
drdobbs.com

RDB -- A UNIX Command-Line
Database

By Mark Pruett, April 10, 2003

16-20 minutes

Sometimes, even a small database is too big. Databases such as

mySQL and PostgreSQL, while lightweight and easy to install by

commercial standards, may still be more than you need for some

straightforward data analysis problems. Some of these databases

may also require root access to install, which may not be practical

in some environments.

Mark Pruett

Sometimes, even a small database is too big. Databases such as

mySQL and PostgreSQL, while lightweight and easy to install by

commercial standards, may still be more than you need for some

straightforward data analysis problems. Some of these databases

may also require root access to install, which may not be practical

in some environments.

RDB, a relational database system that operates on plain text files

using the UNIX command line, is a simple but powerful alternative.

It can be quickly downloaded and installed and doesn't require root

access. Furthermore, it doesn't use a daemon process to mediate

between the data tables and the user.

Walter Hobbs of the RAND Corporation wrote RDB, based on ideas

from an article published in the March 1991 issue of Unix Review

magazine ("A 4GL Language"), and from the book UNIX Relational

Database Management, by Rod Manis, et. al. (Prentice Hall

PTR/Sun Microsystems Press). Walter Hobbs has released RDB to

the public domain, so it's freely distributable.

RDB Files

RDB differs from most other relational databases in several ways.

One difference is that RDB stores data tables as ASCII text files. A

more traditional database system, like PostgreSQL, stores data

tables in a binary format in files that are hidden from the user. The

user accesses the data indirectly, through special programs or

through APIs (Application Programming Interfaces).

While insulating the user from direct access to the data files has

advantages, it also makes that data more difficult to move from

place to place. With RDB, data tables can be moved anywhere,

even to other computers, by simply copying the data files. Other

relational databases often require you to export the table (ironically,

to a text file), then import the file into the new database. RDB tables

can be created with any text editor. Figure 1 (people.rdb) shows an

example of a simple RDB table.

The first line of the table in Figure 1 is a comment. Comment lines

are optional and there can be more than one, but they must come

at the beginning of the file, and they must begin with a "#"

character. The second line describes the table's column names.

Starting with the second line, all data columns are separated by a

tab character. In Figure 1, tab characters are denoted by "<t>". The

people.rdb table has four columns: LastName, FirstName, Age, and

Phone.

The next line describes the table's column types. Traditional

databases have many column types, including strings, integers of

varying widths, floating-point numbers, dates, and even BLOBs

(Binary Large OBjects). RDB has relatively few: string, numeric,

and month. The people.rdb table contains mostly string columns,

with Age being the lone numeric field. Each tab-separated value

describes the column type for its corresponding column from the

previous line, so LastName's column type is "25S", FirstName's is

"10", etc. RDB uses the letters S, N, and M to describe the three

column types: string, numeric, and month. String is the default

column type.

The integer value describes the column's width, but this is not an

enforced limitation. Instead, the number is used by some of RDB's

output formatting commands. Formatting is also the purpose of the

">" character in Phone's field type. The ">" and "<" indicate that a

column should be displayed either right or left justified.

RDB data can contain any ASCII characters except for new-lines

and tabs and there are no length limitations. The remaining lines of

people.rdb are data lines, which are also tab separated. All RDB

tables follow this basic format.

Using RDB

Another difference between RDB and traditional relational

databases is that it uses a set of command-line programs to

manipulate RDB data. Databases such as mySQL access data

using Structured Query Language (SQL). SQL uses a SELECT

statement to extract information from a data table. For example, if

the information from the people.rdb table in Figure 1 was stored in

a mySQL database table called people, a SELECT query might

look like this:

SELECT FirstName, LastName, Phone

FROM people

WHERE LastName = "Smith"

This query tells mySQL to display three columns (FirstName,

LastName, and Phone) from the people table, but only those rows

of the table where the LastName field is equal to "Smith". The

resulting table would look like this:

FirstName LastName Phone

--------- -------- --------

John Smith 555-2416

Jane Smith 555-3499

The same results are possible from RDB using two of its command-

line programs and UNIX's pipe-and-filter mechanisms:

row LastName eq "Smith" < people.rdb | column

FirstName LastName Phone

RDB's row command is equivalent to the WHERE clause in SQL.

The column command is similar to the column list that follows the

SELECT keyword in the SQL example. It tells RDB which columns

to display, and in what order. Notice that the Age field is not listed

and therefore it won't appear in the output. The row command uses

the following comparison operators: gt, ge, lt, le, eq, ne, mat,

nmat. The last two operators are for regular expression matching.

The keywords "and" and "or" can be used with the row command to

build more complex queries. It's important also to note that each

RDB command expects a valid RDB table as input, and emits a

valid table as output. This allows complex database queries to be

built by stringing together a collection of RDB commands. In

addition to the row and column commands, RDB includes

commands to join tables (jointbl), sort tables by a specific column

or columns (sorttbl), and find unique rows by column (uniqtbl).

Other RDB commands, such as mergetbl, serve the same purpose

that INSERT, UPDATE, and DELETE statements do in SQL,

inserting, updating, or deleting rows from an RDB table. By

leveraging the power of the UNIX command line, RDB makes it

easy to perform complex data manipulations. Complex queries can

be developed and debugged on the command line. These queries

can then be saved as shell scripts. This simplifies extending RDB

for a specific set of problems. Joining Tables in RDB All SQL-

based databases allow you to join two tables on a column. RDB

also lets you do this. The RDB table in Figure 2 has two columns --

Age and Comment. To join this table to the people.rdb table, use

the jointbl command like this:

jointbl Age=Age ages.rdb < people.rdb

The first parameter indicates that we want to join the two tables on

the Age column. The second parameter is the table to which we

want to join. The first table, people.rdb, is expected from standard

input. The result of the jointbl command is shown in Figure 3.

Notice that the result is yet another RDB table, which means that

the result of this join can be piped into subsequent RDB commands

for further processing. The new table has five columns -- the four

from people.rdb, and the Comment column from ages.rdb. But,

where people.rdb had three data records, this table only has two

because no age in ages.rdb matched the record for Jane Smith.

The join only outputs records where the columns matched. There

may be times when you want all the records from the first table to

be output, even if they didn't match anything in the second table.

This is a master-detail or outer join. To make an outer join with

RDB, use jointbl's -md switch:

jointbl -md Age=Age ages.rdb < people.rdb

The table produced (Figure 4) has all three records from the first

table, but the Comment column for Jane Smith's record is null.

Notice the trailing tab character in the last record. Formatting RDB

Output While RDB commands operate on simple text files, these

tab-delimited files may not be the best way to present information to

the user. RDB provides two commands that simplify producing

reader-friendly reports. The first and simplest of these is the ptbl

command. The ptbl command takes an RDB table from standard

input and emits a fixed-column report as output. For example,

running our example table through ptbl, like this:

ptbl < people.rdb

gives us output that looks like this:

LastName FirstName Age Phone

--------------- ---------- --- ------------

Smith John 25 555-2416

Adams Frank 27 555-1378

Smith Jane 34 555-3499

Column widths and alignments are determined by the "column type"

line of the RDB table. The reporttbl command allows more

complex report layouts. It uses a separate form file that describes

the report design. Figure 5 shows a sample form file, people1.frm,

that could be used with the people.rdb table. The form file

describes how to format each row from the RDB table. In this

example, each table row will be output onto two lines, the first

showing the person's name, and the second showing their age and

phone number. Fields beginning with an ampersand character are

picture fields, which describe the placement and alignment of

individual columns. Following the ampersand will be one or more

alignment characters -- "<" for left alignment or ">" for right

alignment. On the line immediately following the picture fields is a

line listing the RDB column names to which each picture field

corresponds. The form file is passed as a parameter to the

reporttbl command, with the RDB table received via standard

input:

reporttbl people1.frm < people.rdb

This command yields a report formatted like this:

Name: John Smith

Age: 25 Phone: 555-2416

Name: Frank Adams

Age: 27 Phone: 555-1378

Name: Jane Smith

Age: 34 Phone: 555-3499

The reporttbl form file allows you to define optional page headers,

as well as to embed the output from external commands such as

date or whois into a report.

Uses for RDB

Programmers who write applications that generate log files can

store those logs in RDB format, then use RDB to easily query those

logs. RDB files are simply tab-delimited text files, so it's a simple

matter to produce log files in RDB format. The hassles of parsing

log files are reduced by breaking log files into RDB tables with

columns like Date, Time, ApplicationName, Severity, and

MessageText.

If you're writing CGI apps in either Perl or PHP, it's simple to read

RDB tables and then display the data, which makes RDB easy to

use for Web applications. I've used RDB extensively for archiving

data collected from electrical substations in near real time.

Electrical utilities monitor large numbers of devices, such as

breakers and transformers, and often need to save that data for

later analysis. RDB works well in this role. Existing log files can

easily be converted to RDB format. Once converted, these logs can

be queried by date ranges, application name, message content, or

any combinations of these fields.

Installing RDB

Installing RDB couldn't be much easier. Retrieve the tarball from the

ftp site (ftp.rand.org/pub/RDB-hobbs/RDB-2.6d.tar.gz), unzip and

untar it, cd into the rdb directory and type make install. A collection

of Perl programs is installed, which means you need to have Perl

installed on the target machine. Beyond that, there aren't really any

prerequisites. By default, RDB tries to install to the /usr/local/bin

directory, but this can be modified by editing the INSTALL_DIR line

in the RDB Makefile.

There is one problem you may need to watch for: one of the RDB

commands is called "column". This may conflict with the "column"

utility included with many UNIX and Linux distributions (in particular,

"column" is included with the util-linux package and installed with

the Red Hat Linux distribution). You can avoid the problem by

renaming one of the column utilities.

RDB doesn't have any daemon running, and there are no

databases to create, so once it's installed, it's ready to use. All that

remains is to create your RDB data tables, which you can do with a

simple text editor.

Limitations of RDB

In practice, RDB works best on databases with predictable growth.

Log files grow by appending new records to the end of the file,

which is one reason they work well as RDB tables. Likewise, data

acquisition applications, where time-stamped data is continuously

collected and archived, work well as RDB tables. Both these types

of data files grow constantly, but it's seldom necessary to go back

later and modify the records.

Also, because of the sequential nature of text file access, large files

can be cumbersome within RDB. What constitutes "large" depends

on the speed of the file system, the processor, and how long you're

willing to wait for a query to complete. One advantage here is that

once a file has been queried, subsequent RDB requests on the

same file are likely to hit a cached copy of the file in memory. This

can significantly cut down on query times. RDB has an indextbl

command that can create a separate index file for an rdb table. This

can also improve access times, but the index must be recreated

each time the table is modified.

If a large amount of data is collected, disk storage may become a

problem. Luckily, the UNIX philosophy ("small tools that do one

thing well") helps solve this problem too. RDB tables can be

compressed, using the gzip utility. This can reduce them to as little

as a tenth their original size. When you need to query these files,

you can simply access them with zcat, which uncompresses them

and sends them to standard output.

Advantages of RDB

RDB tables are simple text files, so the whole UNIX command-line

bag of tricks is available when using them. Collections of RDB files

can be searched with grep. Output from RDB tables can be mailed

using a command-line mail program. Repetitive sequences of RDB

commands can be turned into shell scripts.

I use RDB to maintain a table of host names and IP addresses. The

table also includes information about host name aliases, the

physical location of the hosts, the purpose of the host (e.g., this

host is used primarily as a Web server, and that host is a mail

server), and the host's machine architecture (Intel, Alpha, etc.).

This data is used by several different programs, but primarily it's

used to generate files used by our domain name servers.

My name server requires two files -- one that maps hosts to IP

addresses, and another that handles reverse mappings from IP

address to host name. I wrote a short Perl script that generates

both these files from my hosts' RDB table. That way, I only have to

update one file. The portability of RDB means that if I ever have to

move the name server to a different machine, I can also move the

hosts' RDB table with a minimum of fuss.

RDB can take advantage of the hierarchical directory structure of

UNIX to speed data access and minimize file size. Date-stamped

data can be stored in directories that indicate the date. For

example, a log file for June 10th, 2001 can be stored in the

directory /home/xyz/2001/06/10.

RDB data is trivial to exchange with other users. An RDB table can

be emailed, intact, as an attachment and once received, it's ready

to use. Because data is stored as simple ASCII text, it can move

easily between different machines and different operating systems.

RDB data files can be imported or pasted into spreadsheet

applications such as Microsoft Excel or Star Office.

RDB is easy to share over the Web. You can store RDB tables in a

Web directory, then access and query them remotely using a

program like lynx. Lynx allows you to dump the source of a Web

page (or in our, case an RDB table) to standard output, so lynx can

be used to quickly access data over the Internet. You can even join

a remote table to a local RDB table.

RDB commands are built on the command line, and the ease of this

approach lends itself to experimentation. If you're comfortable with

the UNIX command line, and you routinely need flexible data

analysis tools, give RDB a try. You can have the power of a

relational database without giving up the flexibility of the UNIX

command line.

Mark Pruett received a Masters Degree in Computer Science from

Virginia Commonwealth University. He has been programming for

the past 18 years. Mark currently works for Dominion Virginia

Power. He can be reached at mpruett@mediaone.net.

