, respectively, the first and last messages in a queue. If the queue is empty,
both are initialized to NULL. No driver or module should modify these fields.

LEXICON

152 qreply() — queue

struct queue *q_next
The address of the next queue in the stream, should there be one. No driver or module should
modify this field.

void *q_ptr This field is reserved for use by the driver or module.

ulong_t q_count The number of bytes of all data messages in the queue’s priority-band 0. Note that this band
normally holds messages with normal or high priority.

ulong_t q_flag Flags that define the characteristics of the queue. A driver or module cannot set or clear a
flag; it can, however, test for the presence of flags. At present, only one flag is recognized for
this field: QREADR which indicates that this is a read queue.

long q_minpsz
long q_maxpsz Respectively, the minimum and maximum sizes for a packet. These fields are initialized from,

respectively, fields mi_minpsz and mi_maxpsz within structure module_info. A driver or
module may alter these fields. For more information on these fields, see the entry for
module_info in this manual.

ulong_t q_hiwat
ulong_t q_lowat Respectively, the high- and low-water marks for this queue. These fields are initialized from,

respectively, fields mi_hiwat and mi_lowat within structure module_info. A driver or module
may alter these fields. For more information on these fields, see the entry for module_info in
this manual.

See Also
bcanputnext(), canputnext(), DDI/DKI data structures, getq(), insq(), module_info, msgb, putq(), qinit, qsize(),
rmvq() strqget(), strqset()

Notes
The structure queue is defined as type queue_t.

race condition — Technical Information
The term race condition refers to the condition that exists when the the outcome of a sequence of instructions
cannot be guaranteed. This occurs when program has two sections of code that can run in any order and either
share a variable or change the state of the machine: the code executed first wins the ‘‘race’’ and so controls
execution of the program. Obviously, it is desirable to avoid this situation; you can do so if you can force a certain
ordering of the code sections.

Race conditions most often happen in operating system related environments. If, as in the case of a device driver,
your program has a main section of code that manipulates a few variables and it also has an interrupt handler that
does the same, your program must lock out interrupts during certain critical times to guarantee that the variables
will not be compromised.

Consider, for example, the following pseudo-code:

set interrupt priority to keep out the gremlins
while (work is not yet completed)

sleep_routine(&some_variable_in_the_kernel_data_area)
restore interrupt mask

If an interrupt were to occur between the while statement and the call to the sleep routine, the driver would never
wake up because the event it was waiting for (sleeping on) will have already occurred.

In most cases, drivers lock out interrupts when manipulating the internal linked lists associated with tasks to be
performed or buffers in use. This keeps the interrupt handler from using stale data or, worse yet, a linked list that
isn’t correctly linked.

See Also
technical information

LEXICON

race condition 153

RD() — DDI/DKI Kernel Routine
Get a pointer to a read queue
#include <sys/stream.h>
queue_t *RD(queue)
queue_t *queue;

RD() returns the address of the read queue associated with queue. If queue is itself the read queue, then its address
is returned.

See Also
DDI/DKI kernel routines, OTHERQ(), WR()

Notes
RD() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

read — Entry-Point Routine
Read data from a device
Internal-Kernel Interface:
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
int prefixread(device, uioptr, credptr, private)
dev_t device; IO *ioptr; cred_t *credptr; void *private
DDI/DKI or STREAMS:
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
int prefixread(device, uioptr, credptr)
dev_t device; uio_t *uioptr; cred_t *credptr;

A driver’s read routine moves data from device into the user’s data area. An application can invoke it via the
COHERENT system call read().

Internal-Kernel Interface
Under the internal-kernel interface to a driver, field c_read in the driver’s CON structure holds the address of this
routine. It is customary to name the read routine with the word read prefixed by a unique identifier for your
driver; but this is not required.

device is a dev_t that identifies the device to be read.

ioptr points to the IO structure that manages communication with device.

Finally, private points to a data element that is private to your driver. Note that many drivers do not use this
argument.

DDI/DKI or STREAMS
The rest of this article describes how to invoke this function under the DDI/DKI or STREAMS interfaces. To invoke
it, the kernel calls function prefixread(), where prefix is the unique prefix for this driver.

uioptr holds the address of structure uio, whose contents set where the data can be written, and how many can be
written. Function uiomove() provides a convenient way to use the uio structure to manage the copying of data.

credptr points to the user’s credential structure. The driver can read that structure to see if the user can read
privileged information, should the driver provide access to any.

The read routine returns zero for success, or an appropriate error number.

See Also
CON, drv_priv(), entry-point routines, errno, kernel routines, strategy, uio, uiomove(), ureadc(), write

LEXICON

154 RD() — read

COHERENT Lexicon: read()

Notes
This entry point is optional.

The read routine has user context and can sleep.

read_t0() — Internal Kernel Routine
Read the system clock t0
int read_t0()

read_t0() reads channel 0 (t0) of the programmable interval timer (PIT), which drives the system clock. A system
clock tick is the time it takes timer t0 to decrease from 11,932 to zero. A driver can read the timer whether
interrupts are masked or not, and receive a number between 11,932 and zero. Each unit, therefore, represents a
little less than a microsecond. Overhead per call to read_t0() is about five to ten microseconds, depending upon
speed of the CPU and clock speeds of the system upon which a program is being run.

See Also
internal kernel routines

repinsb() — DDI/DKI Kernel Routine
Read bytes from a port
#include <sys/types.h>
void repinsb(port, address, count)
int port, count; uchar_t *address;

repinsb() reads count bytes from the eight-bit port and writes them at address.

See Also
DDI/DKI kernel routines, inb(), repinsd(), repinsw(), repoutsb()

Notes
repinsb() has base or interrupt level. It does not sleep.

Driver-defined basic locks, read/write locks and sleep locks may be held across calls to this function.

This function may not be meaningful on all implementations because some implementations may not support I/O-
mapped I/O.

repinsd() — DDI/DKI Kernel Routine
Read double (32-bit) words from a port
#include <sys/types.h>
void repinsd(port, address, count)
int port, count; ulong_t *address;

repinsd() reads count double (32-bit) words from port and writes them at address.

See Also
DDI/DKI kernel routines, inl(), repinsb(), repinsw(), repoutsd()

Notes
repinsd() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function may not be meaningful on all implementations because some implementations may not support I/O-
mapped I/O.

repinsw() — DDI/DKI Kernel Routine
Read a word from a port
#include <sys/types.h>
void repinsw(port, address, count)
int port, count; ushort_t *address;

LEXICON

read_t0() — repinsw() 155

repinsw() reads count 16-bit words from port and writes them at address.

See Also
DDI/DKI kernel routines, inw(), repinsb(), repinsd(), repoutsw()

Notes
repinsw() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

repoutsb() — DDI/DKI Kernel Routine
Write bytes to a port
#include <sys/types.h>
void repoutsb(port, address, count)
int port, count; uchar_t *address;

repoutsb() writes count bytes from address to port.

See Also
DDI/DKI kernel routines, outb(), repinsb(), repoutsl(), repoutsw()

Notes
repoutsb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep locks across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

repoutsd() — DDI/DKI Kernel Routine
Write double (32-bit) words to a port
#include <sys/types.h>
void repoutsd(port, address, count)
int port, count; uchar_t *address;

repoutsd() writes count double (32-bit) words from address to port

See Also
DDI/DKI kernel routines, outl(), repinsd(), repoutsb(), repoutsw()

Notes
repoutsd() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

repoutsw() — DDI/DKI Kernel Routine
Write words to a port
#include <sys/types.h>
void repoutsw(port, address, count)
int port, count; uchar_t *address;

repoutsw() writes count 16-bit words from address to port.

See Also
DDI/DKI kernel routines, outw(), repinsw(), repoutsb(), repoutsd()

Notes
repoutsw() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is meaningful only on implementations that support I/O-mapped I/O.

LEXICON

156 repoutsb() — repoutsw()

rmvb() — DDI/DKI Kernel Routine
Remove a block from a message
#include <sys/stream.h>
mblk_t *rmvb(message, block)
mblk_t *message, *block;

rmvb() removes block from message. If all goes well, it returns the address of the altered message. It fails and
returns NULL if block is the only block within message; and it fails and returns -1 if block is not associated with
message.

The caller must free block: rmvb() only removes it from message.

See Also
DDI/DKI kernel routines, msgb

Notes
rmvb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

rmvq() — DDI/DKI Kernel Routine
Remove a message from a queue
#include <sys/stream.h>
void rmvq(queue, message)
queue_t *queue; mblk_t *message;

rmvq() removes message from queue.

See Also
DDI/DKI kernel routines, getq(), insq()

Notes
rmvq() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller must have the stream frozen when calling this function.

If message does not point to a message within queue, the system panics: Caveat utilitor.

RW_ALLOC() — DDI/DKI Kernel Routine
Create a read/write lock
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
rwlock_t *RW_ALLOC(hierarchy, priority, lock_info, flag)
uchar_t hierarchy; pl_t priority; lkinfo_t *lock_info; int flag;

RW_ALLOC() allocates a read/write lock, and initializes it into the unlocked state.

hierarchy is a number from one through 32 that gives the order in which the newly created lock was acquired.
This gives the lock’s position relative to other basic and read/write locks, and therefore gives its position within the
hierarchy of locks. Your driver must set hierarchy such that it acquires locks in order of increasing hierarchy
number. To be portable across all implementations of STREAMS, your driver must increase hierarchy with priority
— that is, no lock’s hierarchy should be less than that of a lock with a lower priority.

priority gives the minimum interrupt priority that a function must have to acquire this lock. The following gives
the recognized values for priority, from least to most restrictive:

plbase Block no interrupts.
pltimeout Block functions scheduled by functions itimeout() and dtimeout().
pldisk Block disk-device interrupts.

LEXICON

rmvb() — RW_ALLOC() 157

plstr Block STREAMS interrupts.
plhi Block all interrupts.

priority the following order of priorities:

plbase < pltimeout <= pldisk, plstr <= plhi

STREAMS does not define how pldisk and plstr relate to each other.

priority must be high enough to block any interrupt handler that attempts to acquire this lock.

lock_info gives the address of the lkinfo structure that describes this lock. The caller must initialize this structure.
For detail on initializing and using a lock, see the article lkinfo in this Lexicon.

flag indicates whether the caller can sleep as it awaits the lock. If flag equals KM_SLEEP, the caller indicates that
if insufficient memory is available for the lock, it will sleep until enough memory becomes available. However, if
flag equals KM_NOSLEEP, the caller will not sleep.

If all goes well, RW_ALLOC() returns the address of the newly allocated lock. If insufficient memory was available
to allocate a lock and flag equals KM_NOSLEEP, then it returns NULL.

See Also
DDI/DKI kernel routines, lkinfo, RW_DEALLOC(), RW_RDLOCK(), RW_TRYRDLOCK(), RW_TRYWRLOCK(),
RW_UNLOCK(), RW_WRLOCK()

Notes
If flag equals KM_SLEEP, RW_ALLOC() has base level only and can sleep. If it equals KM_NOSLEEP, it has base
or interrupt level and does not sleep.

If flag equals KM_NOSLEEP, a driver can hold a driver-defined basic lock or read/write lock across a call to this
function. It can hold a driver-defined sleep lock across a call to this function regardless of the value of flag.

RW_DEALLOC() — DDI/DKI Kernel Routine
Deallocate a read/write lock
#include <sys/ksynch.h>
void RW_DEALLOC(lock)
rwlock_t *lock;

RW_DEALLOC() deallocates the read/write lock. Calling RW_DEALLOC() when lock is locked or is being awaited
triggers behavior that is undefined — and probably unwelcome.

See Also
DDI/DKI kernel routines, lkinfo

Notes
RW_DEALLOC() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock (other than the one being deallocated), or a sleep lock
across a call to this function.

RW_RDLOCK() — DDI/DKI Kernel Routine
Acquire a read/write lock in read mode
#include <sys/ksynch.h>
#include <sys/types.h>
pl_t RW_RDLOCK(lock, priority)
rwlock_t *lock; pl_t priority;

RW_RDLOCK() sets the interrupt priority to priority and acquires lock. If it is not available in read mode, the caller
must wait until it is. When it acquires the lock, it returns the previous level of interrupt priority.

See Also
DDI/DKI kernel routines

LEXICON

158 RW_DEALLOC() — RW_RDLOCK()

Notes
RW_RDLOCK() has base or interrupt level.

A driver can hold a driver-defined sleep lock across a call to this function. It can also hold a driver-defined basic
lock or read/write locks; however, note that attempting to acquire a lock that is already held by the calling context
can trigger a deadlock.

When this function is called from interrupt level, priority must not be below the level at which the interrupt
handler is running.

RW_TRYRDLOCK() — DDI/DKI Kernel Routine
Try to acquire a read/write lock in read mode
#include <sys/ksynch.h>
#include <sys/types.h>
pl_t RW_TRYRDLOCK(lock, priority)
rwlock_t *lock; pl_t priority;

RW_TRYRDLOCK() sets the level of interrupt priority to priority and acquires lock in read mode.

If all goes well, RW_TRYRDLOCK() returns the previous level of interrupt priority. Unlike the related function
RW_RDLOCK(), this function does not wait for lock to become available; rather, if lock is not available, it fails and
returns the value invpl.

See Also
DDI/DKI kernel routines

Notes
RW_TRYRDLOCK() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

You can call RW_TRYRDLOCK() acquire a lock in an order other than that defined by the lock hierarchy.

When this function is called from interrupt level, priority must not be below the level at which the interrupt
handler is running.

RW_TRYWRLOCK() — DDI/DKI Kernel Routine
Try to acquire a read/write lock in write mode
#include <sys/types.h>
#include <sys/ksynch.h>
pl_t RW_TRYWRLOCK(lock, priority)
rwlock_t *lock; pl_t priority;

RW_TRYWRLOCK() sets the level of interrupt priority to priority, and attempts to acquire lock in write mode.

If all goes well, RW_TRYWRLOCK() returns the previous level of interrupt priority. Unlike the related function
RW_WRLOCK(), this function does not wait for a lock; rather, if lock is not available, it fails and returns invpl.

See Also
DDI/DKI kernel routines

Notes
RW_TRYWRLOCK() has base or interrupt priority. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

You can call RW_TRYWRLOCK() to acquire a lock in an order other than that defined by the lock hierarchy.

When this function is called from interrupt level, priority must not be below the level at which the interrupt
handler is running.

LEXICON

RW_TRYRDLOCK() — RW_TRYWRLOCK() 159

RW_UNLOCK() — DDI/DKI Kernel Routine
Release a read/write lock
#include <sys/ksynch.h>
#include <sys/types.h>
void RW_UNLOCK(lock, priority)
rwlock_t *lock; pl_t priority;

RW_UNLOCK() releases the basic lock, and sets the level of interrupt priority to priority.

See Also
DDI/DKI kernel routines

Notes
RW_UNLOCK has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

RW_WRLOCK() — DDI/DKI Kernel Routine
Acquire a read/write lock in write mode
#include <sys/ksynch.h>
#include <sys/types.h>
pl_t RW_WRLOCK(lock, priority)
rwlock_t *lock; pl_t priority;

RW_WRLOCK() sets interrupt priority to priority and acquires lock. points. If the lock is not available,
RW_WRLOCK() waits until it becomes available in write mode.

When it acquires lock, RW_WRLOCK() returns the previous level of interrupt priority.

See Also
DDI/DKI kernel routines

Notes
RW_WRLOCK() has base or interrupt level.

A driver can hold a driver-defined sleep lock across a call to this function. It can also hold a driver-defined basic
lock or read/write locks; however, note that attempting to acquire a lock that is already held by the calling context
can trigger a deadlock. To avoid deadlock, the caller should honor the hiererarchy of locks.

When this function is called from interrupt level, priority cannot be less than that of the interrupt handler.

salloc() — Internal Kernel Routine
Allocate a memory segment
#include <sys/seg.h>
SEG * salloc(len, flag)
fsize_t len; int flags;

salloc() allocates a segment of memory that is len bytes long. The segment reference count is set to one. If more
than one reference is made to the segment (where each reference calls sfree() when done), the device driver
increments the fields s_urefc and s_refc in the SEG structure.

flags can be bitwise OR’d to contain any combination of the following values:

SFDOWN The segment grows downward (e.g., stack segment for a process).

SFNCLR Do not clear memory in the allocated segment (usually to save time).

SFTEXT The segment may not be written to from user mode

If allocation succeeds, salloc() returns a pointer to a SEG structure that describes the requested segment. The
SEG structure has been taken from the kalloc() pool; memory for the segment itself is from the sysmem pool. If
allocation fails (i.e., not enough memory is available), salloc() returns NULL.

LEXICON

160 RW_UNLOCK() — salloc()

See Also
internal kernel routines

SAMESTR() — DDI/DKI Kernel Routine
Check type of next queue
#include <sys/stream.h>
int SAMESTR(queue)
queue_t *queue;

SAMESTR() checks whether the next queue in a stream is of the same type as queue. It returns one if the next
queue is the same type as queue; it returns zero if it is not, or if there is no next queue.

See Also
DDI/DKI kernel routines, OTHERQ()

Notes
SAMESTR() has base or interrupt level. It does not sleep.

A driver cannot hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller cannot have the stream frozen when calling this function.

sdevice — System Administration
Configure drivers included within kernel
/etc/conf/sdevice

File sdevice configures the drivers that can be included within the COHERENT kernel. Command idmkcoh reads
this file when it builds a new COHERENT kernel, and uses the information within it to configure the suite of drivers
it links into the kernel.

There is one line within the file for each type of hardware device; if a driver manipulates more than one type of
device, then it has one entry for each type of device it manipulates. A driver’s entry within file /etc/conf/mdevice
indicates how many entries a driver can have with sdevice: if field 3 contains flag ‘o’, the device can have only one
entry; whereas if field 3 does not contain this flag, it can have more than one entry (although it is not required to
do so). An entry that begins with a pound sign ‘#’ is a comment, and is ignored by idmkcoh.

Each entry within sdevice consists of ten fields, as follows:

1. Name
This gives the name of driver, and must match the name given in mdevice. It cannot exceed eight
characters.

2. Included in Kernel?
This field indicates whether the driver is to be linked into the kernel: ‘Y’ indicates that it is, ‘N’ that it is
not.

3. Number of Units
The number of the hardware units that this driver can manipulate. Under COHERENT, this is always set to
zero.

4. Interrupt Priority
The device’s interrupt priority. This must be a value between 0 and 8: zero indicates that this device is not
interrupt driven, whereas a value from 1 to 8 gives the interrupt priority.

5. Interrupt Type
The type of interrupt for this device. The legal values are as follows:

0 This device is not interrupt driven.

1 The device is interrupt driven. If the driver controls more than one device, each requires a separate
interrupt.

2 The device is interrupt driven. If the driver supports more than one device, all share the same
interrupt.

LEXICON

SAMESTR() — sdevice 161

3 The device requires an interrupt line. If the driver supports more than one device, all share the same
interrupt. Multiple device drivers that the same interrupt priority can share this interrupt; however,
this requires special hardware support.

6. Interrupt Vector
The interrupt vector used by the device. If field 5 is set to zero, this must be also.

7. Low I/O Address
The low I/O address through which the driver communicates with the device. Set this field to zero if it is
not used.

8. High I/O Address
The high I/O address through which the driver communicates with the device. Set this field to zero if it is
not used.

9. Low Memory Address
The low address of memory within the controller of the device being manipulated. Set this field to zero if it
is not used.

10. High Memory Address
The high address of memory within the controller of the device being manipulated. Set this field to zero if
it is not used.

Note that all COHERENT drivers current set fields 7 through 10 to zero.

For examples of settings for this, read the file itself. For an example of modifying this file to add a new driver, see
the Lexicon entry for device drivers.

See Also
Administering COHERENT, device drivers, mdevice, mtune, stune

sendsig() — Internal Kernel Routine
Send a signal
#include <sys/proc.h>
#include <signal.h>
void sendsig(sig, pp)
int sig; PROC *pp;

sendsig() sends signal sig to process pp.

See Also
internal kernel routines
COHERENT Lexicon: signal(), sigset()

set_user_error() — DDI/DKI Kernel Function
Set an error code in the user space
#include <sys/errno.h>
void set_user_error(error)
int error;

Function set_user_error() writes code error into the user space, where it can be examined by the process that owns
that space.

This function replaces setting field u_error in the UPROC structure. Note that this field no longer exists, and
therefore can no longer be modified or examined directly.

See Also
DDI/DKI kernel routines

Notes
Please note that like sleeping and some other situation, your driver can set the user error status only when user
control is valid. A driver can call set_user_error() only from within driver functions invoked through the system
calls open(), close(), read(), write(), ioctl(), and poll().

LEXICON

162 sendsig() — set_user_error()

setivec() — Internal Kernel Routine
Set an interrupt vector
void setivec(level, function)
int level; int (*function)();

setivec() establishes the routine to which function points as the handler for interrupt vector level. If the interrupt
routine is in use, does not set the vector.

See Also
clrivec(), internal kernel routines

sigdump() — Internal Kernel Routine
Generate core dump
void sigdump()

sigdump() writes a dump of the current process into file core in the current directory, and terminates the current
process.

sigdump() writes its core file in the following way:

• All segments appearing in the core file have SRFDUMP flags set to one, and will be complete (never truncated).

• All missing segments have SRFDUMP flags set to zero.

• Any segment larger (in bytes) than DUMP_LIM will not appear in the core file.

• If DUMP_TEXT is patched to one, the text segment will appear in the core file (unless it is too big). Thus, it is
possible for a core file to contain text but no data.

See Also
internal kernel routines

signals — Technical Information
List recognized signals

To send a signal to a process under the DDI/DKI, invoke the function proc_signal() with the identity of the process
being signalled. Under STREAMS, you should invoke the functions putctl1() or putnextctl1() to send a message of
type M_SIG, plus the signal as an argument. For details, see the Lexicon entries for these functions.

The following lists the signals that a driver can send to a process:

SIGHUP The device has ‘‘hung up,’’ or disconnected.
SIGINT The interrupt character has been received.
SIGQUIT The quit character has been received.
SIGTSTP The user has requested that the process stop.
SIGURG Urgent data have become available.
SIGWINCH The size of a window has changed.
SIGPOLL A pollable event has occurred.

See Also
proc_signal(), putctl1(), putnextctl1(), technical information
COHERENT Lexicon: sigaction(), signal(), signal.h, sigset()

size — Entry-Point Routine
Return the size of a block device
#include <sys/types.h>
#include <kernel/param.h>
int prefixsize(device)
dev_t device;

The size routine returns the size, in blocks, of device. Should this routine fail (e.g., device cannot be read), it
returns -1. The number of bytes in a block is set by the manifest constant NBPSCTR which is defined in the
header file <kernel/param.h>.

LEXICON

setivec() — size 163

See Also
entry-point routines

Notes
This routine is used only by the DDI/DKI interface. Under this interface, it is required for block drivers.

The size routine has user context and can sleep.

SLEEP_ALLOC() — DDI/DKI Kernel Routine
Create a sleep lock
#include <sys/kmem.h>
#include <sys/types.h>
#include <sys/ksynch.h>
sleep_t *SLEEP_ALLOC(unused, lock_info, flag)
int unused, flag; lkinfo_t *lock_info;

SLEEP_ALLOC() allocates a sleep lock, and initializes it to the unlocked state.

unused is reserved for future development. Always initialize it to zero.

lock_info points to a a copy of the structure lkinfo. Initialize it as follows:

lk_pad Initialize this field to zero.

lk_name Initialize this field to the address of the string that names the lock.

lk_flags To turn off the gathering of statistics, initialize this field to LK_NOSTATS; otherwise, initialize it to
zero.

Multiple sleep locks can share one lkinfo structure; however, a sleep lock and a read/write lock cannot.

flag specifies whether the caller is willing to sleep if the lock cannot be created immediately. If flag equals
KM_SLEEP, the caller will sleep if the lock cannot be created; if it equals KM_NOSLEEP, it will not.

If all goes well, RW_ALLOC() returns the address of the newly created lock. If sufficient memory is not available for
the lock and flag equals KM_NOSLEEP, it returns NULL.

See Also
DDI/DKI kernel routines, lkinfo

Notes
If flag equals KM_SLEEP, SLEEP_ALLOC() has base level only and may not sleep; if, however, flag equals
KM_NOSLEEP, it has base or Interrupt level and may sleep.

A driver can hold a driver-defined basic lock or read/write lock across a call to this function only if flag equals
KM_NOSLEEP. It can hold a driver-defined sleep lock regardless of the value of flag.

SLEEP_DEALLOC() — DDI/DKI Kernel Routine
Deallocate a sleep lock
#include <sys/ksynch.h>
void SLEEP_DEALLOC(lock)
sleep_t *lock;

SLEEP_DEALLOC() deallocates the sleep lock lock. If lock is being held or awaited, attempting to deallocate triggers
behavior that is undefined — and probably unwelcome.

See Also
DDI/DKI kernel routines

Notes
SLEEP_DEALLOC() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock (other than the one being deallocated)
across a call to this function.

LEXICON

164 SLEEP_ALLOC() — SLEEP_DEALLOC()

SLEEP_LOCK() — DDI/DKI Kernel Routine
Acquire a sleep lock
#include <sys/ksynch.h>
void SLEEP_LOCK(lock, priority)
sleep_t *lock; int priority;

SLEEP_LOCK() acquires the sleep lock lock. If lock is not available, it puts the calling function to sleep; when the
lock becomes available, the the calling process awakens and returns If lock is already held by the calling context, a
deadlock occurs.

The caller is not interrupted by signals while it sleeps within SLEEP_LOCK(). The related function
SLEEP_LOCK_SIG() also acquires a sleep lock but can be interrupted by signals.

priority gives the priority that the calling process wishes to receive after it awakens. SLEEP_LOCK() recognizes the
following values for this argument:

pridisk Priority for a disk driver.
prinet Priority for a network driver.
pritty Priority for a terminal driver.
pritape Priority for a tape driver.
prihi High priority.
primed Medium priority.
prilo Low priority.

You can specify positive or negative offsets from these values; positive offsets request favorable priority. The
maximum allowable offset is three.

See Also
DDI/DKI kernel routines

Notes
SLEEP_LOCK() has base level only. It can sleep.

A driver cannot hold a driver-defined basic lock or read/write locks across a call to this function. A driver can hold
a driver-defined sleep lock, assuming that it does not attempt to acquire that lock with this function.

SLEEP_LOCK_SIG() — DDI/DKI Kernel Routine
Acquire a sleep lock
#include <sys/ksynch.h>
#include <sys/types.h>
bool_t SLEEP_LOCK_SIG(lock, priority)
sleep_t *lock; int priority;

SLEEP_LOCK_SIG() acquires the sleep lock lock. If lock is not available, SLEEP_LOCK_SIG() puts the caller to
sleep; when lock becomes available, it awakens the caller and returns a non-zero value. The calling function can
then return with the lock in its possession. If lock is already held by the calling context, a deadlock occurs.

priority gives the priority that the calling process wishes to have when it awakens. For a list of legal values for this
argument, see the entry for SLEEP_LOCK() in this manual.

Unlike the related function SLEEP_LOCK(), SLEEP_LOCK_SIG() and its caller can be interrupted by a signal. If
SLEEP_LOCK_SIG() receives a signal (or if the caller receives a signal other than a job-control-stop signal), it
immediately returns zero without waiting to acquire lock. If, however, the caller receives a job-control-stop signal,
SLEEP_LOCK_SIG() stops but restarts the lock operation as soon as the stop signal is released. If all goes well,
SLEEP_LOCK_SIG() returns a non-zero value.

See Also
DDI/DKI kernel routines, signals

Notes
SLEEP_LOCK_SIG() has base level only. It can sleep.

A driver cannot hold a driver-defined basic lock or read/write lock across a call to this function. It can, however,
hold a driver-defined sleep lock, subject to the restriction described above.

LEXICON

SLEEP_LOCK() — SLEEP_LOCK_SIG() 165

SLEEP_LOCKAVAIL() — DDI/DKI Kernel Routine
Query whether a sleep lock is available
#include <sys/ksynch.h>
#include <sys/types.h>
bool_t SLEEP_LOCKAVAIL(lock)
sleep_t *lock;

SLEEP_LOCKAVAIL() returns a non-zero value if the sleep lock lock is available. If it is not available, it returns
zero. Note that the state of a lock can change rapidly: the value SLEEP_LOCKAVAIL() returns may no longer be
valid by the time the caller sees it.

See Also
DDI/DKI kernel routines

Notes
SLEEP_LOCKAVAIL() has base or Interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

SLEEP_LOCKOWNED() — DDI/DKI Kernel Routine
See if the caller holds a given sleep lock
#include <sys/ksynch.h>
#include <sys/types.h>
bool_t SLEEP_LOCKOWNED(lock)
sleep_t *lock;

SLEEP_LOCKOWNED() returns a non-zero value if the caller holds the sleep lock lock. It returns zero if the caller
does not hold it. You should use SLEEP_LOCKOWNED() only within an ASSERT() expression.

See Also
DDI/DKI kernel routines

Notes
SLEEP_LOCKOWNED() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

SLEEP_TRYLOCK() — DDI/DKI Kernel Routine
Try to acquire a sleep lock
#include <sys/ksynch.h>
#include <sys/types.h>
bool_t SLEEP_TRYLOCK(lockptr)
sleep_t *lockptr;

SLEEP_TRYLOCK() attempts to acquire the sleep lock lock. If it succeeds, it returns a non-zero value. However,
unlike the related function SLEEP_LOCK(), it fails and returns zero if it cannot acquire lock.

See Also
DDI/DKI kernel routines

Notes
SLEEP_TRYLOCK() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

SLEEP_UNLOCK() — DDI/DKI Kernel Routine
Release a sleep lock
#include <sys/ksynch.h>
void SLEEP_UNLOCK(lock)
sleep_t *lock;

LEXICON

166 SLEEP_LOCKAVAIL() — SLEEP_UNLOCK()

SLEEP_UNLOCK() releases the sleep lock lock. If a process is awaiting the lock, it is awakened.

See Also
DDI/DKI kernel routines

Notes
SLEEP_UNLOCK() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

sphi() — Internal Kernel Routine
Disable interrupts
int sphi()

sphi() disables hardware interrupts. It returns a value that describes the previous hardware interrupt state. A
driver could later pass that value to spl() to restore the previous hardware interrupt state.

See Also
internal kernel routines, spl()

spl() — Internal Kernel Routine
Adjust interrupt mask
int spl(s)
int s;

spl() restores the hardware-interrupt state to s, which was returned by functions sphi() or splo().

See Also
internal kernel routines, sphi(), splo()

splbase() — DDI/DKI Kernel Routine
Block no interrupts
#include <sys/inline.h>
pl_t splbase();

The functions with the prefix spl set the level of interrupt priority. The level assigned depends upon the type of
device in question.

Each spl function blocks interrupts at or below its level. The following gives the order of the levels set by the spl
functions:

splbase() <= spltimeout() <= spldisk(),splstr() <= splhi()

STREAMS does not define how spldisk() and splstr() relate to each other.

splbase() sets the interrupt priority to its lowest level, i.e., it blocks no interrupts. It returns the previous priority
level.

See Also
DDI/DKI kernel routines, spldisk(), splhi(), splstr(), spltimeout()

Notes
splbase() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic locks or read/write lock across a call to this function; however, the call to
splbase() must not lower the interrupt priority below that associated with the lock. A driver can hold a driver-
defined sleep lock across a call to this function.

spldisk() — DDI/DKI Kernel Routine
Block disk-device interrupts
#include <sys/inline.h>
pl_t spldisk();

LEXICON

sphi() — spldisk() 167

spldisk() sets the interrupt priority to the level associated with disk devices. It returns the previous priority level.
For information on how the spl family of functions relate to each other, see the entry for splbase().

See Also
DDI/DKI kernel routines, splbase() splhi(), splstr(), spltimeout()

Notes
spldisk() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined sleep locks across a call to this function. It can also hold driver-defined basic
lock or read/write lock; however, the call to spldisk() must not lower the level of interrupt priority below that
associated with the lock.

Interrupt-level code must never lower the level of interrupt priority below that at which the interrupt handler was
entered.

splhi() — DDI/DKI Kernel Routine
Block STREAMS interrupts
#include <sys/inline.h>
pl_t splhi();

splhi() sets the interrupt priority to the highest level, i.e., it blocks all interrupts. It returns the previous priority
level. For information on how the spl family of functions relate to each other, see the entry for splbase().

See Also
DDI/DKI kernel routines, splbase(), spldisk(), splstr(), spltimeout()

Notes
splhi() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined sleep locks across a call to this function. It can also hold driver-defined basic
lock or read/write lock; however, the call to splhi() must not lower the level of interrupt priority below that
associated with the lock.

Interrupt-level code must never lower the level of interrupt priority below that at which the interrupt handler was
entered.

splo() — Internal Kernel Routine
Enable interrupts
int splo()

splo() enables hardware interrupts. It returns a value that describes the previous hardware-interrupt state.

See Also
internal kernel routines spl()

splstr() — DDI/DKI Kernel Routine
Block STREAMS interrupts
#include <sys/inline.h>
pl_t splstr();

splstr() sets the interrupt priority to the level associated with STREAMS interrupts. It returns the previous priority
level. For information on how the spl family of functions relate to each other, see the entry for splbase().

See Also
DDI/DKI kernel routines, splbase() spldisk(), splhi(), spltimeout()

Notes
splstr() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined sleep locks across a call to this function. It can also hold driver-defined basic
lock or read/write lock; however, the call to splstr() must not lower the level of interrupt priority below that
associated with the lock.

LEXICON

168 splhi() — splstr()

Interrupt-level code must never lower the level of interrupt priority below that at which the interrupt handler was
entered.

spltimeout() — DDI/DKI Kernel Routine
Block STREAMS interrupts
#include <sys/inline.h>
pl_t spltimeout();

spltimeout() sets the interrupt priority to the level associated with timeout functions, i.e., all functions scheduled
by the function itimeout(). It returns the previous priority level. For information on how the spl family of
functions relate to each other, see the entry for splbase().

See Also
DDI/DKI kernel routines, splbase() spldisk(), splhi(), splstr()

Notes
spltimeout() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined sleep locks across a call to this function. It can also hold driver-defined basic
lock or read/write lock; however, the call to spltimeout() must not lower the level of interrupt priority below that
associated with the lock.

Interrupt-level code must never lower the level of interrupt priority below that at which the interrupt handler was
entered.

splx() — DDI/DKI Kernel Routine
Reset an interrupt-priority level
#include <sys/inline.h>
pl_t splx(oldlevel)
pl_t oldlevel;

splx() sets the level of interrupt priority to oldlevel, which must have been returned by a previous call to splbase(),
spldisk(), splhi(), splstr(), or spltimeout(). It returns the previous level of interrupt priority.

See Also
DDI/DKI kernel routines, splbase(), spldisk(), splhi(), splstr(), spltimeout()

Notes
splx() does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

srv — Entry-Point Routine
Service queued messages
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/types.h>
int prefixrsrv(queue)
queue_t queue;

int prefixwsrv(queue)
queue_t *queue;

The srv, or ‘‘service,’’ routine services queued messages. queue points to the message queue to be serviced. The
rsrv routine reads queue, and wsrv writes to it. Neither returns a meaningful value. A drivers or modules should
call qenable() to invoke a service routine, rather than invoke it directly.

A srv routine allows a driver or module to process messages. When the STREAMS scheduler calls a srv routine, it
processes all messages on its queue. Processing continues until the queue is empty or is flow-controlled, or an
allocation error occurs.

Because some networking protocols require multiple bands of data flow, STREAMS messages can have up to 256
different priorities. A stream must at least distinguish between normal messages and high-priority messages. A
queue orders its messages by priority: a high-priority message always is written at the head of the queue, after all

LEXICON

spltimeout() — srv 169

other high-priority messages already enqueued. Each priority band has its own flow-control limits; high-priority
messages are not affected by flow control. If a band of messages is stopped by flow control, all bands with lower
priority are also stopped.

See Also
bcanputnext(), bufcall(), canputnext(), datab, entry-point routines, getq(), msgb, pcmsg(), put, putbq(),
putnext(), putq(), qenable(), qinit, queue, timeout(),

Notes
This entry point is used only by the DDI/DKI interface. It is optional for modules and drivers, but required for
multiplexing drivers. If a service routine is not needed, initialize to NULL field qi_srvp within the module’s qinit
structure.

If the service routine finishes running because of any reason other than flow control or an empty queue, it must
explicitly arrange to be rescheduled.

Service routines do not have user context, and so many not call any function that sleeps. Only one copy of a
queue’s service routine will run at a time.

start — Entry-Point Routine
Initialize a device at system start-up
void prefixstart();

The start routine intiailizes the driver’s data structures or hardware. The kernel calls it at system boot time after
system services are available and interrupts have been enabled.

See Also
entry-point routines, init

Notes
This entry point is used only by the DDI/DKI interface. It is optional.

The start routine may not call routines that sleep, or that require user context.

strategy — Entry-Point Routine
Perform block I/O
#include <sys/types.h>
#include <sys/buf.h>
int prefixstrategy(buffer)
buf *buffer;

The strategy routine sets up and initiates data transfer with a block device. buffer points to the buf structure to
be used in the transfer of data. It does not return a meaningful value.

The kernel calls the strategy routine to read and write data on the block device. A driver’s read, write, or ioctl
routines may also call its strategy routine to support the character (raw) interface of a block device.

The strategy routine can be called either directly, or via a call to the kernel function physiock().

The strategy routine first validate the I/O request; if the request passes validation test, it enqueues the request. If
no transfer is underway, it starts the I/O; then returns. When the I/O is complete, the driver calls biodone() to
free the buffer and to notify everyone who had called biowait() to wait for the I/O to finish.

If the amount of data to be transferred exceeds the amount that can be transferred, a driver that supports partial
reads and writes can do the following: First, transfer as much data as possible. Second, call bioerror() to set the
buffer error number to EIO. Third, set buffer->b_resid equal to the number of bytes not transferred. The remaining
data can then be handled rationally. If strategy succeeded in transferring all of the data requested, it should set
buffer->b_resid to zero.

See Also
biodone(), bioerror(), biowait(), block, bp_mapin(), buf, entry-point routines, errno, getnextpg(), physiock(),
pptophys(), read, write

LEXICON

170 start — strategy

Notes
This entry point is used only by the DDI/DKI interface. Under this interface, it is required in every block driver.

The strategy entry point has the context needed to sleep, but it cannot assume it is called from the same context
of the process that initiated the I/O request. Further, the process that initiated the I/O might not even exist when
the strategy routine is called.

STREAMS — Overview
This article introduces STREAMS.

STREAMS is a programmer’s interface for performing modular, character-level I/O at the kernel level, but without
modifying the kernel itself. You can write a program that invokes STREAMS facilities within the kernel, but your
code does not need to be linked into the kernel itself.

The ‘‘metaphor’’ of STREAMS is, as its name suggests, that of streams of information being passed between the
user’s process and the device being manipulated. At the top of the stream, closest to the user’s process, stands the
stream head. At the bottom, closest to the hardware, stands the stream driver. In between can stand an indefinite
number of modules. Two streams run from the stream head, through the modules, to the stream driver: one
stream goes from the head to the driver (‘‘downstream’’), while the other stream goes from the driver to the head
(‘‘upstream’’). Each stream can consist of one or more queues; each queue has a different priority, and a message
is read or written in with the priority dictated by its queue.

When a user’s process wishes to perform I/O with a device, the kernel joins it to a stream head. The process
passes its request to the head via normal system calls, plus the additional STREAMS calls getmsg() and putmsg().
The stream head translates the request into one or more messages, which it passes downstream to the first module
that stands between it and the stream driver. A message can convey a request to the stream driver, convey a
packet of data, or both. That module can perform some transformation upon the messages or the data they
contain, then pass them on to the next module; and so on, until the message reaches the stream driver.

The stream driver translates the message into a task to perform with the hardware, and executes that task. The
stream driver, in turn, generates messages. The message can consist of a terse reaction, such as an error message;
it can convey a packet of data; or both. The stream driver passes it message or messages upstream to the
penultimate module; the module performs the same transformation it did on the message going downstream, only
in reverse, and passes the modified message upstream. This continues until the message reaches the stream head,
which translates the message into a form that can be understood by the user process.

As you can see, a stream can consist of an indefinite number of modules, each of which can modify the messages
that pass through it. The functions that establish a stream and manipulate it are built into the kernel; however,
the STREAMS code that comprises the stream head, the stream driver, and the modules lies outside of the kernel.
This modularity and independence of the kernel means that, among other things, STREAMS drivers are independent
of the operating system — in theory, at any rate. As long as they adhere to the published descriptions of STREAMS,
they should run on any operating system that has a conforming implementation of STREAMS. STREAMS, in effect,
separates hardware and software aspects of device drivers.

A full description of STREAMS lies outside the scope of this manual. As the COHERENT implementations of
STREAMS was performed with the DDI/DKI in mind, there is a significant degree of overlap between the structures
and functions used by both. If a function is described as being part of the DDI/DKI, you should assume that it is
available under STREAMS as well, unless the Lexicon entry explicitly says that it is not. To begin to explore
STREAMS, read the articles DDI/DKI data structures and DDI/DKI kernel routines.

See Also
device driver, DDI/DKI kernel routines, internal kernel routines
COHERENT Lexicon: getmsg(), putmsg()

streamtab — DDI/DKI Data Structure
Initialize a STREAMS driver or module
#include <sys/stream.h>

Each STREAMS driver or module has one streamtab structure that is statically allocated within its sources. It
must be named prefixinfo, where prefix is the driver’s magic prefix.

streamtab contains the addresses of the qinit structures for the read and write queues of a driver or module. The
qinit structure, in turn, contains the addresses for the routines with which a driver or module manages its queues.

LEXICON

STREAMS — streamtab 171

The following fields in structure streamtab are available to the driver or module:

struct qinit *st_rdinit
struct qinit *st_wrinit

The addresses of, respectively, the read-side and write-side qinit structures.

struct qinit *st_muxrinit
struct qinit *st_muxwinit

The addresses of, respectively, the lower read-side and the lower write-side qinit structures for
multiplexing drivers. Modules and non-multiplexing drivers should initialize these to NULL.

See Also
DDI/DKI data structures, qinit

strlog() — DDI/DKI Kernel Routine
Submit messages to the log driver
#include <sys/log.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/types.h>
int strlog(module, minor, level, flags, format, ...)
short module, minor; char level, *format; uchar_t flags;

strlog() submits formatted messages to the log driver. It returns zero if the message is not seen by all the readers,
or one if it is. The messages can be retrieved by the COHERENT system call getmsg().

module identifies the module or driver that submitted the message. minor identifies the minor device in question.

flags is a bitmask of flags that indicate the purpose of the message. strlog() recognizes the following values for this
argument:

SL_ERROR Message is for the error logger.
SL_TRACE Message is for tracing.
SL_CONSOLE Message is for the console logger.
SL_NOTIFY Mail a copy of the error message to the system administrator.
SL_FATAL Error is fatal.
SL_WARN Error is a warning.
SL_NOTE Error is a notice.

format is a printf()-style formatting string. The formats %s, %e, %g, and %G are not allowed. For a detailed
discussion of how to build a format string, see the entry for printf() in the COHERENT Lexicon.

All subsequent arguments give variables. The number of variables, and the type of each, is determined by the
format string, as with the function printf().

See Also
DDI/DKI kernel routines, print
COHERENT Lexicon: getmsg(), printf()

Notes
strlog() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

stroptions — DDI/DKI Data Structure
Stream-head options
#include <sys/stream.h>
#include <sys/stropts.h>

A driver can send a message of type M_SETOPTS or M_PCSETOPTS upstream to the stream head to set options
within the stream head. These messages contain the structure stroptions, which encodes the options to be set
within the stream head.

The following fields within stroptions are available to a driver or module:

LEXICON

172 strlog() — stroptions

short so_readopt;
This field sets the options in the stream head that affect how the stream handles the system call read(). It
holds two sets of flags; you can set only one flag within each set.

The first set determines how read() handles data messages:

RNORM Normal mode. This is the default. The system call read() returns the number of bytes
requested or the number of bytes available, whichever is less. If a message’s data are
only partially read, read() returns that message to the beginning of the stream head’s
read queue.

RMSGD Message-discard mode. read() returns the numer of bytes requested or the number of
bytes within the first message on the stream, whichever is less. It discards a message
if its data are read only partially.

RMSGN Message non-discard mode. read() returns the number of bytes requested and the
number of bytes in the first message on the stream head’s read queue, whichever is
less. It returns a message to the beginning of the stream head’s read queue if its data
are only partially read.

The second set of flags determines how read() handles the protocol messages M_PROTO and M_PCPROTO:

RPROTNORM Normal mode. If a protocol message is at the beginning of the stream head’s read
queue, read() fails with the error code EBADMSG.

RPROTDIS Discard mode. read() discards the M_PROTO or M_PCPROTO portions of the
message and returns any M_DATA portions that may be present. In this mode, read()
also discards messages of type M_PASSFP.

RPROTDAT Data mode. read() delivers to the user the M_PROTO or M_PCPROTO portions of a
message, just as if they were normal data.

ushort_t so_wroff;
The offset, in bytes, to be included in the first message block of each message of type M_DATA that system
call write() creates.

long so_minpsz;
long so_maxpsz;

Respectively, the minimum and maximum sizes of packets for the stream head’s read queue.

ulong_t so_hiwat;
ulong_t so_lowat;

Respectively, the ‘‘high-water’’ and ‘‘low-water’’ marks for the stream head’s read queue.

uchar_t so_band;
The priority band of messages to which the fields so_hiwat and so_lowat should be applied.

ulong_t so_flags;
This is a bitmask that encodes the options to set. It can contain any combination of the following values:

SO_READOPT Set the read option to that given in so_readopt.
SO_WROFF Set the write offset to that given in so_wroff.
SO_MINPSZ Set the minimum packet size to that given in so_minpsz.
SO_MAXPSZ Set the maximum packet size to that given in so_maxpsz.
SO_HIWAT Set the high-water mark to that given in so_hiwat.
SO_LOWAT Set the low-water mark to that given in so_lowat.
SO_ALL Set all of the above options.
SO_MREADON Permit the stream head to generate messages of type M_READ.
SO_MREADOFF Forbid the stream head to generate messages of type M_READ.
SO_NDELON For no-delay reads and writes, use TTY semantics.
SO_NDELOFF For no-delay reads and writes, use STREAMS semantics.
SO_ISTTY The stream acts as a terminal.
SO_ISNTTY The stream does not act as a terminal.
SO_TOSTOP Stop processes that are writing to this stream in the background.
SO_TONSTOP Do not stop processes that are writing to this stream in the background.

LEXICON

stroptions 173

SO_BAND Set the priority band affected by the high- and low-water marks to that given in field
so_band.

See Also
datab, DDI/DKI data structures, msgb
COHERENT Lexicon: read(), write()

strqget() — DDI/DKI Kernel Routine
Get information about a priority band
#include <sys/stream.h>
int strqget(queue, datum, priority, value)
queue_t *queue; qfields_t datum;
uchar_t priority; long *value;

strqget() retrieves datum that describes priority band priority within queue. It writes datum at address value. If all
goes well, strqget() returns zero; otherwise, it returns an appropriate, non-zero error number.

strqget() recognizes the following values for datum:

QHIWAT The high-water mark.
QLOWAT The low-water mark.
QMAXPSZ The maximum size of a packet.
QMINPSZ The minimum size of a packet.
QCOUNT The number of bytes of data in messages.
QFIRST The address of the first message.
QLAST The address of the last message.
QFLAG Its flags.

See Also
DDI/DKI kernel routines, queue, strqset()

Notes
strqget() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller must have the stream frozen when calling this function.

strqset() — DDI/DKI Kernel Routine
Modify a priority band
#include <sys/types.h>
#include <sys/stream.h>
int strqset(queue, what, priority, datum)
queue_t *queue; qfields_t datum;
uchar_t priority; long value;

strqset() sets to value the parameter datum within priority band priority of queue. If all goes well, it returns zero;
otherwise, it returns a non-zero error code.

datum identifies parameter of priority that you wish to modify, as follows:

QHIWAT Its high-water mark.
QLOWAT Its low-water mark.
QMAXPSZ Its maximum packet size.
QMINPSZ Its minimum packet size.

See Also
DDI/DKI kernel routines, queue, strqget()

Notes
strqset() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

The caller must have the stream frozen when calling this function.

LEXICON

174 strqget() — strqset()

stune — System Administration
Set values of tunable kernel variables
/etc/conf/stune

File stune names each tunable variable within the kernel, and gives the value to which it is actually set.
Command idmkcoh reads this file when it builds a new kernel, and uses its contents to patch the kernel
appropriately.

Each entry within this file has two fields. The first field names the variable; the name must match that given in
stune. The second field gives the value of the variable; this value must fall between the minimum and maximum
values given in stune.

If a line begins with a pound sign ‘#’, it is a comment and idmkcoh ignores it. If a tunable variable is not named in
this file, idmkcoh uses the default value given in stune.

See Also
Administering COHERENT, device drivers, mdevice, mtune, sdevice

super() — Internal Kernel Routine
Verify super-user
int super()

super() checks whether the user has super-user privileges. It return one if the user has these privileges (i.e., if
u.u_uid == 0). Otherwise, it calls set_user_error() with value EPERM and returns zero.

See Also
internal kernel routines

SV_ALLOC() — DDI/DKI Kernel Routine
Create a synchronization variable
#include <sys/kmem.h>
#include <sys/ksynch.h>
sv_t *SV_ALLOC(flag)
int flag;

SV_ALLOC() allocates and initializes a synchronization variable. flag specifies whether the caller can sleep, should
insufficient memory not be available to create the variable: KM_SLEEP indicates that the caller can sleep until
enough memory becomes available; KM_NOSLEEP indicates that it cannot.

SV_ALLOC() returns the address of the newly created synchronization variable. If not enough memory is available
to hold a synchronization variable and flag equals KM_NOSLEEP, it returns NULL.

See Also
DDI/DKI kernel routines

Notes
If flag equals KM_NOSLEEP, SV_ALLOC() has base or interrupt level and cannot sleep; if it is sett to KM_SLEEP, it
has base level only and can sleep.

If flag equals KM_NOSLEEP, a driver can hold a driver-defined basic lock or read/write lock across a call to this
function; if flag equals KM_SLEEP, it cannot. It can hold a driver-defined sleep lock regardless of the value of flag.

SV_BROADCAST() — DDI/DKI Kernel Routine
Awaken processes sleeping on a synchronization variable
#include <sys/ksynch.h>
void *SV_BROADCAST(synch, flags)
sv_t *synch; int flags;

SV_BROADCAST() awakens every process blocked on the synchronization variable synch. Because a
synchronization variable is stateless, a call to SV_BROADCAST() affects only the processes now blocked on synch,
not processes that may later block on it.

LEXICON

stune — SV_BROADCAST() 175

flags is reserved for future use. Initialize it to zero.

See Also
DDI/DKI kernel routines

Notes
SV_BROADCAST() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

SV_DEALLOC() — DDI/DKI Kernel Routine
Deallocate a synchronization variable
#include <sys/ksynch.h>
void SV_DEALLOC(synch)
sv_t *synch;

SV_DEALLOC() deallocates the synchronization variable synch.

See Also
DDI/DKI kernel routines

Notes
SV_DEALLOC() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, and sleep lock across a call to this function.

SV_SIGNAL() — DDI/DKI Kernel Routine
Awaken one process sleeping on a synchronization variable
#include <sys/ksynch.h>
void SV_SIGNAL(synch, flags)
sv_t *synch; int flags;

SV_SIGNAL() awakens one process of those blocked on the synchronization variable synch. Because
synchronization variables are stateless, a call to SV_SIGNAL() affects only the processes now blocked on synch, not
a process that blocks on it later.

flags is reserved for future use. Initialize it to zero.

See Also
DDI/DKI kernel routines

Notes
SV_SIGNAL() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

SV_WAIT() — DDI/DKI Kernel Routine
Sleep on a synchronization variable
#include <sys/ksynch.h>
#include <sys/types.h>
void SV_WAIT(synch, priority, lock)
sv_t *synch; int priority; lock_t *lock;

SV_WAIT() puts the calling process to sleep. The calling process sleeps on the synchronization variable synch,
until it is awakened by a call to SV_SIGNAL() or SV_BROADCAST().

lock points to the basic lock that the caller must hold. SV_WAIT() releases the lock and sets the interrupt priority
to priority after it queues the process on the synchronization variable, but before it switches context to another
process. When the caller returns from SV_WAIT(), the basic lock is not held and the interrupt-priority level is set
to plbase. The caller will not be interrupted by signals while it sleeps within SV_WAIT().

priority gives the relative priority that the caller wants after it wakes up. SV_WAIT() recognizes the following
values:

LEXICON

176 SV_DEALLOC() — SV_WAIT()

pridisk Priority appropriate for disk driver.
prinet Priority appropriate for network driver.
pritty Priority appropriate for terminal driver.
pritape Priority appropriate for tape driver.
prihi High priority.
primed Medium priority.
prilo Low priority.

You can also specify positive or negative offsets from these values. Positive offsets request favorable priority; the
maximum allowable offset is three. Offsets can help you to define the relative importance of the locks and
resources that a driver holds. In general, the more highly sought a lock or resource is, or the more locks or kernel
resources a driver holds, the higher priority should be.

See Also
DDI/DKI kernel routines

Notes
SV_WAIT() has base level only. It can sleep.

A driver cannot hold a driver-defined basic lock or read/write lock across a call to this function; it can, however,
hold a driver-defined sleep lock.

SV_WAIT_SIG() — DDI/DKI Kernel Routine
Sleep on a synchronization variable
#include <sys/types.h>
#include <sys/ksynch.h>
bool_t SV_WAIT_SIG(synch, priority, lock)
sv_t *synch; int priority; lock_t *lock;

SV_WAIT_SIG() puts the calling process to sleep on the synchronization variable synch. The calling process sleeps
until it is awaked by a call to SV_SIGNAL() or SV_BROADCAST(). When the calling process awakens,
SV_WAIT_SIG() returns a non-zero value to indicate success. Unlike SV_WAIT(), a process that sleeps under
SV_WAIT_SIG() can be awakened by a signal, as described below.

lock points to a basic lock that a function must hold when it calls SV_WAIT_SIG(). It releases the lock and sets the
level of interrupt priority to plbase after it queues the process on synch, but before it switches context to another
process.

priority gives the relative priority that the caller wants after it wakes up. This can be one of the following values:

pridisk Priority appropriate for disk driver.
prinet Priority appropriate for network driver.
pritty Priority appropriate for terminal driver.
pritape Priority appropriate for tape driver.
prihi High priority.
primed Medium priority.
prilo Low priority.

You can also specify positive or negative offsets from these values. Positive offsets request favorable priority. The
maximum allowable offset is three. Offsets can help you to define the relative importance of the locks and
resources that a driver holds. In general, the more highly contended a lock or resource is, or the more locks or
kernel resources a driver holds, the higher priority should be.

A process that sleeps under SV_WAIT_SIG() can be interrupted by a signal. If the calling function receives a job-
control signal that stops it, as soon as the calling process returns from the signal SV_WAIT_SIG() returns a non-
zero value, just as if calling processing had been awakened by a call to SV_SIGNAL() or SV_BROADCAST(). If the
caller is interrupted by a signal other than a job-control signal or by a job-control signal that does not stop the
calling process, SV_WAIT_SIG() immediately returns zero.

If SV_WAIT_SIG() itself is interrupted by a signal, it immediately returns a non-zero value, just as if the calling
process had been awakened by a call to SV_SIGNAL() or SV_BROADCAST().

See Also
DDI/DKI kernel routines

LEXICON

SV_WAIT_SIG() 177

Notes
SV_WAIT_SIG() has base level only. It may sleep.

A driver can hold a driver-defined basic lock or read/write lock cannot be held across a call to this function.
However, it can hold driver-defined sleep lock.

technical information — Overview
The following Lexicon articles in this section give technical information:

errors List all recognized error messages.
kernel variables Variables that you can set within the COHERENT kernel.
mdevice Format of the kernel’s master file.
mtune Format of file that defines tunable parameters.
messages List all legal types of messages.
race condition Define what a race condition is.
sdevice Name drivers linked into your system’s kernel.
stune Name parameters set in your system’s kernel.
signals List all recognized signals.
trace How to interpret a kernel traceback.

See Also
STREAMS

testb() — DDI/DKI Kernel Routine
Check for an available buffer
#include <sys/stream.h>
int testb(size, priority)
int size, priority;

testb() checks whether a call to allocb() call is likely to succeed. size and priority give, respectively, the size and
the priority of the proposed allocation. testb() returns one if the proposed call is likely to succeed, and zero if it is
not.

See Also
allocb(), bufcall(), DDI/DKI kernel routines

Notes
testb() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

This function is provided purely as a porting convenience for developers. You should replace calls to this function
with calls to functions that do the real work.

time — Entry-Point Routine
Routine to execute when a timeout occurs
prefixtime(device)
dev_t device;

Under the internal COHERENT device-driver interface, the entry point time points to the routine to execute when a
timeout occurs. The address of this routine is given in field c_timer of the driver’s CON structure.

device identifies the device to be manipulated.

See Also
CON, entry-point routines

timeout() — Internal Kernel Routine
Defer function execution
#include <kernel/timeout.h>
void timeout(tp, n, function, a)
TIM *tp; int n, (*function)();

LEXICON

178 technical information — timeout()

timeout() sets function to be called with integer argument a after n clock ticks. tp points to a timing structure to
insert into the timing queue. The timing structure is a static structure located in the kernel’s data segment. Any
previous activation of a timer on the same timing structure is cancelled.

Calling timeout() with function set to NULL cancels a timer. A timed function never sleeps or alters the contents of
the u structure.

To request that the timeout routine for device dev be called once per second, a driver sets drvl[major(dev)].d_time
to a nonzero value. drvl is declared in header file con.h; macro major() is defined in header file stat.h. The value
in field d_time is not altered by the kernel clock routines. A driver stops invocations of the timeout routine by
storing a zero in drvl[major(dev)].d_time.

See Also
internal kernel routines

trace — Technical Information
COHERENT kernel traceback procedure

The following describes how to interpret the COHERENT kernel’s page-fault message:

• First, look at the value of register cr2. This is the address that was illegal. Find which register (eax, esi, edi,
etc.) matches the address in cr2 so you can look at the assembly later and figure out the instruction.

• Check the value of register eip. This is the instruction that caused the page fault.

• Check the kernel backtrace. The first number (aaa->bbb, where aaa is the first number) is probably the
kernel page-fault routine itself. However, check it anyhow. The rest is the backtrace, which is useful in
determining why it panicked (now that you should know where from eip).

• Find the *.sym file for the kernel you were running. Sort it with the following command:

sort kernel.sym > kernel.ssym

This puts the addresses into numeric order.

• Pull the file kernel.ssym into an editor and look for the address. You may well not find the exact address. For
example, if the value of register eip is FFF00030, you may find

FFF00010 func1
FFF00020 func2
FFF10020 func3

So, you know it bailed within func2, because address 030 is between addresses 020 and 10020. Some
functions, however, are declared static, so they do not show up in the symbol table. If you are unlucky
enough to have failed near a static function, you will just have to go into db and find where the functions end
and where you really are at.

• Now you can use db and go to that function and look at it. Because you know which register held the illegal
value (from looking at the value of register cr2), you can match the assembly language to the C original and
find out exactly where in the code the program failed.

See Also
technical information

TRYLOCK() — DDI/DKI Kernel Routine
Acquire a basic lock
#include <sys/ksynch.h>
#include <sys/types.h>
pl_t TRYLOCK(lock, priority)
lock_t *lock; pl_t priority;

TRYLOCK() acquires lock, with interrupt priority. If lock is available, TRYLOCK() returns its previous level of
interrupt priority. However, if it is not, TRYLOCK() immediately returns invpl without waiting to acquire the lock.

For a driver to be portable, it should set priority to a value high enough to block any interrupt handler that
attempts to acquire lock. When a function calls TRYLOCK() from interrupt level, it must not set priority to less
than the level at which the interrupt handler runs. For a list of the valid values for priority, see the entry for

LEXICON

trace — TRYLOCK() 179

LOCK_ALLOC().

See Also
DDI/DKI kernel routines, LOCK(), LOCK_ALLOC(), LOCK_DEALLOC(), UNLOCK()

Notes
TRYLOCK() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

ttclose() — Internal Kernel Routine
Close tty
#include <sys/tty.h>
void ttclose(tp)
TTY *tp;

ttclose() is called by a terminal device driver on the last close. It waits for pending output to be sent, then flushes
input and resets the internal state information for the given tty.

See Also
internal kernel routines

ttflush() — Internal Kernel Routine
Flush a tty
#include <sys/tty.h>
void ttflush(tp)
TTY * tp;

ttflush() clears the input and output queues, and resets most state flags.

See Also
internal kernel routines

tthup() — Internal Kernel Routine
tty hangup
#include <sys/tty.h>
void tthup(tp)
TTY *tp;

tthup() flags loss of carrier, flushes the tty queues, then sends the hangup signal to every process in the tty
process group.

See Also
internal kernel routines

ttin() — Internal Kernel Routine
Pass character to tty input queue
#include <sys/tty.h>
int ttin(tp, c)
TTY *tp; char c;

ttin() passes character c to the device-independant teletypewriter (tty) input routines. It is called with interrupts
disabled.

See Also
internal kernel routines, ttinp()

ttinp() — Internal Kernel Routine
See if tty input queue has room for more input
#include <sys/tty.h>
int ttinp(tp)
TTY *tp;

LEXICON

180 ttclose() — ttinp()

ttinp() returns a nonzero value if the tty input queue can accept input, and returns zero if the queue is full. A
driver always calls ttinp() before it calls ttin() to see if it is safe to do so.

See Also
internal kernel routines, ttin(), ttoutp()

ttioctl() — Internal Kernel Routine
Perform tty I/O control
#include <sys/tty.h>
#include <sgtty.h>
void ttioctl(tp, com, vec)
TTY *tp; int com; struct sgttyb *vec;

ttioctl() handles common typewriter I/O control (ioctl) operations, as defined in header file sgtty.h. It may call
(*tp->t_param)(tp) to initialize the hardware. If an error occurs, it calls set_user_error() with an appropriate value.

See Also
internal kernel routines

ttopen() — Internal Kernel Routine
Open a tty
#include <sys/tty.h>
#include <sgtty.h>
void ttopen(tp) TTY *tp;

a teletypewriter (tty) device driver calls ttopen() on the first open. It sets up default parameters, and invokes (*tp-
>t_param)(tp) to initialize the hardware.

See Also
internal kernel routines

ttout() — Internal Kernel Routine
Get next character from tty output queue
#include <sys/tty.h>
int ttout(tp)
TTY *tp;

ttout() returns the next character to be output. If the output queue is empty, it returns -1. It should be called
with interrupts disabled.

See Also
internal kernel routines, ttoutp()

ttoutp() — Internal Kernel Routine
See if tty input queue has data available
#include <sys/tty.h>
int ttoutp(tp)
TTY *tp;

ttoutp() returns a nonzero value if the tty input queue has output data available, and returns zero if the queue is
empty. A driver calls ttoutp() before it calls ttout() to see if it is safe to do so.

See Also
internal kernel routines, ttout(), ttinp()

ttread() — Internal Kernel Routine
Read from tty
#include <sys/io.h>
#include <sys/tty.h>
void ttread(tp, iop)
TTY *tp; IO *iop;

LEXICON

ttioctl() — ttread() 181

ttread() moves data from the input queue associated with tp to the I/O segment referenced by iop. If an error
occurs, ttread() calls set_user_error() with an appropriate value.

ttyread() may block, depending on settings of the flags in the termio structure.

See Also
internal kernel routines

ttread0() — Internal Kernel Routine
Read from tty
#include <sys/io.h>
#include <sys/tty.h>
void ttread0(tp, iop, func1, arg1, func2, arg2)
TTY *tp; IO *iop; int (*func1)(), arg1, (*func2)(), arg2;

ttread0() moves data from the input queue associated with tp to the I/O area referenced by iop. If an error occurs,
it calls set_user_error() with an appropriate value.

The following behavior allows a driver to prevent deadlocks between coupled drivers, such as master-slave pairs of
pseudoterminals. If func1 is not null, the function call (*func1)(arg1) is performed whenever ttread0() is about to
sleep. Likewise, if func2 is not null, (*func2)(arg2) is performed whenever ttread0() is about to sleep.

ttread(tp, iop) is equivalent to ttread0(tp, iop, 0, 0, 0, 0).

See Also
internal kernel routines

ttsetgrp() — Internal Kernel Routine
Set tty process group
#include <sys/tty.h>
#include <sys/types.h>
void ttsetgrp(tp, ctdev)
TTY *tp; dev_t ctdev;

ttsetgrp() sets the process group if the current process does not have one. It also sets up the controlling terminal
for the process if there is none.

See Also
internal kernel routines

ttsignal() — Internal Kernel Routine
Send tty signal
#include <signal.h>
#include <sys/tty.h>
void ttsignal(tp, sig)
TTY *tp; int sig;

ttsignal() sends signal sig to every process in the tty process group associated with tp.

See Also
internal kernel routines

ttstart() — Internal Kernel Routine
Start tty output
#include <sys/tty.h>
void ttstart(tp)
TTY *tp;

ttstart() begins output on a teletypewriter (tty) device if output is not disabled. It calls the start function indicated
by the structure tty.

See Also
internal kernel routines

LEXICON

182 ttread0() — ttstart()

ttwrite() — Internal Kernel Routine
Write to tty
#include <sys/io.h>
#include <sys/tty.h>
void ttwrite(tp, iop)
TTY *tp; IO *iop;

ttwrite() moves data to an output queue associated with tp, from the I/O segment referenced by iop. If an error
occurs, it calls set_user_error() with an appropriate value.

ttwrite() blocks either if the queue is full and IONDLY is clear for the transfer, or if the line discipline has run out
of clists.

See Also
internal kernel routines

ttwrite0() — Internal Kernel Routine
Write to tty
#include <sys/io.h>
#include <sys/tty.h>
void ttwrite0(tp, iop, func1, arg1, func2, arg2)
TTY *tp; IO *iop; int (*func1)(), arg1, (*func2)(), arg2;

ttwrite0() moves data to an output queue associated with tp, from the I/O area referenced by iop. If an error
occurs, it calls set_user_error() with an appropriate value.

The following behavior allows a driver to prevent deadlocks between coupled drivers, such as master-slave pairs of
pseudoterminals. If func1 or is not NULL, the function call (*func1)(arg1) is performed whenever ttwrite0() is
about to sleep. Likewise, if func2 is not NULL, (*func2)(arg2) is performed whenever ttwrite0() is about to sleep.

ttwrite(tp, iop) is equivalent to ttwrite0(tp, iop, 0, 0, 0, 0).

See Also
internal kernel routines

uio — DDI/DKI Data Structure
Structure to organize scatter/gather I/O requests
#include <sys/file.h>
#include <sys/types.h>
#include <sys/uio.h>

The structure uio describes an I/O request that is split across more than one data-storage area (also called
scatter/gather I/O). It describes the request and contains the address of an array of iovec structures that, in turn,
indicate where the data are to be read or written. An iovec, in turn, can point either into user space or kernel
space.

A uio can be created either by the kernel or by the driver. The rules by which an uio is manipulated differ
depending upon its origin (and therefore, upon the entity that ‘‘owns’’ it). These are described below.

The kernel passes the contents of uio to the driver through the driver’s entry-point routines. The driver should
never change them. Functions uiomove(), ureadc(), and uwritec() maintain uio. Function physiock() also helps
maintain uio; a block driver can call it to perform unbuffered I/O.

A driver that creates its own uio for a data transfer must initialize it to zero before it initializes the fields that are
accessible to it. Thereafter the driver must not change its uio: the DDI/DKI functions maintain it.

A driver can read the following fields within uio:

iovec_t *uio_iov The address of the array of iovec structures that describe where the data are stored. If a
driver creates a private uio for a data transfer, it must also create an array of iovec structures.

int uio_iovcnt The number of iovec structures in the array to which uio_iov points.

LEXICON

ttwrite() — uio 183

off_t uio_offset The starting address on the device to/from which the data are to be transferred. This field
applies to every device that is randomly accessed (e.g., a floppy-disk drive), but not to every
device that is sequentially accessed (e.g., a tape drive).

short uio_segflg This flag gives the space within memory from/to whence the data are to be transferred.
UIO_SYSSPACE indicates kernel space; UIO_USERSPACE indicates that data are split
between kernel space and user space.

short uio_fmode Flags that give the access mode of the data transfer. The following gives the legal values for
this field:

FNDELAY If the requested data transfer cannot occur immediately, terminate the
request without indicating that an error occurred.

FNONBLOCK If the requested data transfer cannot occur immediately, terminate the
request and return error EAGAIN.

int uio_resid The number of bytes not yet been transferred to/from from the data area. If the driver creates
the uio structure for a data transfer, it must initialize this field to the number of bytes to be
transferred.

See Also
data structures, iovec, physiock(), read, uiomove(), ureadc(), uwritec() write

Notes
The DDI/DKI does not have a special function with which a driver can create a uio or iovec structure. Therefore,
it should use either kmem_zalloc() or allocate them statically.

uiomove() — DDI/DKI Kernel Routine
Use a uio structure to copy data
#include <sys/types.h>
#include <sys/uio.h>
int uiomove(address, bytes, flag, uioptr)
caddr_t address; long bytes; uio_rw_t flag; uio_t *uioptr;

uiomove() copies bytes of data between address and the space defined by the uio structure to which uioptr points.

address always gives a location within kernel space. uioptr can describe an area in either kernel space or user
space, depending upon the value of its field uio_segflg: UIO_SYSSPACE indicates kernel space, whereas
UIO_USERSPACE indictes user space. The system will panic if address lies within user space, or if uio_segflg is
not consistent with the space that uio defines.

flag gives the direction of the copy: UIO_READ moves data from address to uioptr, whereas UIO_WRITE does the
opposite.

If uiomove() copies bytes of data, it updates the appropriate fields within the structures uio and iovec and returns
zero. If it could not copy all of the requested data, it updates uio to record the number of bytes not transferred and
returns an appropriate error code.

See Also
bcopy(), copyin(), copyout(), DDI/DKI kernel routines, iovec, uio, ureadc(), uwritec()

Notes
If uio_segflg equals UIO_USERSPACE, uiomove() has base level only and can sleep; if it equals UIO_SYSSPACE,
the function has base or interrupt level and cannot sleep.

If uio_segflg equals UIO_SYSSPACE, a driver can hold a driver-defined basic lock or read/write lock across a call
to this function; if it equals UIO_USERSPACE it cannot. In either case, a driver can hold a driver-defined sleep
lock. When it holds a lock across a call to this function, a driver must be careful not to create a deadlock.

LEXICON

184 uiomove()

ukcopy() — Internal Kernel Routine
User to kernel data copy
unsigned int ukcopy(u, k, n)
char *u, *k; unsigned n;

ukcopy() copies n bytes from offset u in the user’s data segment to offset k in the kernel’s data segment. It returns
the number of bytes copied. If an address fault occurs, it calls set_user_error() with value EFAULT, and returns
zero.

See Also
internal kernel routines, kucopy()

Notes
This function is equivalent to the DDI/DKI routine copyin().

uload — Entry-Point Routine
Routine to execute upon unloading the driver from memory

Under the internal COHERENT device-driver interface, the entry point uload gives access to the routine to execute
when the driver is unloaded from memory. Its address is kept in field c_uload of the driver’s CON structure.

This routine is unused at this time because COHERENT does not support loadable drivers.

See Also
CON, entry-point routines

unbufcall() — DDI/DKI Kernel Routine
Cancel a request to bufcall()
#include <sys/stream.h>
void unbufcall(request)
toid_t request;

unbufcall() cancels request to the function bufcall(). request must have been returned by a call to bufcall() or
esbbcall().

See Also
bufcall(), DDI/DKI kernel routines, esbbcall()

Notes
unbufcall() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

unfreezestr() — DDI/DKI Kernel Routine
Unfreeze a stream
#include <sys/stream.h>
#include <sys/types.h>
void unfreezestr(queue, priority)
queue_t *queue; pl_t priority;

unfreezestr() unfreezes the stream that contains queue. It sets the newly un-frozen stream’s level of interrupt
priority to priority; this must have been returned by the call to freezestr() with which the caller froze the stream,
unless the caller needs to set a different level of interrupt priority. For this field’s legal values, see the entry for
LOCK_ALLOC() in this manual.

See Also
DDI/DKI kernel routines, freezestr()

Notes
unfreezestr() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

LEXICON

ukcopy() — unfreezestr() 185

The caller must have frozen the stream before it calls this function.

unlinkb() — DDI/DKI Kernel Routine
Remove a block from the head of a message
#include <sys/stream.h>
mblk_t *unlinkb(message)
mblk_t *essage;

unlinkb() removes the first block from message. It returns the address of the remaining stump of message; if the
message contained only one block, it returns NULL.

See Also
DDI/DKI kernel routines, linkb()

Notes
unlinkb() has base or interrupt level It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

unlinkb() does not free the block that it removes. You must free it.

unlock() — Internal Kernel Routine
Unlock a gate
#include <sys/types.h>
void unlock(g)
GATE g;

unlock() unlocks gate g. When the gate of a system resource is locked, no other processes can use it. Unlocking a
gate allows the kernel to reschedule processes that had previously been blocked.

See Also
internal kernel routines, lock()

UNLOCK() — DDI/DKI Kernel Routine
Release a basic lock
#include <sys/ksynch.h>
#include <sys/types.h>
void UNLOCK(lock, priority)
lock_t *lock; pl_t priority;

UNLOCK() releases lock, which must be a basic lock. priority gives the level of interrupt priority that the calling
process wants once the lock is released. Normally, this is the value that had been returned by the call that set the
lock, that is, the level of interrupt priority the calling process had had before it set the lock. However, the calling
function can set a different level of interrupt priority should it need to. See entry for LOCK_ALLOC() in this
manual for a list of all legal values for this argument.

See Also
DDI/DKI kernel routines, LOCK(), LOCK_ALLOC(), LOCK_DEALLOC(), TRYLOCK()

Notes
UNLOCK() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

unmap_pv() — Kernel Routine
Dissociate virtual addresses from physical addresses
void unmap_pv(vaddr)
vaddr_t vaddr;

unmap_vp() releases virtual address vaddr. vaddr must have been previously obtained via function map_pv().

See Also
internal kernel routines

LEXICON

186 unlinkb() — unmap_pv()

untimeout() — DDK/DKI Kernel Routine
Cancel execution of a previously scheduled function
#include <sys/types.h>
void untimeout(function_id)
toid_t function_id;

Function untimeout() cancels the request to execute a given function at a future time. It returns nothing.

function_id identifies the request to cancel; it had been returned to itimeout() when the function was first
scheduled for execution.

If you call untimeout() as the function is running, untimeout() does not return until the function has run to
completion.

See Also
DDI/DKI kernel routines, itimeout()

Notes
untimeout() has base or interrupt level. It does not sleep. Note that untimeout() can be executed only from an
interrupt level less than or equal to the level that itimeout() specified when it scheduled the function to be
executed.

A driver cannot hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function if that
lock is being contended by the scheduled function.

Note that the scheduled function cannot call untimeout() to cancel itself.

uproc — Internal Data Structure
Structure that defines a process
#include <sys/uproc.h>

Structure uproc describes a process. The kernel allocates one such structure for each process that is running.
Header file <sys/uproc.h> defines this structure.

Each process has its own ‘u’ (or ‘‘user’’) area. This area holds a copy of the uproc structure, which the process (or
things acting upon the process) can modify.

See Also
internal data structures

Notes
Please note that this structure is being redesigned to help COHERENT conform more closely to published standards.
You should not write code that depends upon any part of this structure remaining stable.

ureadc() — DDI/DKI Kernel Routine
Copy a character to space that uio describes
#include <sys/uio.h>
int ureadc(c, uioptr)
int c; uio_t *uioptr;

ureadc() copies the character c into the space described by the uio structure to which uioptr points.

uioptr describes an area in either user or kernel space: if its field uio_segflg equals UIO_SYSSPACE, then it points
to kernel space; whereas if the field equals UIO_USERSPACE, it points to the user’s address space.

If all goes well, ureadc() updates the appropriate fields within structures uio and iovec, and returns zero. If
something goes wrong, ureadc() returns an appropriate error number. For details, see the Lexicon entries for these
structures.

See Also
DDI/DKI kernel routines, iovec, uio, uiomove(), uwritec()

LEXICON

untimeout() — ureadc() 187

Notes
ureadc() uio_segflg equals UIO_USERSPACE, uread() has base level only and can sleep; however, if it equals
UIO_SYSSPACE ureadc() has base or interrupt level and cannot sleep.

If uio_segflg equals UIO_SYSSPACE, a driver can hold a driver-defined basic lock or read/write lock across a call
to this function; however, if uio_segflg equals UIO_USERSPACE, it cannot. A driver can hold a sleep lock across a
call to this function regardless of the value of uio_segflg. When it holds a lock across a call to this function, a
driver must be careful not to create a deadlock.

uwritec() — DDI/DKI Kernel Routine
Copy character from space described by uio structure
#include <sys/uio.h>
int uwritec(c, uioptr)
int c; uio_t *uioptr;

uwritec() copies the character c from the space described by the uio structure to which uioptr points. uioptr
describes an area in either user or kernel space: if its field uio_segflg equals UIO_SYSSPACE, then it points to
kernel space; whereas if the field equals UIO_USERSPACE, it points to the user’s address space.

If it copies c successfully, uwritec() updates the appropriate members of structures uio and iovec to reflect this
fact, and returns the copied character. If something goes wrong, uwritec() returns -1.

See Also
DDI/DKI kernel routines, iovec, uio, uiomove(), ureadc()

Notes
uwritec()

Level
If uio_segflg equals UIO_USERSPACE, uwrite() has base level only and can sleep; however, if it equals
UIO_SYSSPACE, then uwritec() has base or interrupt level and can sleep.

If uio_segflg equals UIO_SYSSPACE, then a driver can hold a driver-defined basic lock or read/write lock over a
call to this function; however, if io_segflg equals UIO_USERSPACE, then it cannot. A driver can hold a driver-
defined sleep lock regardless of the value of uio_segflg. If a function holds a lock across a call to uwritec(), it must
be careful not to create a deadlock.

vtop() — Internal Kernel Routine
Translate virtual address to physical address
#include <sys/coherent.h>
#include <sys/types.h>
paddr_t vtop(vaddr)
vaddr_t vaddr;

vtop() returns the current physical address associated with virtual address vaddr.

See Also
internal kernel routines

wakeup() — Internal Kernel Routine
Wakeup processes sleeping on an event
void wakeup(e)
char *e;

wakeup() ‘‘wakes up’’ all processes that went to sleep on event e, so they can run again.

See Also
internal kernel routines

LEXICON

188 uwritec() — wakeup()

WR() — DDI/DKI Kernel Routine
Get a pointer to the write queue
#include <sys/stream.h>
queue_t *WR(queue)
queue_t *queue;

WR() returns a pointer to the write queue of queue.

See Also
DDI/DKI kernel routines, OTHERQ(), queue, RD()

Notes
WR() has base or interrupt level. It does not sleep.

A driver can hold a driver-defined basic lock, read/write lock, or sleep lock across a call to this function.

write — Entry-Point Routine
Write data to a device

Internal-Kernel Interface:
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
int prefixwrite(device, uioptr, credptr, private)
dev_t device; IO *ioptr; cred_t *credptr; void *private
DDI/DKI or STREAMS:
#include <sys/cred.h>
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/uio.h>
int prefixwrite(device, uioptr, credentials)
dev_t device; uio_t *uioptr; cred_t *credentials;

The write routine copies data from the user’s data area to the device. A user’s application can invoke it via the
function call write().

Internal-Kernel Interface
Under the internal-kernel inteface to a driver, the address of the write routine is kept in field c_write of the driver’s
CON structure. It is customary to name the write routine with the word write prefixed by a unique identifier for
your driver; but this is not required.

device is a dev_t that identifies the device to be written.

ioptr points to the IO structure that manages communication with device.

Finally, private points to a data element that is private to your driver. Note that many drivers do not use this
argument.

DDI/DKI or STREAMS
The rest of this article describes how to invoke this function under the DDI/DKI interface. To invoke it, call
function prefixwrite(), where prefix is the unique prefix for this driver. device identifies the device to which the
data are to be written. uioptr points to the uio structure that holds the information about the data to be copied.
credentials points to the user’s credential structure, which the driver should examine to see if the user has
permission to write to device. The write routine returns zero if it succeeded in copying the data, or an appropriate
error number should something have gone wrong.

An application calls the write routine via the system call write().

Function uiomove() lets you use the uio structure to copy data. Block drivers that provide a character interface
can call physiock() to perform data transfer via the driver’s strategy routine.

The write operation should appear to the user to run synchronously. At very least, it should not return until the
caller’s buffer is no longer needed. A driver that is scrupulous about returning errors should not return until it

LEXICON

WR() — write 189

has committed the data to device. Drivers that are less fastidious about errors can return once they have entrusted
the data to a local staging buffer; the data can be committed to the device asynchronously, but should an error
occur driver will not be able to notify the user that his request failed.

See Also
CON, drv_priv(), entry-point routines, errno, physiock(), read, strategy, uio, uiomove(), uwritec(),
COHERENT Lexicon: write()

Notes
This entry point is optional.

The write routine has user context and can sleep.

x_sleep() — Internal Kernel Routine
Wait for event or signal
#include <sys/sched.h>
int x_sleep(event, schedPri, isleepPri, reason);
char *event, *reason; int schedPri, sleepPri;

x_sleep() surrenders control of the processor while this process awaits some event or resource. In effect, the
process ‘‘sleeps’’ until a particular event occurs.

event gives the address of a data item in the kernel’s static-data space. To awaken the sleeping process, call the
function wakeup() with the same event.

schedPri gives a value used to the hint the scheduler once the process is asleep. It is one of the following: prilo,
primed, prihi, pritape, pritty, pridisk, or prinet.

sleepPri is a flag that indicates what should happen if a signal is sent to the process while it sleeps (or is about to
sleep). Values are one of the following:

slpriNoSig
Signals cannot interrupt sleep. Use slpriNoSig if you want the driver never to be awakened by the arrival
of a signal. The risk is, that if you lose the wakeup, the driver hangs forever.

slpriSigLjmp
Signals cause whatever system call was in progress to end immediately with an error value of EINTR. Use
slpriSigLjmp if you can afford to throw away the entire system call and return to the user with an EINTR.
This is not valid from within open() or close(), as it causes a fatal imbalance in internal reference counts.

slpriSigCatch
Signals cause a return from the call to x_sleep(). Use slpriSigCatch if you want to detect a non-ignored,
non-delayed signal and do something about it.

reason points to text that explains why the process is sleeping. This text appears in output of the command ps.
This text can be no more than U_SLEEP_LEN bytes long. If text contains fewer than U_SLEEP_LEN bytes, it must
be terminated by a NUL character.

x_sleep() must obey the following rules:

First, a driver can x_sleep() while it waits for some condition to be satisfied. However, x_sleep() may return
prematurely; therefore, the driver must place the call to x_sleep() within a loop and check for the initial condition
to still be valid. Normally, a sleep is performed in the following manner:

set interrupt priority to keep out the gremlins
while (work is not yet completed)

x_sleep(&some_variable_in_the_kernel_data_area,...)
restore interrupt mask

The interrupt routine, in turn, calls wakeup() or defers wakeup for later background processing if time is not an
issue. This causes the aforementioned code to return from the call to x_sleep().

As you can see, there is an inherent race condition between the while and x_sleep(). If the work is serviced while
the driver is x_sleep()ing, the while loop works correctly. However, should the last interrupt happen after the
while but before the call to x_sleep(), the driver deadlocks — in effect, it awaits an event that will never occur.

x_sleep() returns for various reasons, but a driver cannot depend upon it to return for reasons other than a
process calling wakeup() with the variable upon which the driver fell asleep. If the driver awaits an event based

LEXICON

190 x_sleep()

upon an interrupt, a driver must bracket the call to x_sleep() with calls to the kernel routines sphi() and spl().

x_sleep() returns PROCESS_NORMAL_WAKE if it has received a wakeup call. It returns PROCESS_SIGNALLED it
has received a signal (other than SIGSTOP or SIGCONT). Both constants are defined in the header file
<kernel/_sleep.h>.

See Also
internal kernel routines, sphi(), spl(), wakeup()

Notes
x_sleep() replaces the function v_sleep().

Because a driver that is ‘‘asleep at the wheel’’ can cause a great deal of trouble, you must use x_sleep() only during
situations when the kernel can awaken it again. Observe the following rules when you use x_sleep():

• Never call x_sleep() from within a driver’s block routine, either directly or indirectly.

• Never call x_sleep() from within an interrupt handler, either directly or indirectly. Doing so can cause a
deadlock, as described above.

• Never call x_sleep() from the load routine of a driver; doing so will cause a panic.

• Your driver must always check for signals while sleeping. Failure to do so will create ‘‘zombies’’ — that is,
user processes that cannot be terminated. For example, the following code fragment shows how a blocking
driver’s open routine can let the user break out of a sleep by pressing the interrupt character on the
keyboard:

if (nondsig()) { /* received a signal? */
set_user_error(EINTR); /* indicate that we were interrupted */
return; /* return to user process */

}

• If longjmp() occurs, there is no return from x_sleep().

xpcopy() — Internel Kernel Routine
Copy from kernel data to physical or system global memory
#include <sys/seg.h>
xpcopy(src, dest, num_bytes, flag)
vaddr_t src; paddr_t dest; unsigned int num_bytes; int flag;

Kernel function xpcopy() copies kernel data to an address that you specify. You can invoke it in either of two
forms.

The first form copies num_bytes from kernel data virtual address src to physical address dest. This form is selected
by setting argument flag to manifest constant SEL_386_KD|SEG_VIRT.

The second form copies num_bytes from kernel data virtual address src to system global address dest. This form is
selected by setting argument flag to manifest constant SEL_386_KD.

Note well that num_bytes must be less than or equal to four kilobytes (4,096 bytes).

No alignment restrictions are placed on src or dest.

See Also
internal kernel routines

LEXICON

xpcopy() 191

192 The COHERENT System

Index

to _

/dev . 5
/etc/conf/install_conf/keeplist. 7

A

adjmsg() . 69
allocb() . 69
ALLSIZE . 121
altclk_in(). 69
altclk_out() . 70
ASSERT() . 70
at . 94

B

b_paddr. 18
backq() . 70
band, priority

definition . 169
bcanput() . 71
bcanputnext() . 71
bclaim() . 72
bcopy() . 72
bdone() . 14, 72, 81
bflush() . 72
block . 3, 73
block(). 16
block-special device. 3
bread() . 73
brelease() . 73
BSIZE. 4, 14, 115
bsync() . 73
BUF . 14
buf. 73, 81
bufcall(). 74
buffer cache . 4, 73
buffer cache, resize 135
busyWait() . 16, 74
busyWait2() . 16, 75
bwrite() . 75
bzero(). 75

C

canput(). 75
canputnext() . 76
character-special device 3
chpoll . 76
cloning

definition . 138
close. 77
close() . 14
clrivec() . 79
clrq() . 79
cltgetq() . 79
cltputq() . 79
cmn_err() . 79
CON. 14
con . 80
con.h . 15, 82
condev . 122

INDEX

cooked device . 4
copyb() . 83
copyin() . 84
copymsg(). 84
copyout() . 84
copyreq . 85
copyresp . 85
cprocp . 122

D

datab . 86
datamsg(). 86
DDI/DKI

definition . 1, 11, 94
DDI/DKI data structures 88
DDI/DKI kernel routines 88
ddi_base_data() . 86
ddi_cpu_data(). 87
ddi_global_data() . 87
ddi_proc_data() . 87
defend() . 91
defensive programming 12
defer() . 16, 91
deferred functions . 3
dev_t . 14, 81
device

block special . 3
character special. 3
cooked. 4
definition . 3
raw. 4

device driver . 4, 91
add a new one 6, 93

device file. 5
device numbers . 96
devices.h . 14, 81
devmsg() . 96
direct-memory access 17
DMA. 17
dmago() . 97
dmain() . 17, 97
dmaoff(). 97
dmaon(). 97
dmaout() . 17, 97
dmareq() . 98
dpower() . 15
drv_getparm() . 98
drv_hztousec() . 99
drv_priv() . 99
drv_setparm() . 99
drv_usectohz() . 100
drvl . 123
drvn . 123
dupb(). 100
dupmsg() . 101

E

enableok() . 101
entry-point routines 101
errno.h . 13
errors . 102
esballoc() . 103
esbbcall() . 103
etoimajor() . 104
external events . 3
external major number. 107

The COHERENT System 193

external minor number 107

F

fdisk() . 104
flushband(). 104
flushq() . 104
free_rtn . 105
freeb() . 105
freemsg() . 106
freerbuf() . 106
freezestr(). 106

G

getDmaMem() . 107
getemajor() . 107
geteminor() . 107
getmajor() . 108
getminor() . 108
getPhysMem() . 108
getq() . 109
getrbuf() . 109
getubd(). 110
getusd() . 110
getuwd() . 110
getuwi() . 111

H

hai. 94
halt . 111

I

I/O
memory mapped 17
raw. 17
scatter/gather . 183

I/O control . 15, 81
inb() . 111
init . 111
inl() . 112
insq() . 112
internal data structures 113
internal kernel routines 113
internal major number. 107
internal minor number. 107
interrupt

definition . 4
interrupt handler . 4
interrupt vector . 4
intr . 115
inw(). 115
IO . 14
io . 115
io.h . 4, 15, 116
iocblk . 116
ioctl . 15, 81, 116

transparent . 116
ioctl() . 14
iogetc() . 15, 81, 118
iomapAnd(). 118
iomapOr(). 118
ioputc() . 15, 81, 118
ioread() . 119
ioreq() . 119
iovec. 119

iowrite() . 119
ISTSIZE. 121
itimeout() . 120
itoemajor() . 120

K

kalloc() . 121
kalloc() memory pool 17
KBBOOT . 121
keeplist . 7
kernel

description . 3
functions . 14
tunable variables 135

kernel variables . 121
kfree() . 123
kiopriv(). 124
kmem_alloc(). 124
kmem_free() . 124
kmem_zalloc() . 125
kucopy() . 125

L

lbolt . 123
linkb(). 125
linkblk . 126
lkinfo . 126
load . 126
load() . 16
loading a driver 15, 82
LOCK() . 127
lock() . 126
LOCK_ALLOC() . 127
LOCK_DEALLOC() 128
locked() . 128
lpioctl.h. 15, 82

M

major device number 92
major number

external . 107
internal . 107

major() 4, 14-15, 74, 82, 128
major-device number

definition . 5
makedevice() . 129
map_pv() . 129
MAPIO(). 129
mapPhysUser() . 129
mdevice. 130
memory

pools . 17
memory-mapped I/O 17
messages . 131
minor device number. 92
minor number

external . 107
internal . 107

minor() . 4, 14, 74, 132
minor-device number

definition . 5
mknod . 5
mmap. 132
module_info . 133
msgb . 133

INDEX

194 The COHERENT System

msgdsize() . 134
msgpullup() . 134
mtioctl.h . 15, 82
mtune. 135

N

naming conventions 13
NBPSCTR. 163
NBUF . 121
NCLIST . 121
NINODE . 122
NMSC. 122
NMSG. 122
NMSQB. 122
NMSQID . 122
noenable() . 135
nondsig() . 136
nonedev() . 136
NPOLL . 122
nulldev() . 136

O

open. 136
open() . 14
OTHERQ() . 138
outb() . 139
outl() . 139
outw() . 139

P

P2P() . 17, 139
paddr_t . 17
panic() . 140
pcmsg() . 140
phalloc() . 140
phfree() . 141
PHYS_MEM . 122
physiock() . 141
pipedev . 123
PIT. 16
poll . 142
poll(). 14
poll.h . 16, 82
pollhead . 142
polling the device 15, 82
pollopen(). 16, 82, 143
pollwake() 16, 82, 143
pollwakeup() . 143
power . 143
power-fail routine 15, 82
print. 144
printf() . 144
priority band

definition . 169
proc_ref() . 144
proc_signal() . 145
process

definition . 3
pullupmsg() . 145
put . 145
put() . 146
putbq() . 146
putbuf . 79
putbufsz . 80
putctl() . 147

INDEX

putctl1() . 147
putnext() . 148
putnextctl(). 148
putnextctl1() . 148
putq() . 149
putubd() . 149
putusd() . 149
putuwd() . 149
putuwi() . 150
pxcopy(). 17, 150

Q

qenable() . 150
qinit . 150
qprocsoff() . 151
qprocson() . 151
qreply() . 152
qsize() . 152
queue . 152

ready. 3
suspended . 3

R

race condition 16, 153
raw device . 4
raw I/O . 17
RD() . 154
read . 154
read a device. 14, 81
read() . 14
read_t0() . 16, 155
ready queue . 3
repinsb() . 155
repinsd() . 155
repinsw() . 155
repoutsb() . 156
repoutsd() . 156
repoutsw() . 156
RLOCKS . 122
rmvb(). 157
rmvq() . 157
ronflag . 123
rootdev . 123
rput . 146
RW_ALLOC() . 157
RW_DEALLOC() . 158
RW_RDLOCK(). 158
RW_TRYRDLOCK() 159
RW_TRYWRLOCK() 159
RW_UNLOCK(). 160
RW_WRLOCK() . 160

S

salloc() . 160
SAMESTR(). 161
scatter/gather I/O 183
sdevice . 161
sendsig() . 162
set_user_error() . 162
setivec() . 163
SHMMAX. 122
SHMMNI . 122
sigdump(). 163
signals . 163
size . 163

The COHERENT System 195

sleep
caveats . 16
definition . 3

sleep() . 81
SLEEP_ALLOC() . 164
SLEEP_DEALLOC() 164
SLEEP_LOCK() . 165
SLEEP_LOCK_SIG(). 165
SLEEP_LOCKAVAIL() 166
SLEEP_LOCKOWNED(). 166
SLEEP_TRYLOCK() 166
SLEEP_UNLOCK(). 166
special file . 5
sphi() . 167
spl() . 167
splbase() . 167
spldisk() . 167
splhi() . 168
splo() . 168
splstr() . 168
spltimeout() . 169
splx() . 169
srv. 169
start. 170
stat.h . 15, 82
strategy. 170
STREAMS . 171
streamtab . 171
strlog() . 172
stroptions . 172
strqget(). 174
strqset(). 174
stune . 175
super() . 175
suspended queue . 3
SV_ALLOC() . 175
SV_BROADCAST() 175
SV_DEALLOC() . 176
SV_SIGNAL() . 176
SV_WAIT() . 176
SV_WAIT_SIG() . 177
sysmem memory pool 17

T

technical information. 178
testb() . 178
time . 178
timeout functions . 3
timeout() . 16, 178
trace. 179
transparent ioctl

definition . 116
TRYLOCK() . 179
ttclose() . 180
ttflush() . 180
tthup() . 180
ttin(). 180
ttinp() . 180
ttioctl() . 181
ttopen() . 181
ttout() . 181
ttoutp() . 181
ttread() . 181
ttread0() . 182
ttsetgrp() . 182
ttsignal() . 182
ttstart() . 182

ttwrite() . 183
ttwrite0() . 183
tty.h. 15, 82
tunable variables . 135

U

u area. 187
uio. 183
uiomove() . 184
ukcopy() . 185
uload . 185
unbufcall() . 185
unfreezestr() . 185
unlinkb() . 186
unload(). 16
unloading a driver 15, 82
UNLOCK() . 186
unlock(). 186
unmap_pv() . 186
untimeout() . 187
uproc . 187
ureadc(). 187
uwritec() . 188

V

v_sleep() . 191
VIDSLOW . 122
virtual consoles, set 135
vtop() . 188

W

wakeup() 15-16, 81, 188
widget. 93
wput . 146
WR() . 189
write. 189
write to a device 15, 81
write() . 14

X

x_sleep() . 15-16, 190
xcopy() . 17
xpcopy(). 191

INDEX

